Comparative Analysis of Three Trypanosomatid Catalases of Different Origin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-09283S
Czech Science Foundation
CZ.02.1.01/16_019/0000759
European Regional Development Fund
211075/Z/18/Z
Well-come Trust
PubMed
35052550
PubMed Central
PMC8773446
DOI
10.3390/antiox11010046
PII: antiox11010046
Knihovny.cz E-zdroje
- Klíčová slova
- Blastocrithidia sp., Leptomonas pyrrhocoris, Vickermania ingenoplastis, cyanide resistance,
- Publikační typ
- časopisecké články MeSH
Most trypanosomatid flagellates do not have catalase. In the evolution of this group, the gene encoding catalase has been independently acquired at least three times from three different bacterial groups. Here, we demonstrate that the catalase of Vickermania was obtained by horizontal gene transfer from Gammaproteobacteria, extending the list of known bacterial sources of this gene. Comparative biochemical analyses revealed that the enzymes of V. ingenoplastis, Leptomonas pyrrhocoris, and Blastocrithidia sp., representing the three independent catalase-bearing trypanosomatid lineages, have similar properties, except for the unique cyanide resistance in the catalase of the latter species.
Life Science Research Centre Faculty of Science University of Ostrava 71000 Ostrava Czech Republic
Nuffield Department of Medicine University of Oxford Old Road Campus Headington Oxford OX3 7BN UK
Zoological Institute of the Russian Academy of Sciences 199034 St Petersburg Russia
Zobrazit více v PubMed
Zámocký M., Furtmüller P.G., Obinger C. Evolution of catalases from bacteria to humans. Antioxid. Redox Signal. 2008;10:1527–1548. doi: 10.1089/ars.2008.2046. PubMed DOI PMC
Zámocký M., Koller F. Understanding the structure and function of catalases: Clues from molecular evolution and in vitro mutagenesis. Prog. Biophys. Mol. Biol. 1999;72:19–66. doi: 10.1016/S0079-6107(98)00058-3. PubMed DOI
Nicholls P., Fita I., Loewen P.C. Enzymology and structure of catalases. Adv. Inorg. Chem. 2000;51:51–106.
Glorieux C., Calderon P.B. Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem. 2017;398:1095–1108. doi: 10.1515/hsz-2017-0131. PubMed DOI
Alfonso-Prieto M., Biarnés X., Vidossich P., Rovira C. The molecular mechanism of the catalase reaction. J. Am. Chem. Soc. 2009;131:11751–11761. doi: 10.1021/ja9018572. PubMed DOI
Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21:363–383. doi: 10.1038/s41580-020-0230-3. PubMed DOI
Halliwell B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning) Free Radic. Res. 1999;31:261–272. doi: 10.1080/10715769900300841. PubMed DOI
Loew O. Catalase, a New Enzym of General Occurrence, with Special Reference to the Tobacco Plant. Volume 68. Goverment Printing Office; Washington, DC, USA: 1901. p. 44. US Department of Africulture Reports.
Murthy M.R., Reid T.J., 3rd, Sicignano A., Tanaka N., Rossmann M.G. Structure of beef liver catalase. J. Mol. Biol. 1981;152:465–499. doi: 10.1016/0022-2836(81)90254-0. PubMed DOI
Vainshtein B.K., Melik-Adamyan W.R., Barynin V.V., Vagin A.A., Grebenko A.I. Three-dimensional structure of the enzyme catalase. Nature. 1981;293:411–412. doi: 10.1038/293411a0. PubMed DOI
Maté M.J., Zámocký M., Nykyri L.M., Herzog C., Alzari P.M., Betzel C., Koller F., Fita I. Structure of catalase—A from Saccharomyces cerevisiae. J. Mol. Biol. 1999;286:135–149. PubMed
Faguy D.M., Doolittle W.F. Horizontal transfer of catalase-peroxidase genes between archaea and pathogenic bacteria. Trends Genet. 2000;16:196–197. doi: 10.1016/S0168-9525(00)02007-2. PubMed DOI
Škodová-Sveráková I., Záhonová K., Bučková B., Füssy Z., Yurchenko V., Lukeš J. Catalase and ascorbate peroxidase in euglenozoan protists. Pathogens. 2020;9:317. PubMed PMC
Kraeva N., Horáková E., Kostygov A., Kořený L., Butenko A., Yurchenko V., Lukeš J. Catalase in Leishmaniinae: With me or against me? Infect. Genet. Evol. 2017;50:121–127. doi: 10.1016/j.meegid.2016.06.054. PubMed DOI
Keeling P.J., Palmer J.D. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 2008;9:605–618. doi: 10.1038/nrg2386. PubMed DOI
Husnik F., McCutcheon J.P. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. MicroBiol. 2018;16:67–79. doi: 10.1038/nrmicro.2017.137. PubMed DOI
Thomas C.M., Nielsen K.M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. MicroBiol. 2005;3:711–721. doi: 10.1038/nrmicro1234. PubMed DOI
Bliven K.A., Maurelli A.T. Evolution of bacterial pathogens within the human host. MicroBiol. Spectr. 2016;4:4–11. doi: 10.1128/microbiolspec.VMBF-0017-2015. PubMed DOI PMC
Emamalipour M., Seidi K., Zununi Vahed S., Jahanban-Esfahlan A., Jaymand M., Majdi H., Amoozgar Z., Chitkushev L.T., Javaheri T., Jahanban-Esfahlan R., et al. Horizontal gene transfer: From evolutionary flexibility to disease progression. Front. Cell Dev. Biol. 2020;8:229. doi: 10.3389/fcell.2020.00229. PubMed DOI PMC
Husnik F. Host-symbiont-pathogen interactions in blood-feeding parasites: Nutrition, immune cross-talk and gene exchange. Parasitology. 2018;145:1294–1303. doi: 10.1017/S0031182018000574. PubMed DOI
Schönknecht G., Weber A.P., Lercher M.J. Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution. Bioessays. 2014;36:9–20. doi: 10.1002/bies.201300095. PubMed DOI
Gilbert C., Cordaux R. Viruses as vectors of horizontal transfer of genetic material in eukaryotes. Curr. Opin. Virol. 2017;25:16–22. doi: 10.1016/j.coviro.2017.06.005. PubMed DOI
Daubin V., Szollosi G.J. Horizontal gene transfer and the history of life. Cold Spring Harb. Perspect Biol. 2016;8:a018036. doi: 10.1101/cshperspect.a018036. PubMed DOI PMC
Schott E.J., Di Lella S., Bachvaroff T.R., Amzel L.M., Vasta G.R. Lacking catalase, a protistan parasite draws on its photosynthetic ancestry to complete an antioxidant repertoire with ascorbate peroxidase. BMC Evol. Biol. 2019;19:146. doi: 10.1186/s12862-019-1465-5. PubMed DOI PMC
Butenko A., Hammond M., Field M.C., Ginger M.L., Yurchenko V., Lukeš J. Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol. 2021;37:100–116. PubMed
Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol. 2018;34:466–480. doi: 10.1016/j.pt.2018.03.002. PubMed DOI
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI
Kostygov A.Y., Karnkowska A., Votýpka J., Tashyreva D., Maciszewski K., Yurchenko V., Lukeš J. Euglenozoa: Taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11:200407. doi: 10.1098/rsob.200407. PubMed DOI PMC
Bianchi C., Kostygov A.Y., Kraeva N., Záhonová K., Horáková E., Sobotka R., Lukeš J., Yurchenko V. An enigmatic catalase of Blastocrithidia. Mol. BioChem. Parasitol. 2019;232:111199. PubMed
Opperdoes F.R., Butenko A., Zakharova A., Gerasimov E.S., Zimmer S.L., Lukeš J., Yurchenko V. The remarkable metabolism of Vickermania ingenoplastis: Genomic predictions. Pathogens. 2021;10:68. doi: 10.3390/pathogens10010068. PubMed DOI PMC
Albanaz A.T.S., Gerasimov E.S., Shaw J.J., Sádlová J., Lukeš J., Volf P., Opperdoes F.R., Kostygov A.Y., Butenko A., Yurchenko V. Genome analysis of Endotrypanum and Porcisia spp., closest phylogenetic relatives of Leishmania, highlights the role of amastins in shaping pathogenicity. Genes. 2021;12:444. PubMed PMC
Freire A.C.G., Alves C.L., Goes G.R., Resende B.C., Moretti N.S., Nunes V.S., Aguiar P.H.N., Tahara E.B., Franco G.R., Macedo A.M., et al. Catalase expression impairs oxidative stress-mediated signalling in Trypanosoma cruzi. Parasitology. 2017;144:1498–1510. doi: 10.1017/S0031182017001044. PubMed DOI
Sádlová J., Podešvová L., Bečvář T., Bianchi C., Gerasimov E.S., Saura A., Glanzová K., Leštinová T., Matveeva N.S., Chmelová L., et al. Catalase impairs Leishmania mexicana development and virulence. Virulence. 2021;12:852–867. PubMed PMC
Horáková E., Faktorová D., Kraeva N., Kaur B., Van Den Abbeele J., Yurchenko V., Lukeš J. Catalase compromises the development of the insect and mammalian stages of Trypanosoma brucei. FEBS J. 2020;287:964–977. PubMed
Votýpka J., Klepetková H., Yurchenko V.Y., Horák A., Lukeš J., Maslov D.A. Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist. 2012;163:616–631. PubMed
Kostygov A., Frolov A.O., Malysheva M.N., Ganyukova A.I., Chistyakova L.V., Tashyreva D., Tesařová M., Spodareva V.V., Režnarová J., Macedo D.H., et al. Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol. 2020;18:187. PubMed PMC
Lukeš J., Tesařová M., Yurchenko V., Votýpka J. Characterization of a new cosmopolitan genus of trypanosomatid parasites, Obscuromonas gen. nov. (Blastocrithidiinae subfam. nov.) Eur. J. Protistol. 2021;79:125778. doi: 10.1016/j.ejop.2021.125778. PubMed DOI
Yurchenko V., Lukeš J., Jirků M., Maslov D.A. Selective recovery of the cultivation-prone components from mixed trypanosomatid infections: A case of several novel species isolated from Neotropical Heteroptera. Int. J. Syst. Evol. MicroBiol. 2009;59:893–909. doi: 10.1099/ijs.0.001149-0. PubMed DOI
Sayers E.W., Agarwala R., Bolton E.E., Brister J.R., Canese K., Clark K., Connor R., Fiorini N., Funk K., Hefferon T., et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2019;47:D23–D28. doi: 10.1093/nar/gky1069. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Matson F.A. Seqmagick. 2021. [(accessed on 1 November 2021)]. Available online: https://fhcrc.github.io/seqmagick/
Price M.N., Dehal P.S., Arkin A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. PubMed PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Yurchenko V., Butenko A., Kostygov A.Y. Genomics of Trypanosomatidae: Where we stand and what needs to be done? Pathogens. 2021;10:1124. doi: 10.3390/pathogens10091124. PubMed DOI PMC
Marchler-Bauer A., Derbyshire M.K., Gonzales N.R., Lu S., Chitsaz F., Geer L.Y., Geer R.C., He J., Gwadz M., Hurwitz D.I., et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–D226. doi: 10.1093/nar/gku1221. PubMed DOI PMC
Lu S., Wang J., Chitsaz F., Derbyshire M.K., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Marchler G.H., Song J.S., et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–D268. doi: 10.1093/nar/gkz991. PubMed DOI PMC
Eddy S.R. Accelerated profile HMM searches. PLoS Comput. Biol. 2011;7:e1002195. doi: 10.1371/journal.pcbi.1002195. PubMed DOI PMC
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Soding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Valverde S. DisplayR: Easy and Quick Data Exploration. 2021. [(accessed on 1 November 2021)]. Available online: http://www.displayr.com.
Valverde S., Záhonová K., Kostygov A., Ševčíková T., Yurchenko V., Eliáš M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 2016;26:2364–2369. PubMed
Woodbury W., Spencer A.K., Stahman M.A. An improved procedure using ferricyanide for detecting catalase isozymes. Anal. BioChem. 1971;44:301–305. doi: 10.1016/0003-2697(71)90375-7. PubMed DOI
Noble R.W., Gibson Q.H. The reaction of ferrous horseradish peroxidase with hydrogen peroxide. J. Biol. Chem. 1970;245:2409–2413. doi: 10.1016/S0021-9258(18)63167-9. PubMed DOI
Leatherbarrow R.J. Using linear and non-linear regression to fit biochemical data. Trends BioChem. Sci. 1990;15:455–458. doi: 10.1016/0968-0004(90)90295-M. PubMed DOI
Switala J., Loewen P.C. Diversity of properties among catalases. Arch. BioChem. Biophys. 2002;401:145–154. doi: 10.1016/S0003-9861(02)00049-8. PubMed DOI
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Zidek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Mirdita M., Ovchinnikov S., Steinegger M. ColabFold—Making protein folding accessible to all. BioRxiv. 2021 doi: 10.1101/2021.08.15.456425. PubMed DOI PMC
Wheeler R.J. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS ONE. 2021;16:e0259871. doi: 10.1371/journal.pone.0259871. PubMed DOI PMC
DeLano W.L. The PyMOL Molecular Graphics System. 2021. [(accessed on 1 November 2021)]. Available online: http://pymol.sourceforge.net/
Mishra S., Imlay J. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. BioChem. Biophys. 2012;525:145–160. doi: 10.1016/j.abb.2012.04.014. PubMed DOI PMC
Putnam C.D., Arvai A.S., Bourne Y., Tainer J.A. Active and inhibited human catalase structures: Ligand and NADPH binding and catalytic mechanism. J. Mol. Biol. 2000;296:295–309. doi: 10.1006/jmbi.1999.3458. PubMed DOI
Ivens A.C., Peacock C.S., Worthey E.A., Murphy L., Aggarwal G., Berriman M., Sisk E., Rajandream M.A., Adlem E., Aert R., et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309:436–442. doi: 10.1126/science.1112680. PubMed DOI PMC
Beverley S.M. Gene amplification in Leishmania. Annu. Rev. MicroBiol. 1991;45:417–444. doi: 10.1146/annurev.mi.45.100191.002221. PubMed DOI
Vera A., Gonzalez-Montalban N., Aris A., Villaverde A. The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol. Bioeng. 2007;96:1101–1106. doi: 10.1002/bit.21218. PubMed DOI
Al-Mustafa J., Sykora M., Kincaid J.R. Resonance Raman investigation of cyanide ligated beef liver and Aspergillus niger catalases. J. Biol. Chem. 1995;270:10449–10460. doi: 10.1074/jbc.270.18.10449. PubMed DOI
Jha V., Chelikani P., Carpena X., Fita I., Loewen P.C. Influence of main channel structure on H2O2 access to the heme cavity of catalase KatE of Escherichia coli. Arch. BioChem. Biophys. 2012;526:54–59. doi: 10.1016/j.abb.2012.06.010. PubMed DOI
Fita I., Rossmann M.G. The active center of catalase. J. Mol. Biol. 1985;185:21–37. doi: 10.1016/0022-2836(85)90180-9. PubMed DOI
Kalko S.G., Gelpi J.L., Fita I., Orozco M. Theoretical study of the mechanisms of substrate recognition by catalase. J. Am. Chem. Soc. 2001;123:9665–9672. doi: 10.1021/ja010512t. PubMed DOI
Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases. Cell Mol. Life Sci. 2004;61:192–208. doi: 10.1007/s00018-003-3206-5. PubMed DOI PMC
Chelikani P., Donald L.J., Duckworth H.W., Loewen P.C. Hydroperoxidase II of Escherichia coli exhibits enhanced resistance to proteolytic cleavage compared to other catalases. Biochemistry. 2003;42:5729–5735. doi: 10.1021/bi034208j. PubMed DOI
Chelikani P., Carpena X., Fita I., Loewen P.C. An electrical potential in the access channel of catalases enhances catalysis. J. Biol. Chem. 2003;278:31290–31296. doi: 10.1074/jbc.M304076200. PubMed DOI
Frolov A.O., Kostygov A.Y., Yurchenko V. Development of monoxenous trypanosomatids and phytomonads in insects. Trends Parasitol. 2021;37:538–551. doi: 10.1016/j.pt.2021.02.004. PubMed DOI
Iancu L., Angelescu I.R., Paun V.I., Henríquez-Castillo C., Lavin P., Purcarea C. Microbiome pattern of Lucilia sericata (Meigen) (Diptera: Calliphoridae) and feeding substrate in the presence of the foodborne pathogen Salmonella enterica. Sci. Rep. 2021;11:15296. doi: 10.1038/s41598-021-94761-w. PubMed DOI PMC
Bai S., Yao Z., Raza M.F., Cai Z., Zhang H. Regulatory mechanisms of microbial homeostasis in insect gut. Insect Sci. 2021;28:286–301. doi: 10.1111/1744-7917.12868. PubMed DOI
Fredensborg B.L., Fossdal I.K.I., Johannesen T.B., Stensvold C.R., Nielsen H.V., Kapel C.M.O. Parasites modulate the gut-microbiome in insects: A proof-of-concept study. PLoS ONE. 2020;15:e0227561. doi: 10.1371/journal.pone.0227561. PubMed DOI PMC
Opperdoes F.R., Butenko A., Flegontov P., Yurchenko V., Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J. Eukaryot. MicroBiol. 2016;63:657–678. doi: 10.1111/jeu.12315. PubMed DOI
Prakash K., Prajapati S., Ahmad A., Jain S.K., Bhakuni V. Unique oligomeric intermediates of bovine liver catalase. Protein. Sci. 2002;11:46–57. doi: 10.1110/ps.ps.20102. PubMed DOI PMC
Rafikov R., Kumar S., Aggarwal S., Hou Y., Kangath A., Pardo D., Fineman J.R., Black S.M. Endothelin-1 stimulates catalase activity through the PKCdelta-mediated phosphorylation of serine 167. Free Radic. Biol. Med. 2014;67:255–264. doi: 10.1016/j.freeradbiomed.2013.10.814. PubMed DOI PMC
Johnston M.A., Delwiche E.A. Isolation and characterization of the cyanide-resistant and azide-resistant catalase of Lactobacillus plantarum. J. Bacteriol. 1965;90:352–356. doi: 10.1128/jb.90.2.352-356.1965. PubMed DOI PMC
Loewen P.C., Switala J. Purification and characterization of spore-specific catalase-2 from Bacillus subtilis. BioChem. Cell Biol. 1988;66:707–714. doi: 10.1139/o88-081. PubMed DOI
Thompson V.S., Schaller K.D., Apel W.A. Purification and characterization of a novel thermo-alkali-stable catalase from Thermus brockianus. Biotechnol. Prog. 2003;19:1292–1299. doi: 10.1021/bp034040t. PubMed DOI
Ray M., Mishra P., Das P., Sabat S.C. Expression and purification of soluble bio-active rice plant catalase-A from recombinant Escherichia coli. J. Biotechnol. 2012;157:12–19. doi: 10.1016/j.jbiotec.2011.09.022. PubMed DOI
Vatsyayan P., Goswami P. Acidic pH conditions induce dissociation of the haem from the protein and destabilise the catalase isolated from Aspergillus terreus. Biotechnol. Lett. 2011;33:347–351. doi: 10.1007/s10529-010-0442-2. PubMed DOI
Lineweaver H., Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI