Genome Analysis of Endotrypanum and Porcisia spp., Closest Phylogenetic Relatives of Leishmania, Highlights the Role of Amastins in Shaping Pathogenicity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
33804709
PubMed Central
PMC8004069
DOI
10.3390/genes12030444
PII: genes12030444
Knihovny.cz E-zdroje
- Klíčová slova
- gene gain, gene loss, genome analysis, leishmaniinae,
- MeSH
- fylogeneze MeSH
- Leishmania major klasifikace genetika MeSH
- Leishmania klasifikace genetika MeSH
- membránové proteiny genetika MeSH
- molekulární evoluce MeSH
- protozoální proteiny genetika MeSH
- regulace genové exprese MeSH
- sekvenování celého genomu metody MeSH
- stanovení celkové genové exprese MeSH
- Trypanosomatina klasifikace genetika MeSH
- virulence MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- membránové proteiny MeSH
- protozoální proteiny MeSH
While numerous genomes of Leishmania spp. have been sequenced and analyzed, an understanding of the evolutionary history of these organisms remains limited due to the unavailability of the sequence data for their closest known relatives, Endotrypanum and Porcisia spp., infecting sloths and porcupines. We have sequenced and analyzed genomes of three members of this clade in order to fill this gap. Their comparative analyses revealed only minute differences from Leishmaniamajor genome in terms of metabolic capacities. We also documented that the number of genes under positive selection on the Endotrypanum/Porcisia branch is rather small, with the flagellum-related group of genes being over-represented. Most significantly, the analysis of gene family evolution revealed a substantially reduced repertoire of surface proteins, such as amastins and biopterin transporters BT1 in the Endotrypanum/Porcisia species when compared to amastigote-dwelling Leishmania. This reduction was especially pronounced for δ-amastins, a subfamily of cell surface proteins crucial in the propagation of Leishmania amastigotes inside vertebrate macrophages and, apparently, dispensable for Endotrypanum/Porcisia, which do not infect such cells.
Biomedical Institute São Paulo University São Paulo 05508 Brazil
Department of Parasitology Faculty of Science Charles University 12844 Prague Czech Republic
e Duve Institute Université Catholique de Louvain 1200 Brussels Belgium
Faculty of Biology M 5 Lomonosov Moscow State University 119991 Moscow Russia
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava 71000 Ostrava Czech Republic
Zoological Institute of the Russian Academy of Sciences 199034 St Petersburg Russia
Zobrazit více v PubMed
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI
Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol. 2018;34:466–480. doi: 10.1016/j.pt.2018.03.002. PubMed DOI
Lukeš J., Skalický T., Týč J., Votýpka J., Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014;195:115–122. doi: 10.1016/j.molbiopara.2014.05.007. PubMed DOI
Kostygov A.Y., Yurchenko V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae) Folia Parasitol. 2017;64:020. doi: 10.14411/fp.2017.020. PubMed DOI
Jirků M., Yurchenko V., Lukeš J., Maslov D.A. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J. Eukaryot. Microbiol. 2012;59:537–547. doi: 10.1111/j.1550-7408.2012.00636.x. PubMed DOI
Bruschi F., Gradoni L. The Leishmaniases: Old Neglected Tropical Diseases. Springer; Cham, Switzerland: 2018. p. 245. DOI
Akhoundi M., Downing T., Votýpka J., Kuhls K., Lukeš J., Cannet A., Ravel C., Marty P., Delaunay P., Kasbari M., et al. Leishmania infections: Molecular targets and diagnosis. Mol. Asp. Med. 2017;57:1–29. doi: 10.1016/j.mam.2016.11.012. PubMed DOI
Espinosa O.A., Serrano M.G., Camargo E.P., Teixeira M.M., Shaw J.J. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2018;145:430–442. doi: 10.1017/S0031182016002092. PubMed DOI
Butenko A., Kostygov A.Y., Sádlová J., Kleschenko Y., Bečvář T., Podešvová L., Macedo D.H., Žihala D., Lukeš J., Bates P.A., et al. Comparative genomics of Leishmania (Mundinia) BMC Genom. 2019;20:726. doi: 10.1186/s12864-019-6126-y. PubMed DOI PMC
Coughlan S., Taylor A.S., Feane E., Sanders M., Schonian G., Cotton J.A., Downing T. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus. R. Soc. Open Sci. 2018;5:172212. doi: 10.1098/rsos.172212. PubMed DOI PMC
Coughlan S., Mulhair P., Sanders M., Schonian G., Cotton J.A., Downing T. The genome of Leishmania adleri from a mammalian host highlights chromosome fission in Sauroleishmania. Sci. Rep. 2017;7:43747. doi: 10.1038/srep43747. PubMed DOI PMC
Valdivia H.O., Reis-Cunha J.L., Rodrigues-Luiz G.F., Baptista R.P., Baldeviano G.C., Gerbasi R.V., Dobson D.E., Pratlong F., Bastien P., Lescano A.G., et al. Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genom. 2015;16:715. doi: 10.1186/s12864-015-1928-z. PubMed DOI PMC
Peacock C.S., Seeger K., Harris D., Murphy L., Ruiz J.C., Quail M.A., Peters N., Adlem E., Tivey A., Aslett M., et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat. Genet. 2007;39:839–847. doi: 10.1038/ng2053. PubMed DOI PMC
Mesnil F., Brimont E. Sur un hématozoaire nouveau (Endotrypanum n. gen.) d’un édenté de la Guyane. C.R. Séances Soc. Biol. Ses. Fil. 1908;65:581–583.
Shaw J.J., Bird R.G. The endoerythrocytic habitat of a member of the Trypanosomatidae, Endotrypanum schaudinni, Mesnil and Brimont, 1908. Z. Trop. Parasitol. 1969;20:144–150. PubMed
Cunha A.M., Muniz J. Pesquisas sôbre o Endotrypanum schaudinni Mesnil e Brimont, 1908, parasita do Choloepus didactylus (L.) Mem. Do Inst. Oswaldo Cruz. 1944;41:179–193. doi: 10.1590/S0074-02761944000400010. DOI
Cupolillo E., Medina-Acosta E., Noyes H., Momen H., Grimaldi G., Jr. A revised classification for Leishmania and Endotrypanum. Parasitol. Today. 2000;16:142–144. doi: 10.1016/S0169-4758(99)01609-9. PubMed DOI
Shaw J.J. The Haemoflagellates of Sloths. H. K. Lewis; London, UK: 1969. p. 132.
Kreutzer R.D., Corredor A., Grimaldi G., Jr., Grogl M., Rowton E.D., Young D.G., Morales A., McMahon-Pratt D., Guzman H., Tesh R.B. Characterization of Leishmania colombiensis sp. n (Kinetoplastida: Trypanosomatidae), a new parasite infecting humans, animals, and phlebotomine sand flies in Colombia and Panama. Am. J. Trop. Med. Hyg. 1991;44:662–675. doi: 10.4269/ajtmh.1991.44.662. PubMed DOI
Zeledón R., Ponce C., Murillo J. Leishmania herreri sp. n. from sloths and sandflies of Costa Rica. J. Parasitol. 1979;65:275–279. doi: 10.2307/3280164. PubMed DOI
Delgado O., Castes M., White A.C., Jr., Kreutzer R.D. Leishmania colombiensis in Venezuela. Am. J. Trop. Med. Hyg. 1993;48:145–147. doi: 10.4269/ajtmh.1993.48.145. PubMed DOI
Rodriguez-Bonfante C., Bonfante-Garrido R., Grimaldi G., Jr., Momen H., Cupolillo E. Genotypically distinct Leishmania colombiensis isolates from Venezuela cause both cutaneous and visceral leishmaniasis in humans. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2003;3:119–124. doi: 10.1016/S1567-1348(03)00012-1. PubMed DOI
Herrer A. Leishmania hertigi sp. n., from the tropical porcupine, Coendou rothschildi Thomas. J. Parasitol. 1971;57:626–629. doi: 10.2307/3277928. PubMed DOI
Lainson R., Shaw J.J. Leishmanias of neotropical porcupines: Leishmania hertigi deanei nov. subsp. Acta Amaz. 1977;7:51–57. doi: 10.1590/1809-43921977071051. DOI
Gardener P.J., Chance M.L., Peters W. Biochemical taxonomy of Leishmania. II: Electrophoretic variation of malate dehydrogenase. Ann. Trop. Med. Parasitol. 1974;68:317–325. doi: 10.1080/00034983.1974.11686954. PubMed DOI
da Silva D.A., Madeira Mde F., Barbosa Filho C.J., Schubach E.Y., Barros J.H., Figueiredo F.B. Leishmania (Leishmania) hertigi in a porcupine (Coendou sp.) found in Brasilia, Federal District, Brazil. Rev. Bras. Parasitol. Vet. 2013;22:297–299. doi: 10.1590/S1984-29612013005000014. PubMed DOI
Deane L.M., da Silva J.E., de Figueiredo P.Z. Leishmaniae in the viscera of porcupines from the state of Piaui, Brazil. Rev. Do Inst. De Med. Trop. De Sao Paulo. 1974;16:68–69. PubMed
Pothirat T., Tantiworawit A., Chaiwarith R., Jariyapan N., Wannasan A., Siriyasatien P., Supparatpinyo K., Bates M.D., Kwakye-Nuako G., Bates P.A. First isolation of Leishmania from Northern Thailand: Case report, identification as Leishmania martiniquensis and phylogenetic position within the Leishmania enriettii complex. PLoS Negl. Trop. Dis. 2014;8:e3339. doi: 10.1371/journal.pntd.0003339. PubMed DOI PMC
Shaw J.J. A possible vector of Endotrypanum schaudinni of the sloth Choloepus hoffmanni, in Panama. Nature. 1964;201:417–418. doi: 10.1038/201417a0. PubMed DOI
Shaw J.J., de Rosa A.T., Cruz A.C.R., Vasconcelos P.F.C. Brazilian phlebotomines as hosts and vectors of viruses, bacteria, fungi, protozoa (excluding those belonging to the genus Leishmania) and nematodes. In: Rangel E.F., Shaw J.J., editors. Brazilian Sand Flies. Springer International Publishing AG; Basel, Switzerland: 2018. pp. 417–441.
Shaw J.J. The behaviour of Endotrypanum schaudinni (Kinetoplastidae:Trypanosomatidae) in three species of laboratory-bred neotropical sandflies (Diptera:Psychodidae) and its influence on the classification of the genus Leishmania. In: Canning E.U., editor. Parasitological Topics. A Presentation Volume to P. C. C. Garnham, F. R. S., on the Occasion of His 80th Birthday. Allen Press; Lawrence, KS, USA: 1981. pp. 232–241.
Franco A.M., Tesh R.B., Guzman H., Deane M.P., Grimaldi Junior G. Development of Endotrypanum (Kinetoplastida:Trypanosomatidae) in experimentally infected phlebotomine sand flies (Diptera:Psychodidae) J. Med. Entomol. 1997;34:189–192. doi: 10.1093/jmedent/34.2.189. PubMed DOI
Katakura K., Mimori T., Furuya M., Uezato H., Nonaka S., Okamoto M., Gomez L.E., Hashiguchi Y. Identification of Endotrypanum species from a sloth, a squirrel and Lutzomyia sandflies in Ecuador by PCR amplification and sequencing of the mini-exon gene. J. Vet. Med. Sci. 2003;65:649–653. doi: 10.1292/jvms.65.649. PubMed DOI
Christensen H.A., Herrer A. Neotropical sand flies (Diptera: Psychodidae), invertebrate hosts of Endotrypanum schaudinni (Kinetoplastida: Trypanosomatidae) J. Med. Entomol. 1976;13:299–303. doi: 10.1093/jmedent/13.3.299. PubMed DOI
Thies S.F., Bronzoni R.V.M., Michalsky E.M., Santos E.S.D., Silva D., Dias E.S., Damazo A.S. Aspects on the ecology of phlebotomine sand flies and natural infection by Leishmania hertigi in the Southeastern Amazon Basin of Brazil. Acta Trop. 2018;177:37–43. doi: 10.1016/j.actatropica.2017.09.023. PubMed DOI
Barratt J., Kaufer A., Peters B., Craig D., Lawrence A., Roberts T., Lee R., McAuliffe G., Stark D., Ellis J. Isolation of novel trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) provides support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae. PLoS Negl. Trop. Dis. 2017;11:e0005215. doi: 10.1371/journal.pntd.0005215. PubMed DOI PMC
Harkins K.M., Schwartz R.S., Cartwright R.A., Stone A.C. Phylogenomic reconstruction supports supercontinent origins for Leishmania. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2016;38:101–109. doi: 10.1016/j.meegid.2015.11.030. PubMed DOI
O’Leary M.A., Bloch J.I., Flynn J.J., Gaudin T.J., Giallombardo A., Giannini N.P., Goldberg S.L., Kraatz B.P., Luo Z.X., Meng J., et al. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science. 2013;339:662–667. doi: 10.1126/science.1229237. PubMed DOI
Lopes A.H., Iovannisci D., Petrillo-Peixoto M., McMahon-Pratt D., Beverley S.M. Evolution of nuclear DNA and the occurrence of sequences related to new small chromosomal DNAs in the trypanosomatid genus Endotrypanum. Mol. Biochem. Parasitol. 1990;40:151–161. doi: 10.1016/0166-6851(90)90037-M. PubMed DOI
Maslov D.A., Lukeš J., Jirků M., Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: Implications for the evolution of parasitism in the trypanosomatid protozoa. Mol. Biochem. Parasitol. 1996;75:197–205. doi: 10.1016/0166-6851(95)02526-X. PubMed DOI
Maslov D.A., Yurchenko V.Y., Jirků M., Lukeš J. Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. J. Eukaryot. Microbiol. 2010;57:177–188. doi: 10.1111/j.1550-7408.2009.00464.x. PubMed DOI
Yurchenko V., Votýpka J., Tesařová M., Klepetková H., Kraeva N., Jirků M., Lukeš J. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol. 2014;61:97–112. doi: 10.14411/fp.2014.023. PubMed DOI
Losev A., Grybchuk-Ieremenko A., Kostygov A.Y., Lukes J., Yurchenko V. Host specificity, pathogenicity, and mixed infections of trypanoplasms from freshwater fishes. Parasitol. Res. 2015;114:1071–1078. doi: 10.1007/s00436-014-4277-y. PubMed DOI
Kostygov A.Y., Grybchuk-Ieremenko A., Malysheva M.N., Frolov A.O., Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014;165:594–604. doi: 10.1016/j.protis.2014.07.001. PubMed DOI
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. [(accessed on 8 March 2021)]; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Laetsch D.R., Blaxter M.L. BlobTools: Interrogation of genome assemblies. F1000Research. 2017;6:1287. doi: 10.12688/f1000research.12232.1. DOI
Mikheenko A., Prjibelski A., Saveliev V., Antipov D., Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics. 2018;34:i142–i150. doi: 10.1093/bioinformatics/bty266. PubMed DOI PMC
Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Kim D., Paggi J.M., Park C., Bennett C., Salzberg S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC
Steinbiss S., Silva-Franco F., Brunk B., Foth B., Hertz-Fowler C., Berriman M., Otto T.D. Companion: A web server for annotation and analysis of parasite genomes. Nucleic Acids Res. 2016;44:W29–W34. doi: 10.1093/nar/gkw292. PubMed DOI PMC
Waterhouse R.M., Seppey M., Simão F.A., Manni M., Ioannidis P., Klioutchnikov G., Kriventseva E.V., Zdobnov E.M. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 2018;35:543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC
Smit A.F.A., Hubley R., Green P. RepeatMasker Open-4.0. [(accessed on 19 March 2021)]; Available online: http://www.repeatmasker.org.
Soderlund C., Nelson W., Shoemaker A., Paterson A. SyMAP: A system for discovering and viewing syntenic regions of FPC maps. Genome Res. 2006;16:1159–1168. doi: 10.1101/gr.5396706. PubMed DOI PMC
Tamazian G., Dobrynin P., Krasheninnikova K., Komissarov A., Koepfli K.P., O’Brien S.J. Chromosomer: A reference-based genome arrangement tool for producing draft chromosome sequences. Gigascience. 2016;5:38. doi: 10.1186/s13742-016-0141-6. PubMed DOI PMC
Quinlan A.R. BEDTools: The swiss-army tool for genome feature analysis. Curr. Protoc. Bioinform. 2014;47:11–12. doi: 10.1002/0471250953.bi1112s47. PubMed DOI PMC
Wickham H., François R., Henry L., Müller K. Dplyr: A Grammar of Data Manipulation. R Package Version 1.0.2. 2020.
Ginestet C. ggplot2: Elegant graphics for data analysis. J. R. Stat. Soc. 2011;174:245. doi: 10.1111/j.1467-985X.2010.00676_9.x. DOI
Lipovetsky S. Statistical inference via data science: A modern dive into R and the tidyverse. Technometrics. 2020;62:283. doi: 10.1080/00401706.2020.1744908. DOI
Boyd Z., Hughes J. WeeSAM: Script for Parsing SAM/BAM Files for Coverage Statistics. 2018.
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC
Rimmer A., Phan H., Mathieson I., Iqbal Z., Twigg S.R., Wilkie A.O., McVean G., Lunter G. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 2014;46:912–918. doi: 10.1038/ng.3036. PubMed DOI PMC
Emms D.M., Kelly S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S., Silla-Martinez J.M., Gabaldon T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Eddy S.R. Accelerated profile HMM searches. PLoS Comput. Biol. 2011;7:e1002195. doi: 10.1371/journal.pcbi.1002195. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Lartillot N., Rodrigue N., Stubbs D., Richer J. PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 2013;62:611–615. doi: 10.1093/sysbio/syt022. PubMed DOI
Yu G.C., Smith D.K., Zhu H.C., Guan Y., Lam T.T.Y. ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017;8:28–36. doi: 10.1111/2041-210X.12628. DOI
Csűrös M. Count: Evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010;26:1910–1912. doi: 10.1093/bioinformatics/btq315. PubMed DOI
Kanehisa M., Sato Y., Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI
Jones P., Binns D., Chang H.Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G., et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
Lex A., Gehlenborg N., Strobelt H., Vuillemot R., Pfister H. UpSet: Visualization of Intersecting Sets. IEEE Trans. Vis. Comput. Graph. 2014;20:1983–1992. doi: 10.1109/TVCG.2014.2346248. PubMed DOI PMC
Opperdoes F.R., Butenko A., Flegontov P., Yurchenko V., Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J. Eukaryot. Microbiol. 2016;63:657–678. doi: 10.1111/jeu.12315. PubMed DOI
Binns D., Dimmer E., Huntley R., Barrell D., O’Donovan C., Apweiler R. QuickGO: A web-based tool for Gene Ontology searching. Bioinformatics. 2009;25:3045–3046. doi: 10.1093/bioinformatics/btp536. PubMed DOI PMC
Finn R.D., Coggill P., Eberhardt R.Y., Eddy S.R., Mistry J., Mitchell A.L., Potter S.C., Punta M., Qureshi M., Sangrador-Vegas A., et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–D285. doi: 10.1093/nar/gkv1344. PubMed DOI PMC
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Soding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Rambaut A. FigTree v.1.4.4. [(accessed on 19 March 2021)]; Available online: http://tree.bio.ed.ac.uk/software/figtree/
Krogh A., Larsson B., von Heijne G., Sonnhammer E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Gerlt J.A., Bouvier J.T., Davidson D.B., Imker H.J., Sadkhin B., Slater D.R., Whalen K.L. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta. 2015;1854:1019–1037. doi: 10.1016/j.bbapap.2015.04.015. PubMed DOI PMC
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Butenko A., Hammond M., Field M.C., Ginger M.L., Yurchenko V., Lukeš J. Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol. 2021;37:100–116. doi: 10.1016/j.pt.2020.10.001. PubMed DOI
Jackson A.P. The evolution of amastin surface glycoproteins in trypanosomatid parasites. Mol. Biol. Evol. 2010;27:33–45. doi: 10.1093/molbev/msp214. PubMed DOI PMC
Zhang J., Nielsen R., Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 2005;22:2472–2479. doi: 10.1093/molbev/msi237. PubMed DOI
Huerta-Cepas J., Serra F., Bork P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 2016;33:1635–1638. doi: 10.1093/molbev/msw046. PubMed DOI PMC
Alexa A., Rahnenfuhrer J., Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22:1600–1607. doi: 10.1093/bioinformatics/btl140. PubMed DOI
Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M.C., Filatov D., Flegontova O., Gerasimov E.S., Hlaváčová J., et al. Genome of Leptomonas pyrrhocoris: A high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci. Rep. 2016;6:23704. doi: 10.1038/srep23704. PubMed DOI PMC
Sloan M.A., Brooks K., Otto T.D., Sanders M.J., Cotton J.A., Ligoxygakis P. Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania. PLoS Genet. 2019;15:e1008452. doi: 10.1371/journal.pgen.1008452. PubMed DOI PMC
Szöör B. Trypanosomatid protein phosphatases. Mol. Biochem. Parasitol. 2010;173:53–63. doi: 10.1016/j.molbiopara.2010.05.017. PubMed DOI PMC
Soulat D., Bogdan C. Function of macrophage and parasite phosphatases in leishmaniasis. Front. Immunol. 2017;8:1838. doi: 10.3389/fimmu.2017.01838. PubMed DOI PMC
Orr G.A., Werner C., Xu J., Bennett M., Weiss L.M., Takvorkan P., Tanowitz H.B., Wittner M. Identification of novel serine/threonine protein phosphatases in Trypanosoma cruzi: A potential role in control of cytokinesis and morphology. Infect. Immun. 2000;68:1350–1358. doi: 10.1128/IAI.68.3.1350-1358.2000. PubMed DOI PMC
Kraeva N., Leštinová T., Ishemgulova A., Majerová K., Butenko A., Vaselek S., Bespyatykh J., Charyyeva A., Spitzová T., Kostygov A.Y., et al. LmxM.22.0250-encoded dual specificity protein/lipid phosphatase impairs Leishmania mexicana virulence in vitro. Pathogens. 2019;8:241. doi: 10.3390/pathogens8040241. PubMed DOI PMC
Qureshi R., Jakkula P., Sagurthi S.R., Qureshi I.A. Protein phosphatase 1 of Leishmania donovani exhibits conserved catalytic residues and pro-inflammatory response. Biochem. Biophys. Res. Commun. 2019;516:770–776. doi: 10.1016/j.bbrc.2019.06.085. PubMed DOI
Kaufer A., Stark D., Ellis J. Evolutionary insight into the Trypanosomatidae using alignment-free phylogenomics of the kinetoplast. Pathogens. 2019;8:157. doi: 10.3390/pathogens8030157. PubMed DOI PMC
Ludwig A., Krieger M.A. Genomic and phylogenetic evidence of VIPER retrotransposon domestication in trypanosomatids. Mem. Do Inst. Oswaldo Cruz. 2016;111:765–769. doi: 10.1590/0074-02760160224. PubMed DOI PMC
Kelly F.D., Sanchez M.A., Landfear S.M. Touching the surface: Diverse roles for the flagellar membrane in kinetoplastid parasites. Microbiol. Mol. Biol. Rev. Mmbr. 2020;84:e00079-19. doi: 10.1128/MMBR.00079-19. PubMed DOI PMC
Liu Q., Lei J., Darby A.C., Kadowaki T. Trypanosomatid parasite dynamically changes the transcriptome during infection and modifies honey bee physiology. Commun. Biol. 2020;3:51. doi: 10.1038/s42003-020-0775-x. PubMed DOI PMC
Rochette A., McNicoll F., Girard J., Breton M., Leblanc E., Bergeron M.G., Papadopoulou B. Characterization and developmental gene regulation of a large gene family encoding amastin surface proteins in Leishmania spp. Mol. Biochem. Parasitol. 2005;140:205–220. doi: 10.1016/j.molbiopara.2005.01.006. PubMed DOI
Myler P.J., Lodes M.J., Merlin G., de Vos T., Stuart K.D. An amplified DNA element in Leishmania encodes potential integral membrane and nucleotide-binding proteins. Mol. Biochem. Parasitol. 1994;66:11–20. doi: 10.1016/0166-6851(94)90031-0. PubMed DOI
Ravooru N., Paul O.S., Nagendra H.G., Sathyanarayanan N. Data enabled prediction analysis assigns folate/biopterin transporter (BT1) family to 36 hypothetical membrane proteins in Leishmania donovani. Bioinformation. 2019;15:697–708. doi: 10.6026/97320630015697. PubMed DOI PMC
Ouellette M., Drummelsmith J., El-Fadili A., Kundig C., Richard D., Roy G. Pterin transport and metabolism in Leishmania and related trypanosomatid parasites. Int. J. Parasitol. 2002;32:385–398. doi: 10.1016/S0020-7519(01)00346-0. PubMed DOI
Ouameur A.A., Girard I., Legare D., Ouellette M. Functional analysis and complex gene rearrangements of the folate/biopterin transporter (FBT) gene family in the protozoan parasite Leishmania. Mol. Biochem. Parasitol. 2008;162:155–164. doi: 10.1016/j.molbiopara.2008.08.007. PubMed DOI
Singer S.J. The structure and insertion of integral proteins in membranes. Annu. Rev. Cell Biol. 1990;6:247–296. doi: 10.1146/annurev.cb.06.110190.001335. PubMed DOI
El-Sayed N.M., Myler P.J., Blandin G., Berriman M., Crabtree J., Aggarwal G., Caler E., Renauld H., Worthey E.A., Hertz-Fowler C., et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309:404–409. doi: 10.1126/science.1112181. PubMed DOI
Opperdoes F.R., Coombs G.H. Metabolism of Leishmania: Proven and predicted. Trends Parasitol. 2007;23:149–158. doi: 10.1016/j.pt.2007.02.004. PubMed DOI
Opperdoes F., Michels P.A. The metabolic repertoire of Leishmania and implications for drug discovery. In: Myler P., Fasel N., editors. Leishmania: After the Genome. Caister Academic Press; Norfolk, UK: 2008. pp. 123–158.
Škodová-Sveráková I., Záhonová K., Bučková B., Füssy Z., Yurchenko V., Lukeš J. Catalase and ascorbate peroxidase in euglenozoan protists. Pathogens. 2020;9:317. doi: 10.3390/pathogens9040317. PubMed DOI PMC
Kraeva N., Horáková E., Kostygov A., Kořený L., Butenko A., Yurchenko V., Lukeš J. Catalase in Leishmaniinae: With me or against me? Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2017;50:121–127. doi: 10.1016/j.meegid.2016.06.054. PubMed DOI
Turnock D.C., Ferguson M.A. Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Eukaryot. Cell. 2007;6:1450–1463. doi: 10.1128/EC.00175-07. PubMed DOI PMC
Boitz J.M., Yates P.A., Kline C., Gaur U., Wilson M.E., Ullman B., Roberts S.C. Leishmania donovani ornithine decarboxylase is indispensable for parasite survival in the mammalian host. Infect. Immun. 2009;77:756–763. doi: 10.1128/IAI.01236-08. PubMed DOI PMC
Moreira D.S., Xavier M.V., Murta S.M.F. Ascorbate peroxidase overexpression protects Leishmania braziliensis against trivalent antimony effects. Mem. Do Inst. Oswaldo Cruz. 2018;113:e180377. doi: 10.1590/0074-02760180377. PubMed DOI PMC
Sunter J.D., Yanase R., Wang Z., Catta-Preta C.M.C., Moreira-Leite F., Myšková J., Pružinová K., Volf P., Mottram J.C., Gull K. Leishmania flagellum attachment zone is critical for flagellar pocket shape, development in the sand fly, and pathogenicity in the host. Proc. Natl. Acad. Sci. USA. 2019;116:6351–6360. doi: 10.1073/pnas.1812462116. PubMed DOI PMC
Teixeira S.M., Russell D.G., Kirchhoff L.V., Donelson J.E. A differentially expressed gene family encoding “amastin”, a surface protein of Trypanosoma cruzi amastigotes. J. Biol. Chem. 1994;269:20509–20516. doi: 10.1016/S0021-9258(17)32022-7. PubMed DOI
Wu Y., El Fakhry Y., Sereno D., Tamar S., Papadopoulou B. A new developmentally regulated gene family in Leishmania amastigotes encoding a homolog of amastin surface proteins. Mol. Biochem. Parasitol. 2000;110:345–357. doi: 10.1016/S0166-6851(00)00290-5. PubMed DOI
Coughlin B.C., Teixeira S.M., Kirchhoff L.V., Donelson J.E. Amastin mRNA abundance in Trypanosoma cruzi is controlled by a 3′-untranslated region position-dependent cis-element and an untranslated region-binding protein. J. Biol. Chem. 2000;275:12051–12060. doi: 10.1074/jbc.275.16.12051. PubMed DOI
Stober C.B., Lange U.G., Roberts M.T., Alcami A., Blackwell J.M. IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J. Immunol. 2005;175:2517–2524. doi: 10.4049/jimmunol.175.4.2517. PubMed DOI
Ribeiro P.A.F., Vale D.L., Dias D.S., Lage D.P., Mendonca D.V.C., Ramos F.F., Carvalho L.M., Carvalho A., Steiner B.T., Roque M.C., et al. Leishmania infantum amastin protein incorporated in distinct adjuvant systems induces protection against visceral leishmaniasis. Cytokine. 2020;129:155031. doi: 10.1016/j.cyto.2020.155031. PubMed DOI
Pérez-Díaz L., Silva T.C., Teixeira S.M. Involvement of an RNA binding protein containing Alba domain in the stage-specific regulation of beta-amastin expression in Trypanosoma cruzi. Mol. Biochem. Parasitol. 2017;211:1–8. doi: 10.1016/j.molbiopara.2016.12.005. PubMed DOI
Butenko A., Opperdoes F.R., Flegontova O., Horak A., Hampl V., Keeling P., Gawryluk R.M.R., Tikhonenkov D., Flegontov P., Lukeš J. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol. 2020;18:23. doi: 10.1186/s12915-020-0754-1. PubMed DOI PMC
Raymond F., Boisvert S., Roy G., Ritt J.F., Legare D., Isnard A., Stanke M., Olivier M., Tremblay M.J., Papadopoulou B., et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. 2012;40:1131–1147. doi: 10.1093/nar/gkr834. PubMed DOI PMC
Wilson V., Southgate B. Lizard Leishmania. In: Lumsden W., Evans D.A., editors. Biology of Kinetoplastida. Academic Press; New York, NY, USA: 1979. pp. 242–268.
Ovezmukhammedov A., Saf’ianova V.M. Taxonomic problems of the Leishmania of reptiles. Parazitologiia. 1989;23:334–343. (In Russian) PubMed
de Paiva R.M., Grazielle-Silva V., Cardoso M.S., Nakagaki B.N., Mendonca-Neto R.P., Canavaci A.M., Souza Melo N., Martinelli P.M., Fernandes A.P., daRocha W.D., et al. Amastin knockdown in Leishmania braziliensis affects parasite-macrophage interaction and results in impaired viability of intracellular amastigotes. PLoS Pathog. 2015;11:e1005296. doi: 10.1371/journal.ppat.1005296. PubMed DOI PMC
de Menezes J.P., Saraiva E.M., da Rocha-Azevedo B. The site of the bite: Leishmania interaction with macrophages, neutrophils and the extracellular matrix in the dermis. Parasites Vectors. 2016;9:264. doi: 10.1186/s13071-016-1540-3. PubMed DOI PMC
Pinheiro L.J., Paranaiba L.F., Alves A.F., Parreiras P.M., Gontijo N.F., Soares R.P., Tafuri W.L. Salivary gland extract modulates the infection of two Leishmania enriettii strains by interfering with macrophage differentiation in the model of Cavia porcellus. Front. Microbiol. 2018;9:969. doi: 10.3389/fmicb.2018.00969. PubMed DOI PMC
Jain M., Dole V.S., Myler P.J., Stuart K.D., Madhubala R. Role of biopterin transporter (BT1) gene on growth and infectivity of Leishmania. Am. J. Biochem. Biotechnol. 2007;3:199–206. doi: 10.3844/ajbbsp.2007.199.206. DOI
A lineage-specific protein network at the trypanosome nuclear envelope
Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection
Comparative Analysis of Three Trypanosomatid Catalases of Different Origin
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?