Active transforming growth factor-β2 in the aqueous humor of posterior polymorphous corneal dystrophy patients
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28414732
PubMed Central
PMC5393593
DOI
10.1371/journal.pone.0175509
PII: PONE-D-16-36915
Knihovny.cz E-zdroje
- MeSH
- dědičné dystrofie rohovky metabolismus MeSH
- glaukom metabolismus MeSH
- keratoplastika perforující metody MeSH
- komorová voda metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- rohovka metabolismus MeSH
- rohovkový endotel metabolismus MeSH
- transformující růstový faktor beta2 metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- transformující růstový faktor beta2 MeSH
PURPOSE: Posterior polymorphous corneal dystrophy (PPCD) is characterized by abnormal proliferation of corneal endothelial cells. It was shown that TGF-β2 present in aqueous humor (AH) could help maintaining the corneal endothelium in a G1-phase-arrest state. We wanted to determine whether the levels of this protein are changed in AH of PPCD patients. METHODS: We determined the concentrations of active TGF-β2 in the AH of 29 PPCD patients (42 samples) and 40 cadaver controls (44 samples) by ELISA. For data analysis the PPCD patients were divided based on either the molecular genetic cause of their disease as PPCD1 (37 samples), PPCD3 (1 sample) and PPCDx (not linked to a known PPCD loci, 4 samples) or on the presence (17 samples) or absence (25 samples) of secondary glaucoma or on whether they had undergone penetrating keratoplasty (PK, 32 samples) or repeated PK (rePK, 7 samples). RESULTS: The level of active TGF-β2 in the AH of all PPCD patients (mean ± SD; 386.98 ± 114.88 pg/ml) in comparison to the control group (260.95 ± 112.43 pg/ml) was significantly higher (P = 0.0001). Compared to the control group, a significantly higher level of active TGF-β2 was found in the PPCD1 (P = 0.0005) and PPCDx (P = 0.0022) groups. Among patients the levels of active TGF-β2 were not significantly affected by gender, age, secondary glaucoma or by the progression of dystrophy when one or repeated PK were performed. CONCLUSION: The levels of active TGF-β2 in the AH of PPCD patients are significantly higher than control values, and thus the increased levels of TGF-β2 could be a consequence of the PPCD phenotype and can be considered as another feature characterizing this disease.
Zobrazit více v PubMed
Krachmer JH. Posterior polymorphous corneal dystrophy: a disease characterized by epithelial-like endothelial cells which influence management and prognosis. Trans Am Ophthalmol Soc. 1985;83:413–75. PubMed PMC
Merjava S, Liskova P, Sado Y, Davis PF, Greenhill NS, Jirsova K. Changes in the localization of collagens IV and VIII in corneas obtained from patients with posterior polymorphous corneal dystrophy. Exp Eye Res. 2009;88(5):945–52. doi: 10.1016/j.exer.2008.12.017 PubMed DOI
Davidson AE, Liskova P, Evans CJ, Dudakova L, Noskova L, Pontikos N, et al. Autosomal-Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders Caused by Non-coding Mutations in the Promoter of OVOL2. Am J Hum Genet. 2016;98(1):75–89. doi: 10.1016/j.ajhg.2015.11.018 PubMed DOI PMC
Biswas S, Munier FL, Yardley J, Hart-Holden N, Perveen R, Cousin P, et al. Missense mutations in COL8A2, the gene encoding the alpha2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum Mol Genet. 2001;10(21):2415–23. PubMed
Krafchak CM, Pawar H, Moroi SE, Sugar A, Lichter PR, Mackey DA, et al. Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells. Am J Hum Genet. 2005;77(5):694–708. doi: 10.1086/497348 PubMed DOI PMC
Liskova P, Evans CJ, Davidson AE, Zaliova M, Dudakova L, Trkova M, et al. Heterozygous deletions at the ZEB1 locus verify haploinsufficiency as the mechanism of disease for posterior polymorphous corneal dystrophy type 3. European journal of human genetics: EJHG. 2016;24(7):985–91. PubMed Central PMCID: PMCPMC5070886. doi: 10.1038/ejhg.2015.232 PubMed DOI PMC
Evans CJ, Liskova P, Dudakova L, Hrabcikova P, Horinek A, Jirsova K, et al. Identification of six novel mutations in ZEB1 and description of the associated phenotypes in patients with posterior polymorphous corneal dystrophy 3. Annals of human genetics. 2015;79(1):1–9. doi: 10.1111/ahg.12090 PubMed DOI
Liskova P, Palos M, Hardcastle AJ, Vincent AL. Further genetic and clinical insights of posterior polymorphous corneal dystrophy 3. JAMA Ophthalmol. 2013;131(10):1296–303. doi: 10.1001/jamaophthalmol.2013.405 PubMed DOI
Liskova P, Filipec M, Merjava S, Jirsova K, Tuft SJ. Variable ocular phenotypes of posterior polymorphous corneal dystrophy caused by mutations in the ZEB1 gene. Ophthalmic Genet. 2010;31(4):230–4. doi: 10.3109/13816810.2010.518577 PubMed DOI
Liskova P, Tuft SJ, Gwilliam R, Ebenezer ND, Jirsova K, Prescott Q, et al. Novel mutations in the ZEB1 gene identified in Czech and British patients with posterior polymorphous corneal dystrophy. Hum Mutat. 2007;28(6):638. PubMed PMC
Liskova P, Gwilliam R, Filipec M, Jirsova K, Reinstein Merjava S, Deloukas P, et al. High prevalence of posterior polymorphous corneal dystrophy in the Czech Republic; linkage disequilibrium mapping and dating an ancestral mutation. PLoS One. 2012;7(9):e45495 doi: 10.1371/journal.pone.0045495 PubMed DOI PMC
Joyce NC. Proliferative capacity of corneal endothelial cells. Exp Eye Res. 2012;95(1):16–23. doi: 10.1016/j.exer.2011.08.014 PubMed DOI PMC
Enomoto K, Mimura T, Harris DL, Joyce NC. Age differences in cyclin-dependent kinase inhibitor expression and rb hyperphosphorylation in human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2006;47(10):4330–40. doi: 10.1167/iovs.05-1581 PubMed DOI
Raphael B, Kerr NC, Shimizu RW, Lass JH, Crouthamel KC, Glaser SR, et al. Enhanced healing of cat corneal endothelial wounds by epidermal growth factor. Invest Ophthalmol Vis Sci. 1993;34(7):2305–12. PubMed
Schultz G, Cipolla L, Whitehouse A, Eiferman R, Woost P, Jumblatt M. Growth factors and corneal endothelial cells: III. Stimulation of adult human corneal endothelial cell mitosis in vitro by defined mitogenic agents. Cornea. 1992;11(1):20–7. PubMed
Henriquez AS, Kenyon KR, Dohlman CH, Boruchoff SA, Forstot SL, Meyer RF, et al. Morphologic characteristics of posterior polymorphous dystrophy. A study of nine corneas and review of the literature. Surv Ophthalmol. 1984;29(2):139–47. PubMed
Jirsova K, Merjava S, Martincova R, Gwilliam R, Ebenezer ND, Liskova P, et al. Immunohistochemical characterization of cytokeratins in the abnormal corneal endothelium of posterior polymorphous corneal dystrophy patients. Exp Eye Res. 2007;84(4):680–6. doi: 10.1016/j.exer.2006.12.006 PubMed DOI
Threlkeld AB, Green WR, Quigley HA, de la Cruz Z, Stark WJ. A clinicopathologic study of posterior polymorphous dystrophy:implications for pathogenetic mechanism of the associated glaucoma. Trans Am Ophthalmol Soc. 1994;92:133–65. PubMed PMC
Rodrigues MM, Sun TT, Krachmer J, Newsome D. Epithelialization of the corneal endothelium in posterior polymorphous dystrophy. Invest Ophthalmol Vis Sci. 1980;19(7):832–5. PubMed
Waring GO 3rd. Posterior collagenous layer of the cornea. Ultrastructural classification of abnormal collagenous tissue posterior to Descemet's membrane in 30 cases. Arch Ophthalmol. 1982;100(1):122–34. PubMed
Merjava S, Malinova E, Liskova P, Filipec M, Zemanova Z, Michalova K, et al. Recurrence of posterior polymorphous corneal dystrophy is caused by the overgrowth of the original diseased host endothelium. Histochem Cell Biol. 2011;136(1):93–101. doi: 10.1007/s00418-011-0830-2 PubMed DOI
Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol. 2002;118(2):211–5. doi: 10.1046/j.1523-1747.2002.01641.x PubMed DOI
Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-beta—an excellent servant but a bad master. J Transl Med. 2012;10:183 PubMed Central PMCID: PMCPMC3494542. doi: 10.1186/1479-5876-10-183 PubMed DOI PMC
Travis MA, Sheppard D. TGF-beta activation and function in immunity. Annu Rev Immunol. 2014;32:51–82. PubMed Central PMCID: PMCPMC4010192. doi: 10.1146/annurev-immunol-032713-120257 PubMed DOI PMC
Helbig H, Kittredge KL, Coca-Prados M, Davis J, Palestine AG, Nussenblatt RB. Mammalian ciliary-body epithelial cells in culture produce transforming growth factor-beta. Graefes Arch Clin Exp Ophthalmol. 1991;229(1):84–7. PubMed
Tripathi RC, Chan WF, Li J, Tripathi BJ. Trabecular cells express the TGF-beta 2 gene and secrete the cytokine. Exp Eye Res. 1994;58(5):523–8. PubMed
Maier P, Broszinski A, Heizmann U, Boehringer D, Reinhard T. Determination of active TGF-beta2 in aqueous humor prior to and following cryopreservation. Mol Vis. 2006;12:1477–82. PubMed
Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. Journal of cell science. 2003;116(Pt 2):217–24. PubMed
Joyce NC, Zieske JD. Transforming growth factor-beta receptor expression in human cornea. Invest Ophthalmol Vis Sci. 1997;38(10):1922–8. PubMed
Pasquale LR, Dorman-Pease ME, Lutty GA, Quigley HA, Jampel HD. Immunolocalization of TGF-beta 1, TGF-beta 2, and TGF-beta 3 in the anterior segment of the human eye. Invest Ophthalmol Vis Sci. 1993;34(1):23–30. PubMed
Nishida K, Sotozono C, Adachi W, Yamamoto S, Yokoi N, Kinoshita S. Transforming growth factor-beta 1, -beta 2 and -beta 3 mRNA expression in human cornea. Curr Eye Res. 1995;14(3):235–41. PubMed
Chen Y, Huang K, Nakatsu MN, Xue Z, Deng SX, Fan G. Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells. Hum Mol Genet. 2013;22(7):1271–9. PubMed Central PMCID: PMCPMC3596846. doi: 10.1093/hmg/dds527 PubMed DOI PMC
Kim TY, Kim WI, Smith RE, Kay ED. Role of p27(Kip1) in cAMP- and TGF-beta2-mediated antiproliferation in rabbit corneal endothelial cells. Invest Ophthalmol Vis Sci. 2001;42(13):3142–9. PubMed
Chen KH, Harris DL, Joyce NC. TGF-beta2 in aqueous humor suppresses S-phase entry in cultured corneal endothelial cells. Invest Ophthalmol Vis Sci. 1999;40(11):2513–9. PubMed
Agarwal P, Daher AM, Agarwal R. Aqueous humor TGF-beta2 levels in patients with open-angle glaucoma: A meta-analysis. Mol Vis. 2015;21:612–20. PubMed Central PMCID: PMC4445076. PubMed PMC
Maier P, Broszinski A, Heizmann U, Bohringer D, Reinhardau T. Active transforming growth factor-beta2 is increased in the aqueous humor of keratoconus patients. Mol Vis. 2007;13:1198–202. PubMed
de Boer JH, Limpens J, Orengo-Nania S, de Jong PT, La Heij E, Kijlstra A. Low mature TGF-beta 2 levels in aqueous humor during uveitis. Invest Ophthalmol Vis Sci. 1994;35(10):3702–10. PubMed
Maier P, Broszinski A, Heizmann U, Reinhard T. Decreased active TGF-beta2 levels in the aqueous humour during immune reactions following penetrating keratoplasty. Eye (Lond). 2008;22(4):569–75. PubMed
Cibis GW, Krachmer JA, Phelps CD, Weingeist TA. The clinical spectrum of posterior polymorphous dystrophy. Arch Ophthalmol. 1977;95(9):1529–37. PubMed
Dekaris I, Gabric N, Mazuran R, Karaman Z, Mravicic I. Profile of cytokines in aqueous humor from corneal graft recipients. Croat Med J. 2001;42(6):650–6. PubMed
R Core Team. R. Vienna, Austria: R Foundation for Statistical Computing; 2014. p. A language and environment for statistical computing. http://www.r-project.org.
Joyce NC, Harris DL, Mello DM. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci. 2002;43(7):2152–9. PubMed
Joko T, Shiraishi A, Akune Y, Tokumaru S, Kobayashi T, Miyata K, et al. Involvement of P38MAPK in human corneal endothelial cell migration induced by TGF-beta(2). Exp Eye Res. 2013;108:23–32. doi: 10.1016/j.exer.2012.11.018 PubMed DOI
Wen FQ, Kohyama T, Liu X, Zhu YK, Wang H, Kim HJ, et al. Interleukin-4- and interleukin-13-enhanced transforming growth factor-beta2 production in cultured human bronchial epithelial cells is attenuated by interferon-gamma. Am J Respir Cell Mol Biol. 2002;26(4):484–90. doi: 10.1165/ajrcmb.26.4.4784 PubMed DOI
LaGier AJ, Yoo SH, Alfonso EC, Meiners S, Fini ME. Inhibition of human corneal epithelial production of fibrotic mediator TGF-beta2 by basement membrane-like extracellular matrix. Invest Ophthalmol Vis Sci. 2007;48(3):1061–71. doi: 10.1167/iovs.06-0772 PubMed DOI
Bahrami B, Macfarlane S, Macfarlane GT. Induction of cytokine formation by human intestinal bacteria in gut epithelial cell lines. J Appl Microbiol. 2011;110(1):353–63. doi: 10.1111/j.1365-2672.2010.04889.x PubMed DOI
Roy O, Leclerc VB, Bourget JM, Theriault M, Proulx S. Understanding the process of corneal endothelial morphological change in vitro. Invest Ophthalmol Vis Sci. 2015;56(2):1228–37. doi: 10.1167/iovs.14-16166 PubMed DOI
Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, et al. TGF-beta: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst. 2014;106(2):djt369 doi: 10.1093/jnci/djt369 PubMed DOI PMC
Hayashi K, Sueishi K, Tanaka K, Inomata H. Immunohistochemical evidence of the origin of human corneal endothelial cells and keratocytes. Graefes Arch Clin Exp Ophthalmol. 1986;224(5):452–6. PubMed
Foets BJ, van den Oord JJ, Volpes R, Missotten L. In situ immunohistochemical analysis of cell adhesion molecules on human corneal endothelial cells. Br J Ophthalmol. 1992;76(4):205–9. PubMed Central PMCID: PMCPMC504228. PubMed PMC
Jirsova K, Neuwirth A, Kalasova S, Vesela V, Merjava S. Mesothelial proteins are expressed in the human cornea. Exp Eye Res. 2010;91(5):623–9. doi: 10.1016/j.exer.2010.08.002 PubMed DOI
Roca H, Hernandez J, Weidner S, McEachin RC, Fuller D, Sud S, et al. Transcription factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in human cancer. PLoS One. 2013;8(10):e76773 PubMed Central PMCID: PMC3790720. doi: 10.1371/journal.pone.0076773 PubMed DOI PMC