A lineage-specific protein network at the trypanosome nuclear envelope
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM112108
NIGMS NIH HHS - United States
R21 AI096069
NIAID NIH HHS - United States
Wellcome Trust - United Kingdom
R01 AI140429
NIAID NIH HHS - United States
P41 GM109824
NIGMS NIH HHS - United States
PubMed
38605598
PubMed Central
PMC11018031
DOI
10.1080/19491034.2024.2310452
Knihovny.cz E-zdroje
- Klíčová slova
- AlphaFold, Nucleus, comparative genomics, molecular evolution, nuclear lamina, nuclear pore complex,
- MeSH
- jaderný obal * metabolismus MeSH
- jaderný pór metabolismus MeSH
- komplex proteinů jaderného póru metabolismus MeSH
- lidé MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- Trypanosoma * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- komplex proteinů jaderného póru MeSH
The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.
Biology Centre Czech Academy of Sciences Institute of Parasitology České Budějovice Czech Republic
Department of Pathology University of Cambridge Cambridge UK
Laboratory of Cellular and Structural Biology The Rockefeller University New York NY USA
Laboratory of Mass Spectrometry and Gaseous Ion Chemistry The Rockefeller University New York NY USA
Zobrazit více v PubMed
Patil S, Sengupta K.. Role of A- and B-type lamins in nuclear structure–function relationships. Biol Cell. 2021;113:295–23. PubMed
Sazer S, Lynch M, Needleman D. Deciphering the evolutionary history of open and closed mitosis. Curr Biol. 2014;24(22):R1099–R1103. PubMed PMC
Koreny L, Field MC. Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. Genome Biol Evol. 2016;8:2663–2671. PubMed PMC
Rout MP, Obado SO, Schenkman S, et al. Specialising the parasite nucleus: pores, lamins, chromatin, and diversity. PLoS Pathog. 2017;13(3):1006170. PubMed PMC
Erber A, Riemer D, Bovenschulte M, et al. Molecular phylogeny of metazoan intermediate filament proteins. J Mol Evol. 1998;47:751–762. PubMed
Ciska M, Masuda K, Moreno Díaz de la Espina S. Lamin-like analogues in plants: the characterization of NMCP1 in Allium cepa. J Exp Bot. 2013;64(6):1553–1564. PubMed PMC
Ciska M, Masuda K, Moreno Díaz de la Espina S. Characterization of the lamin analogue NMCP2 in the monocot Allium cepa. Chromosoma. 2018;127:103–113. PubMed
DuBois KN, Alsford S, Holden JM, et al. NUP-1 is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol. 2012;10(3):e1001287. PubMed PMC
Maishman L, Obado SO, Alsford S, et al. Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression. Nucleic Acids Res. 2016;44(22):10554–10570. PubMed PMC
Meinke P, Schirmer EC. LINC’ing form and function at the nuclear envelope. FEBS Lett. 2015;589(19PartA):2514–2521. PubMed
Barton LJ, Soshnev AA, Geyer PK. Networking in the nucleus: a spotlight on LEM-domain proteins. Curr Opin Cell Biol. 2015;34:1–8. PubMed PMC
Borah S, Dhanasekaran K, Kumar S. The LEM-ESCRT toolkit: repair and maintenance of the nucleus. Front Cell Dev Biol. 2022;10:989217. PubMed PMC
Ho R, Hegele RA. Complex effects of laminopathy mutations on nuclear structure and function. Clin Genet. 2019;95(2):199–209. PubMed
Lin DH, Hoelz A. The structure of the nuclear pore complex (an update). Annu Rev Biochem. 2019;88. PubMed PMC
Field MC, Rout MP. Pore timing: the evolutionary origins of the nucleus and nuclear pore complex [version 1; peer review: 3 approved]. F1000Res. 2019;8:369. PubMed PMC
Ptak C, Wozniak RW. Nucleoporins and chromatin metabolism. Curr Opin Cell Biol. 2016;40:153–160. PubMed
Hampoelz B, Andres-Pons A, Kastritis P, et al. Structure and assembly of the nuclear pore complex. Annu Rev Biophys. 2019;48:52118–115308. PubMed
Mosalaganti S, Kosinski J, Albert S, et al. In situ architecture of the algal nuclear pore complex. Nat Commun. 2018;9(1):2361. PubMed PMC
Steverding D. Sleeping sickness and Nagana disease caused by Trypanosoma brucei. In: Marcondes CB, editor. Arthropod borne diseases. Cham: Springer; 2017. p. 277–297.
Burki F, Roger AJ, Brown MW, et al. The new tree of eukaryotes. Trends Ecol Evol. 2020;35(1):43–55. PubMed
Rico E, Jeacock L, Kovářová J, et al. Inducible high-efficiency CRISPR-Cas9-targeted gene editing and precision base editing in African trypanosomes. Sci Rep. 2018;8:7960. PubMed PMC
Glover L, Alsford S, Baker N, et al. Genome-scale RNAi screens for high-throughput phenotyping in bloodstream-form African trypanosomes. Nat Protoc. 2015;10:106–133. PubMed
Faria J, Glover L, Hutchinson S, et al. Monoallelic expression and epigenetic inheritance sustained by a Trypanosoma brucei variant surface glycoprotein exclusion complex. Nat Commun. 2019;10:1–14. PubMed PMC
Deák G, Wapenaar H, Sandoval G, et al. Histone divergence in Trypanosoma brucei results in unique alterations to nucleosome structure. Nucleic Acids Res. 2023;gkad577. PubMed PMC
Faria JRC. A nuclear enterprise: zooming in on nuclear organization and gene expression control in the African trypanosome. Parasitology. 2021;148:1237–1253. PubMed PMC
Padilla-Mejia NE, Makarov AA, Barlow LD, et al. Evolution and diversification of the nuclear envelope. Nucleus. 2021;12:21–41. PubMed PMC
Ebenezer TE, Zoltner M, Burrell A, et al. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 2019;17:11. PubMed PMC
DeGrasse JA, DuBois KN, Devos D, et al. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol Cell Proteom. 2009;8:2119–2130. PubMed PMC
Obado SO, Brillantes M, Uryu K, et al. Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol. 2016;14:e1002365. PubMed PMC
Obado SO, Field MC, Chait BT, et al. High-efficiency isolation of nuclear envelope protein complexes from Trypanosomes. Methods Mol Biol. 2016;1411:67–80. PubMed
Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science. 1991;252(5009):1162–1164. PubMed
Käll L, Krogh A, Sonnhammer ELL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 2004;338:1027–1036. PubMed
Käll L, Krogh A, Sonnhammer ELL. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res. 2007;35:429–432. PubMed PMC
Nielsen H, Engelbrecht J, Brunak S, et al. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997;10:1–6. PubMed
Bendtsen JD, Nielsen H, Von Heijne G, et al. Improved prediction of signal peptides - SignalP 3.0. J Mol Biol. 2004;340:783–795. PubMed
Petersen TN, Brunak S, von Heijne G, et al. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–786. PubMed
Marchler-Bauer A, Bo Y, Han L, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45(D1):D200–D203. PubMed PMC
Zimmermann L, Stephens A, Nam S-Z, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430(15):2237–2243. PubMed
Gabler F, Nam S-Z, Till S, et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinformatics. 2020;72:e108. PubMed
de Castro E, Sigrist CJA, Gattiker A, et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2007;34:W362–W365. PubMed PMC
Sigrist CJA, de Castro E, Cerutti L, et al. New and continuing developments at PROSITE. Nucleic Acids Res. 2013;41:D344–D347. PubMed PMC
Gautier R, Douguet D, Antonny B, et al. HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics. 2008;24(18):2101–2102. PubMed
Steinegger M, Meier M, Mirdita M, et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics. 2019;20(1):473. PubMed PMC
Mistry J, Chuguransky S, Williams L, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49:D412–D419. PubMed PMC
Kosugi S, Hasebe M, Tomita M, et al. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci U S A. 2009;106:10171–10176. PubMed PMC
Brameier M, Krings A, MacCallum RM. NucPred - Predicting nuclear localization of proteins. Bioinformatics. 2007;23:1159–1160. PubMed
Nguyen Ba AN, Pogoutse A, Provart N, et al. NL Stradamus: a simple hidden Markov model for nuclear localization signal prediction. BMC Bioinformatics. 2009;10:202. PubMed PMC
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC
Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–D444. PubMed PMC
DeepMind . AlphaFold Colab [Internet]. Available from: https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
Linding R, Russell RB, Neduva V, et al. GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res. 2003;31:3701–3708. PubMed PMC
Mirdita M, Schütze K, Moriwaki Y, et al. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19:679–682. PubMed PMC
Evans R, O’Neill M, Pritzel A, et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv. 2022.
Schrodinger LLC. The PyMOL molecular graphics system, version 2.5.2. 2015.
Wang J, Youkharibache P, Zhang D, et al. ICn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics. 2020;36:131–135. PubMed PMC
Holm L. Using dali for protein structure comparison. In: Gáspári Z, editor. Structural Bioinformatics: Methods in Molecular Biology. New York NY: Springer US; 2020. pp. 29–42. PubMed
Blum M, Chang H-Y, Chuguransky S, et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49(D1):D344–D354. PubMed PMC
Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST And PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. PubMed PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. PubMed PMC
Lawrence TJ, Kauffman KT, Amrine KCH, et al. FAST: FAST analysis of sequences toolbox. Front Genet. 2015;6:172. DOI:10.3389/fgene.2015.00172 PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490. PubMed PMC
Mistry J, Finn RD, Eddy SR, et al. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013;41(12):e121. PubMed PMC
Butterfield ER, Abbott JC, Field MC. Automated phylogenetic analysis using best reciprocal BLAST. In: De Pablos, LM, Sotillo, J, editors. Parasite genomics: Methods in Molecular Biology. New York: Humana; 2021. pp. 41–63. PubMed
Aslett M, Aurrecoechea C, Berriman M, et al. TriTrypDB: a functional genomic resource for the trypanosomatidae. Nucleic Acids Res. 2009;38:D457–D462. PubMed PMC
Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. PubMed
Yates AD, Allen J, Amode RM, et al. Ensembl genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Res. 2022;50(D1):D996–D1003. PubMed PMC
Sayers EW, Bolton EE, Brister JR, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50(D1):D20–D26. PubMed PMC
Duvaud S, Gabella C, Lisacek F, et al. Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res. 2021;49(W1):W216–W227. PubMed PMC
Richter DJ, Berney C, Strassert JFH, et al. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2022;2:e56.
Guindon S, Dufayard J-F, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–321. PubMed
Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–542. PubMed PMC
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). IEEE; 2010. 1–8.
European Nucleotide Archive . Project: PRJEB36170 [Internet]. [cited 2022 Nov 30]; Available from: https://www.ebi.ac.uk/ena/browser/view/PRJEB36170
Davey JW, Catta-Preta CMC, James S, et al. Chromosomal assembly of the nuclear genome of the endosymbiont-bearing trypanosomatid Angomonas deanei. G3: Genes. Genomes, Genetics. 2021;11:jkaa018. PubMed PMC
European Nucleotide Archive . Project: PRJEB3146 [Internet]. [cited 2022 Dec 5]; Available from: https://www.ebi.ac.uk/ena/browser/view/PRJEB3146
Jackson AP, Otto TD, Aslett M, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016;26(2):161–172. PubMed PMC
Albanaz ATS, Gerasimov ES, Shaw JJ, et al. Genome analysis of Endotrypanum and Porcisia spp., closest phylogenetic relatives of Leishmania, highlights the role of amastins in shaping pathogenicity. Genes. 2021;12(3):444. PubMed PMC
European Nucleotide Archive . Project: PRJNA680236 [Internet]. [cited 2023 Feb 7]; Available from: https://www.ebi.ac.uk/ena/browser/view/PRJNA680236
Skalický T, Dobáková E, Wheeler RJ, et al. Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid. Proc Natl Acad Sci U S A. 2017;114:11757–11762. PubMed PMC
European Nucleotide Archive . Project: PRJNA414522 [Internet]. [cited 2023 Feb 9]. Available from: https://www.ebi.ac.uk/ena/browser/view/PRJNA414522
Chen S, Zhou Y, Chen Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. PubMed PMC
Ewels P, Magnusson M, Lundin S, et al. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–3048. PubMed PMC
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv. 2013;1303:3997v.
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. PubMed PMC
Diesh C, Stevens GJ, Xie P, et al. JBrowse 2: a modular genome browser with views of synteny and structural variation. bioRxiv. 2022. PubMed PMC
Shultz DT. Not recognizing read name formatting -v2.5.1 #448 [Internet]. 2018. [cited 2023 Jan 18]. Available from: https://github.com/trinityrnaseq/trinityrnaseq/issues/448#issuecomment-387790927
Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–652. PubMed PMC
Brun R, Schönenberger M. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop. 1979;36(3):289–292. PubMed
Oberholzer M, Morand S, Kunz S, et al. A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. Mol Biochem Parasitol. 2006;145(1):117–120. PubMed
Kelly S, Reed J, Kramer S, et al. Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol Biochem Parasitol. 2007;154(1):103–109. PubMed PMC
Field MC, Allen CL, Dhir V, et al. New approaches to the microscopic imaging of Trypanosoma brucei. Microsc Microanal. 2004;10(5):1–16. PubMed
Davis LI, Blobel G. Identification and characterization of a nuclear pore complex protein. Cell. 1986;45(5):699–709. PubMed
Farine L, Niemann M, Schneider A, et al. Phosphatidylethanolamine and phosphatidylcholine biosynthesis by the Kennedy pathway occurs at different sites in Trypanosoma brucei. Sci Rep. 2015;5(1):16787. PubMed PMC
Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy. 2006;224(3):213–232. PubMed
Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682 PubMed PMC
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–66.
Zhang W, Chait BT. ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem. 2000;72(11):2482–2489. PubMed
Fenyö D, Eriksson J, Beavis R. Mass spectrometric protein identification using the global proteome machine. In: Fenyö D, editor. Computational biology, methods in molecular biology. Totowa NJ: Humana Press; 2010. p. 189–202. PubMed PMC
Baker NA, Sept D, Joseph S, et al. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A. 2001;98(18):10037–10041. PubMed PMC
Dolinsky TJ, Czodrowski P, Li H, et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007;35:W522–5. PubMed PMC
PyMOLWiki. Color h [Internet]. 2019. [cited 2023 Jun 26]. Available from: https://pymolwiki.org/index.php/Color_h
Eisenberg D, Schwarz E, Komaromy M, et al. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984;179(1):125–142. PubMed
Goos C, Dejung M, Janzen CJ, et al. The nuclear proteome of Trypanosoma brucei. PLoS One. 2017;12(7):e0181884. PubMed PMC
Dean S, Sunter JD, Wheeler RJ. TrypTag.org: a Trypanosome genome-wide protein localisation resource. Trends Parasitol. 2017;33(2):80–82. PubMed PMC
Billington K, Halliday C, Madden R, et al. Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol. 2023;8(3):533–547. DOI:10.1038/s41564-022-01295-6. PubMed DOI PMC
Akiyoshi B, Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell. 2014;156(6):1247–1258. PubMed PMC
Schirmer EC, Florens L, Guan T, et al. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science. 2003;301(5638):1380–1382. PubMed
Alsford S, Turner DJ, Obado SO, et al. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res. 2011;21(6):915–924. PubMed PMC
Iribarren PA, Di Marzio LA, Berazategui MA, et al. SUMO polymeric chains are involved in nuclear foci formation and chromatin organization in Trypanosoma brucei procyclic forms. PLoS One. 2018;13(2):e0193528. PubMed PMC
Iribarren PA, Berazategui MA, Bayona JC, et al. Different proteomic strategies to identify genuine small Ubiquitin-like modifier targets and their modification sites in Trypanosoma brucei procyclic forms. Cell Microbiol. 2015;17(10):1413–1422. PubMed
D’Archivio S, Wickstead B. Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J Cell Biol. 2017;216(2):379–391. PubMed PMC
Crozier TWM, Tinti M, Wheeler RJ, et al. Proteomic analysis of the cell cycle of procylic form Trypanosoma brucei. Mol Cell Proteom. 2018;17:1184–1195. PubMed PMC
Marques CA, Ridgway M, Tinti M, et al. Genome-scale RNA interference profiling of Trypanosoma brucei cell cycle progression defects. Nat Commun. 2022;13(1):5326. PubMed PMC
Krut O, Wiegmann K, Kashkar H, et al. Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem. 2006;281(19):13784–13793. PubMed
Corcoran CA, He Q, Ponnusamy S, et al. Neutral sphingomyelinase-3 Is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol Cancer Res. 2008;6(5):795–807. PubMed PMC
Piët ACA, Post M, Dekkers D, et al. Proximity ligation mapping of microcephaly associated SMPD4 shows association with components of the nuclear pore membrane. Cells. 2022;11(4);674. DOI:10.3390/cells12010011 PubMed DOI PMC
Magini P, Smits DJ, Vandervore L, et al. Loss of SMPD4 causes a developmental disorder characterized by microcephaly and congenital arthrogryposis. Am J Human Genetics. 2019;105(4):689–705 PubMed PMC
Smits DJ, Schot R, Krusy N, et al. SMPD4 regulates mitotic nuclear envelope dynamics and its loss causes microcephaly and diabetes. Brain. 2023;awad033. PubMed PMC
Niemann M, Wiese S, Mani J, et al. Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Mol Cell Proteom. 2013;12(2)515–528. PubMed PMC
Hirano T. At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol. 2006;7(5):311–322. PubMed
Archer SK, Inchaustegui D, Queiroz R, et al. The cell cycle regulated transcriptome of Trypanosoma brucei. PLoS One. 2011;6(3):e18425. PubMed PMC
Obado SO, Rout MP, Field MC. Sending the message: specialized RNA export mechanisms in trypanosomes. Trends Parasitol. 2022;38(10):854–867. PubMed PMC
Yamada J, Phillips JL, Patel S, et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol Cell Proteom. 2010;9(10):2205–2224. PubMed PMC
Fischer T, Sträßer K, Rácz A, et al. The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J. 2002;21:5843–5852. PubMed PMC
Lutzmann M, Kunze R, Stangl K, et al. Reconstitution of Nup157 and Nup145N into the Nup84 complex. J Biol Chem. 2005;280:18442–18451. PubMed
Zhang Y, Li S, Zeng C, et al. Molecular architecture of the luminal ring of the Xenopus laevis nuclear pore complex. Cell Res. 2020;30(6):532–540. PubMed PMC
Upla P, Kim SJ, Sampathkumar P, et al. Molecular architecture of the major membrane ring component of the nuclear pore complex. Structure. 2017;25(3):434–445. PubMed PMC
Akey CW, Singh D, Ouch C, et al. Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell. 2022;185(2):361–378. PubMed PMC
Hao Q, Zhang B, Yuan K, et al. Electron microscopy of Chaetomium pom152 shows the assembly of ten-bead string. Cell Discov. 2018;4(1):56. PubMed PMC
Kim SJ, Fernandez-Martinez J, Nudelman I, et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature. 2018;555(7697):475–482. PubMed PMC
Makarov AA, Padilla-Mejia NE, Field MC. Evolution and diversification of the nuclear pore complex. Biochem Soc Trans. 2021;49(4):1601–1619. PubMed PMC
Obado SO, Field MC, Rout MP. Comparative interactomics provides evidence for functional specialization of the nuclear pore complex. Nucleus. 2017;8(4):340–352. PubMed PMC
Dickie EA, Young SA, Smith TK. Substrate specificity of the neutral sphingomyelinase from Trypanosoma brucei. Parasitology. 2019;146(5):604–616. PubMed PMC
Strassert JFH, Jamy M, Mylnikov AP, et al. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life. Mol Biol Evol. 2019;36:757–765. PubMed PMC
Tikhonenkov DV, Strassert JFH, Janouškovec J, et al. Predatory colponemids are the sister group to all other alveolates. Mol Phylogenet Evol. 2020;149:106839. PubMed
Tanifuji G, Cenci U, Moog D, et al. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Sci Rep. 2017;7(1):11688. DOI:10.1038/s41598-017-11866-x. PubMed DOI PMC
Morrison HG, McArthur AG, Gillin FD, et al. Genomic minimalism in the early diverging intestinal parasite giardia lamblia. Science. 2007;317(5846):1921–1926. PubMed
Field MC, Koreny L, Rout MP. Enriching the pore: splendid complexity from humble origins. Traffic. 2014;15(2):141–156. PubMed PMC
Fujitomo T, Daigo Y, Matsuda K, et al. Critical function for nuclear envelope protein TMEM209 in human pulmonary carcinogenesis. Cancer Res. 2012;72(16):4110–4118. PubMed
Cheng L-C, Zhang X, Baboo S, et al. Comparative membrane proteomics reveals diverse cell regulators concentrated at the nuclear envelope. Life Sci Alliance. 2023;6(9):e202301998. PubMed PMC
Tang Y, Huang A, Gu Y. Global profiling of plant nuclear membrane proteome in Arabidopsis. Nat Plants. 2020;6(7):838–847. PubMed
Malik P, Korfali N, Srsen V, et al. Cell-specific and lamin-dependent targeting of novel transmembrane proteins in the nuclear envelope. Cell Mol Life Sci. 2010;67:1353–1369. PubMed PMC
Lu Q, Tang X, Tian G, et al. Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant J. 2010;61(2):259–270. DOI:10.1111/j.1365-313X.2009.04048.x. PubMed DOI
Holden JM, Koreny L, Obado SO, et al. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Mol Biol Cell. 2014;25(9):1421–1436. PubMed PMC
Obado SO, Stein M, Hegedűsová E, et al. Mex67 paralogs mediate division of labor in trypanosome RNA processing and export. bioRxiv. 2022.
Mosalaganti S, Obarska-Kosinska A, Siggel M, et al. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science. 2022;376(6598):eabm9506. PubMed
Iwamoto M, Mori C, Kojidani T, et al. Two distinct repeat sequences of Nup98 nucleoporins characterize dual nuclei in the binucleated ciliate Tetrahymena. Curr Biol. 2009;19(10):843–847. PubMed
Neumann N, Lundin D, Poole AM. Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS One. 2010;5(10):e13241. PubMed PMC
Tamura K, Fukao Y, Iwamoto M, et al. Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. Plant Cell. 2010;22:4084–4097. PubMed PMC
Ambekar SV, Beck JR, Mair GR. TurboID identification of evolutionarily divergent components of the nuclear pore complex in the malaria model Plasmodium berghei. mBio. 2022;13(5):e01815–22. DOI:10.1128/mbio.01815-22 PubMed DOI PMC
Courjol F, Mouveaux T, Lesage K, et al. Characterization of a nuclear pore protein sheds light on the roles and composition of the Toxoplasma gondii nuclear pore complex. Cell Mol Life Sci. 2017;74:2107–2125. PubMed PMC
Kehrer J, Kuss C, Andres-Pons A, et al. Nuclear pore complex components in the malaria parasite Plasmodium berghei. Sci Rep. 2018;8(1):11249. PubMed PMC
Rothballer A, Kutay U. Poring over pores: nuclear pore complex insertion into the nuclear envelope. Trends Biochem Sci. 2013;38(6):292–301. PubMed
Peeters BWA, Piët ACA, Fornerod M. Generating membrane curvature at the nuclear pore: a lipid point of view. Cells. 2022;11(3);469. PubMed PMC
Inoue AH, Domingues PF, Serpeloni M, et al.Proteomics uncovers novel components of an interactive protein network supporting RNA export in Trypanosomes. Mol Cell Proteomics. 2022;21:100208. PubMed PMC
Goos C, Dejung M, Wehman AM, et al. Trypanosomes can initiate nuclear export co-transcriptionally. Nucleic Acids Res. 2019;47:266–282. PubMed PMC
Kramer S. Nuclear mRNA maturation and mRNA export control: from trypanosomes to opisthokonts. Parasitology. 2021;148(10):1196–1218. PubMed PMC
On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa