Catalase compromises the development of the insect and mammalian stages of Trypanosoma brucei
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31593329
DOI
10.1111/febs.15083
Knihovny.cz E-zdroje
- Klíčová slova
- catalase, development, hydrogen peroxide, trypanosoma,
- MeSH
- hmyz účinky léků růst a vývoj metabolismus MeSH
- katalasa metabolismus MeSH
- peroxid vodíku farmakologie MeSH
- Trypanosoma brucei brucei účinky léků metabolismus MeSH
- Trypanosoma účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- katalasa MeSH
- peroxid vodíku MeSH
Catalase is a widespread heme-containing enzyme, which converts hydrogen peroxide (H2 O2 ) to water and molecular oxygen, thereby protecting cells from the toxic effects of H2 O2 . Trypanosoma brucei is an aerobic protist, which conspicuously lacks this potent enzyme, present in virtually all organisms exposed to oxidative stress. To uncover the reasons for its absence in T. brucei, we overexpressed different catalases in procyclic and bloodstream stages of the parasite. The heterologous enzymes originated from the related insect-confined trypanosomatid Crithidia fasciculata and the human. While the trypanosomatid enzyme (cCAT) operates at low temperatures, its human homolog (hCAT) is adapted to the warm-blooded environment. Despite the presence of peroxisomal targeting signal in hCAT, both human and C. fasciculata catalases localized to the cytosol of T. brucei. Even though cCAT was efficiently expressed in both life cycle stages, the enzyme was active in the procyclic stage, increasing cell's resistance to the H2 O2 stress, yet its activity was suppressed in the cultured bloodstream stage. Surprisingly, following the expression of hCAT, the ability to establish the T. brucei infection in the tsetse fly midgut was compromised. In the mouse model, hCAT attenuated parasitemia and, consequently, increased the host's survival. Hence, we suggest that the activity of catalase in T. brucei is beneficial in vitro, yet it becomes detrimental for parasite's proliferation in both invertebrate and vertebrate hosts, leading to an inability to carry this, otherwise omnipresent, enzyme.
Department of Biomedical Sciences Institute of Tropical Medicine Antwerp Belgium
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava Czech Republic
Zobrazit více v PubMed
Baral TN (2010) Immunobiology of African trypanosomes: need of alternative interventions. J Biomed Biotechnol 2010, 389153.
Lukeš J, Skalický T, Týč J, Votýpka J & Yurchenko V (2014) Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 195, 115-122.
Fenn K & Matthews KR (2007) The cell biology of Trypanosoma brucei differentiation. Curr Opin Microbiol 10, 539-546.
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J & Yurchenko V (2019) Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146, 1-27.
Beschin A, Van Den Abbeele J, De Baetselier P & Pays E (2014) African trypanosome control in the insect vector and mammalian host. Trends Parasitol 30, 538-547.
Lü JM, Lin PH, Yao Q & Chen C (2010) Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med 14, 840-860.
Vatansever F, de Melo WC, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R et al. (2013) Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 37, 955-989.
Ridgley EL, Xiong ZH & Ruben L (1999) Reactive oxygen species activate a Ca2+-dependent cell death pathway in the unicellular organism Trypanosoma brucei brucei. Biochem J 340, 33-40.
Hao Z, Kasumba I & Aksoy S (2003) Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera: Glossinidiae). Insect Biochem Mol Biol 33, 1155-1164.
Munks RJ, Sant'Anna MR, Grail W, Gibson W, Igglesden T, Yoshiyama M, Lehane SM & Lehane MJ (2005) Antioxidant gene expression in the blood-feeding fly Glossina morsitans morsitans. Insect Mol Biol 14, 483-491.
Wang J, Van Praagh A, Hamilton E, Wang Q, Zou B, Muranjan M, Murphy NB & Black SJ (2002) Serum xanthine oxidase: origin, regulation, and contribution to control of trypanosome parasitemia. Antioxid Redox Signal 4, 161-178.
Fairlamb AH, Blackburn P, Ulrich P, Chait BT & Cerami A (1985) Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 227, 1485-1487.
Tomás AM & Castro H (2013) Redox metabolism in mitochondria of trypanosomatids. Antioxid Redox Signal 19, 696-707.
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V & Lukeš J (2016) Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol 63, 657-678.
Glorieux C & Calderon PB (2017) Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem 398, 1095-1108.
Haanstra JR, González-Marcano EB, Gualdrón-López M & Michels PA (2016) Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim Biophys Acta 1863, 1038-1048.
Chelikani P, Fita I & Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61, 192-208.
Tamaki S, Maruta T, Sawa Y, Shigeoka S & Ishikawa T (2014) Identification and functional analysis of peroxiredoxin isoforms in Euglena gracilis. Biosci Biotechnol Biochem 78, 593-601.
Kraeva N, Horáková E, Kostygov A, Kořený L, Butenko A, Yurchenko V & Lukeš J (2017) Catalase in Leishmaniinae: with me or against me? Infect Genet Evol 50, 121-127.
Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J & Yurchenko V (2018) Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol 34, 466-480.
Maslov DA, Votýpka J, Yurchenko V & Lukeš J (2013) Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 29, 43-52.
Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, Filatov D, Flegontova O, Gerasimov ES, Hlaváčová J et al. (2016) Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep 6, 23704.
Schmid-Hempel P, Aebi M, Barribeau S, Kitajima T, du Plessis L, Schmid-Hempel R & Zoller S (2018) The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees. PLoS ONE 13, e0189738.
Runckel C, DeRisi J & Flenniken ML (2014) A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae. PLoS ONE 9, e95057.
Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, Leštinová T, Votýpka J, Volf P, Opperdoes F et al. (2015) Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLOS Pathog. 11, e1005127.
Ishemgulova A, Butenko A, Kortišová L, Boucinha C, Grybchuk-Ieremenko A, Morelli KA, Tesařová M, Kraeva N, Grybchuk D, Pánek T et al. (2017) Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila. PLoS ONE 12, e0174165.
El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C et al. (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309, 404-409.
Mittra B, Cortez M, Haydock A, Ramasamy G, Myler PJ & Andrews NW (2013) Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. J Exp Med 210, 401-416.
Nogueira NP, de Souza CF, Saraiva FM, Sultano PE, Dalmau SR, Bruno RE, Goncalves Rde L, Laranja GA, Leal LH, Coelho MG et al. (2011) Heme-induced ROS in Trypanosoma cruzi activates CaMKII-like that triggers epimastigote proliferation. One helpful effect of ROS. PLoS ONE 6, e25935.
Goes GR, Rocha PS, Diniz AR, Aguiar PH, Machado CR & Vieira LQ (2016) Trypanosoma cruzi needs a signal provided by Reactive Oxygen Species to infect macrophages. PLOS Negl Trop Dis 10, e0004555.
Freire ACG, Alves CL, Goes GR, Resende BC, Moretti NS, Nunes VS, Aguiar PHN, Tahara EB, Franco GR, Macedo AM et al. (2017) Catalase expression impairs oxidative stress-mediated signalling in Trypanosoma cruzi. Parasitology 144, 1498-1510.
Putnam CD, Arvai AS, Bourne Y & Tainer JA (2000) Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol 296, 295-309.
Eeckhout Y (1972) Studies on acid hydrolases and on catalase of the trypanosomatid Crithidia luciliae. In Comparative Biochemistry of Parasites (Van den Bossche H, ed), pp. 297-315. Academic Press, New York, NY.
Opperdoes FR, Borst P & Spits H (1977) Particle-bound enzymes in the bloodstream form of Trypanosoma brucei. Eur J Biochem 76, 21-28.
Muse KE & Roberts JF (1973) Microbodies in Crithidia fasciculata. Protoplasma 78, 343-348.
MacLeod ET, Maudlin I, Darby AC & Welburn SC (2007) Antioxidants promote establishment of trypanosome infections in tsetse. Parasitology 134, 827-831.
Balaban RS, Nemoto S & Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120, 483-495.
Hamanaka RB & Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35, 505-513.
Buettner GR (2011) Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem 11, 341-346.
Molavian H, Tonekaboni AM, Kohandel M & Sivaloganathan S (2015) The synergetic coupling among the cellular antioxidants glutathione peroxidase/peroxiredoxin and other antioxidants and its effect on the concentration of H2O2. Sci Rep 5, 13620.
Kostygov AY & Yurchenko V (2017) Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol 64, 20.
Troxell B, Xu H & Yang XF (2012) Borrelia burgdorferi, a pathogen that lacks iron, encodes manganese-dependent superoxide dismutase essential for resistance to streptonigrin. J Biol Chem 287, 19284-19293.
Aguirre JD, Clark HM, McIlvin M, Vazquez C, Palmere SL, Grab DJ, Seshu J, Hart PJ, Saito M & Culotta VC (2013) A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi. J Biol Chem 288, 8468-8478.
Mehlotra RK (1996) Antioxidant defense mechanisms in parasitic protozoa. Crit Rev Microbiol 22, 295-314.
Clarebout G, Slomianny C, Delcourt P, Leu B, Masset A, Camus D & Dive D (1998) Status of Plasmodium falciparum towards catalase. Br J Haematol 103, 52-59.
Scheibel LW, Ashton SH & Trager W (1979) Plasmodium falciparum: microaerophilic requirements in human red blood cells. Exp Parasitol 47, 410-418.
Winterbourn CC & Stern A (1987) Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. J Clin Invest 80, 1486-1491.
Dale C & Maudlin I (1999) Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol. 49(Pt 1), 267-275.
Fast NM, Law JS, Williams BA & Keeling PJ (2003) Bacterial catalase in the microsporidian Nosema locustae: implications for microsporidian metabolism and genome evolution. Eukaryot Cell 2, 1069-1075.
Gutteridge WE, Ross J, Hargadon MR & Hudson JE (1982) Crithidia fasciculata: a catalase-containing trypanosomatid sensitive to nitroheterocyclic drugs. Trans R Soc Trop Med Hyg 76, 493-496.
Weiss BL, Wang J, Maltz MA, Wu Y & Aksoy S (2013) Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLOS Pathog 9, e1003318.
Locksley RM & Klebanoff SJ (1983) Oxygen-dependent microbicidal systems of phagocytes and host defense against intracellular protozoa. J Cell Biochem 22, 173-185.
Paiva CN, Medei E & Bozza MT (2018) ROS and Trypanosoma cruzi: fuel to infection, poison to the heart. PLOS Pathog 14, e1006928.
Rocha-Vieira E, Ferreira E, Vianna P, De Faria DR, Gaze ST, Dutra WO & Gollob KJ (2003) Histopathological outcome of Leishmania major-infected BALB/c mice is improved by oral treatment with N-acetyl-l-cysteine. Immunology 108, 401-408.
Cruz KK, Fonseca SG, Monteiro MC, Silva OS, Andrade VM, Cunha FQ & Romao PR (2008) The influence of glutathione modulators on the course of Leishmania major infection in susceptible and resistant mice. Parasite Immunol 30, 171-174.
Pal S, Dolai S, Yadav RK & Adak S (2010) Ascorbate peroxidase from Leishmania major controls the virulence of infective stage of promastigotes by regulating oxidative stress. PLoS ONE 5, e11271.
Flaspohler JA, Jensen BC, Saveria T, Kifer CT & Parsons M (2010) A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot Cell 9, 1702-1710.
Räz B, Iten M, Grether-Buhler Y, Kaminsky R & Brun R (1997) The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop 68, 139-147.
Comparative Analysis of Three Trypanosomatid Catalases of Different Origin
Catalase impairs Leishmania mexicana development and virulence
Catalase and Ascorbate Peroxidase in Euglenozoan Protists