High prevalence of posterior polymorphous corneal dystrophy in the Czech Republic; linkage disequilibrium mapping and dating an ancestral mutation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23049806
PubMed Central
PMC3458081
DOI
10.1371/journal.pone.0045495
PII: PONE-D-12-15158
Knihovny.cz E-zdroje
- MeSH
- dědičné dystrofie rohovky epidemiologie genetika patologie MeSH
- dominantní geny MeSH
- efekt zakladatele * MeSH
- exony MeSH
- genetická heterogenita MeSH
- genetické lokusy MeSH
- haplotypy MeSH
- lidé MeSH
- lidské chromozomy, pár 20 * MeSH
- mapování chromozomů MeSH
- mutace * MeSH
- prevalence MeSH
- represorové proteiny genetika MeSH
- rodokmen MeSH
- rohovka metabolismus patologie MeSH
- srovnávací genomová hybridizace MeSH
- studie případů a kontrol MeSH
- vazebná nerovnováha * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- represorové proteiny MeSH
- ZNF133 protein, human MeSH Prohlížeč
Posterior polymorphous corneal dystrophy (PPCD) is a rare autosomal dominant genetically heterogeneous disorder. Nineteen Czech PPCD pedigrees with 113 affected family members were identified, and 17 of these kindreds were genotyped for markers on chromosome 20p12.1- 20q12. Comparison of haplotypes in 81 affected members, 20 unaffected first degree relatives and 13 spouses, as well as 55 unrelated controls, supported the hypothesis of a shared ancestor in 12 families originating from one geographic location. In 38 affected individuals from nine of these pedigrees, a common haplotype was observed between D20S48 and D20S107 spanning approximately 23 Mb, demonstrating segregation of disease with the PPCD1 locus. This haplotype was not detected in 110 ethnically matched control chromosomes. Within the common founder haplotype, a core mini-haplotype was detected for D20S605, D20S182 and M189K2 in all 67 affected members from families 1-12, however alleles representing the core mini-haplotype were also detected in population matched controls. The most likely location of the responsible gene within the disease interval, and estimated mutational age, were inferred by linkage disequilibrium mapping (DMLE+2.3). The appearance of a disease-causing mutation was dated between 64-133 generations. The inferred ancestral locus carrying a PPCD1 disease-causing variant within the disease interval spans 60 Kb on 20p11.23, which contains a single known protein coding gene, ZNF133. However, direct sequence analysis of coding and untranslated exons did not reveal a potential pathogenic mutation. Microdeletion or duplication was also excluded by comparative genomic hybridization using a dense chromosome 20 specific array. Geographical origin, haplotype and statistical analysis suggest that in 14 unrelated families an as yet undiscovered mutation on 20p11.23 was inherited from a common ancestor. Prevalence of PPCD in the Czech Republic appears to be the highest worldwide and our data suggests that at least one other novel locus for PPCD also exists.
Zobrazit více v PubMed
Krachmer JH (1985) Posterior polymorphous corneal dystrophy: a disease characterized by epithelial-like endothelial cells which influence management and prognosis. Trans Am Ophthalmol Soc 83: 413–475. PubMed PMC
Cibis GW, Krachmer JA, Phelps CD, Weingeist TA (1977) The clinical spectrum of posterior polymorphous dystrophy. Arch Ophthalmol 95: 1529–1537. PubMed
Laganowski HC, Sherrard ES, Muir MG (1991) The posterior corneal surface in posterior polymorphous dystrophy: a specular microscopical study. Cornea 10: 224–232. PubMed
de Felice GP, Braidotti P, Viale G, Bergamini F, Vinciguerra P (1985) Posterior polymorphous dystrophy of the cornea. An ultrastructural study. Graefes Arch Clin Exp Ophthalmol 223: 265–271. PubMed
Polack FM, Bourne WM, Forstot SL, Yamaguchi T (1980) Scanning electron microscopy of posterior polymorphous corneal dystrophy. Am J Ophthalmol 89: 575–584. PubMed
Henriquez AS, Kenyon KR, Dohlman CH, Boruchoff SA, Forstot SL, et al. (1984) Morphologic characteristics of posterior polymorphous dystrophy. A study of nine corneas and review of the literature. Surv Ophthalmol 29: 139–147. PubMed
Jirsova K, Merjava S, Martincova R, Gwilliam R, Ebenezer ND, et al. (2007) Immunohistochemical characterization of cytokeratins in the abnormal corneal endothelium of posterior polymorphous corneal dystrophy patients. Exp Eye Res 84: 680–686. PubMed
Heon E, Mathers WD, Alward WL, Weisenthal RW, Sunden SL, et al. (1995) Linkage of posterior polymorphous corneal dystrophy to 20q11. Hum Mol Genet 4: 485–488. PubMed
Biswas S, Munier FL, Yardley J, Hart-Holden N, Perveen R, et al. (2001) Missense mutations in COL8A2, the gene encoding the alpha2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum Mol Genet 10: 2415–2423. PubMed
Shimizu S, Krafchak C, Fuse N, Epstein MP, Schteingart MT, et al. (2004) A locus for posterior polymorphous corneal dystrophy (PPCD3) maps to chromosome 10. Am J Med Genet 130A: 372–377. PubMed PMC
Gwilliam R, Liskova P, Filipec M, Kmoch S, Jirsova K, et al. (2005) Posterior polymorphous corneal dystrophy in Czech families maps to chromosome 20 and excludes the VSX1 gene. Invest Ophthalmol Vis Sci 46: 4480–4484. PubMed
Heon E, Greenberg A, Kopp KK, Rootman D, Vincent AL, et al. (2002) VSX1: A gene for posterior polymorphous dystrophy and keratoconus. Hum Mol Genet 11: 1029–1036. PubMed
Valleix S, Nedelec B, Rigaudiere F, Dighiero P, Pouliquen Y, et al. (2006) H244R VSX1 is associated with selective cone ON bipolar cell dysfunction and macular degeneration in a PPCD family. Invest Ophthalmol Vis Sci 47: 48–54. PubMed
Krafchak CM, Pawar H, Moroi SE, Sugar A, Lichter PR, et al. (2005) Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells. Am J Hum Genet 77: 694–708. PubMed PMC
Aldave AJ, Yellore VS, Yu F, Bourla N, Sonmez B, et al. (2007) Posterior polymorphous corneal dystrophy is associated with TCF8 gene mutations and abdominal hernia. Am J Med Genet A 143: 2549–2556. PubMed
Vincent AL, Niederer RL, Richards A, Karolyi B, Patel DV, et al. (2009) Phenotypic characterisation and ZEB1 mutational analysis in posterior polymorphous corneal dystrophy in a New Zealand population. Mol Vis 15: 2544–2553. PubMed PMC
Sherwin JC, Hewitt AW, Ruddle JB, Mackey DA (2008) Genetic isolates in ophthalmic diseases. Ophthalmic Genet 29: 149–161. PubMed
Reeve JP, Rannala B (2002) DMLE+: Bayesian linkage disequilibrium gene mapping. Bioinformatics 18: 894–895. PubMed
Rannala B, Reeve JP (2001) High-resolution multipoint linkage-disequilibrium mapping in the context of a human genome sequence. Am J Hum Genet 69: 159–178. PubMed PMC
Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73: 1162–1169. PubMed PMC
Marchini J, Cutler D, Patterson N, Stephens M, Eskin E, et al. (2006) A comparison of phasing algorithms for trios and unrelated individuals. Am J Hum Genet 78: 437–450. PubMed PMC
Liskova P, Ebenezer ND, Hysi PG, Gwilliam R, El-Ashry MF, et al. (2007) Molecular analysis of the VSX1 gene in familial keratoconus. Mol Vis 13: 1887–1891. PubMed PMC
Liskova P, Tuft SJ, Gwilliam R, Ebenezer ND, Jirsova K, et al. (2007) Novel mutations in the ZEB1 gene identified in Czech and British patients with posterior polymorphous corneal dystrophy. Hum Mutat 28: 638. PubMed PMC
Yellore VS, Papp JC, Sobel E, Khan MA, Rayner SA, et al. (2007) Replication and refinement of linkage of posterior polymorphous corneal dystrophy to the posterior polymorphous corneal dystrophy 1 locus on chromosome 20. Genet Med 9: 228–234. PubMed
Nelis M, Esko T, Magi R, Zimprich F, Zimprich A, et al. (2009) Genetic structure of Europeans: a view from the North-East. PLoS One 4: e5472. PubMed PMC
Mahtani MM, Willard HF (1998) Physical and genetic mapping of the human X chromosome centromere: repression of recombination. Genome Res 8: 100–110. PubMed
Coop G, Przeworski M (2007) An evolutionary view of human recombination. Nat Rev Genet 8: 23–34. PubMed
Lai IN, Yellore VS, Rayner SA, D’Silva NC, Nguyen CK, et al. (2010) The utility of next-generation sequencing in the evaluation of the posterior polymorphous corneal dystrophy 1 locus. Mol Vis 16: 2829–2838. PubMed PMC
Vissing H, Meyer WK, Aagaard L, Tommerup N, Thiesen HJ (1995) Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins. FEBS Lett 369: 153–157. PubMed
Gottsch JD, Seitzman GD, Margulies EH, Bowers AL, Michels AJ, et al. (2003) Gene expression in donor corneal endothelium. Arch Ophthalmol 121: 252–258. PubMed
Hosseini SM, Herd S, Vincent AL, Heon E (2008) Genetic analysis of chromosome 20-related posterior polymorphous corneal dystrophy: genetic heterogeneity and exclusion of three candidate genes. Mol Vis 14: 71–80. PubMed PMC
Liskova P, Filipec M, Merjava S, Jirsova K, Tuft SJ (2010) Variable ocular phenotypes of posterior polymorphous corneal dystrophy caused by mutations in the ZEB1 gene. Ophthalmic Genet 31: 230–234. PubMed