Trypanosomes lack a canonical EJC but possess an UPF1 dependent NMD-like pathway
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40053537
PubMed Central
PMC11888146
DOI
10.1371/journal.pone.0315659
PII: PONE-D-24-18641
Knihovny.cz E-zdroje
- MeSH
- eukaryotický iniciační faktor 4A metabolismus genetika MeSH
- exony genetika MeSH
- messenger RNA genetika metabolismus MeSH
- nonsense mediated mRNA decay * MeSH
- protozoální proteiny * metabolismus genetika MeSH
- sestřih RNA MeSH
- Trypanosoma brucei brucei * metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- eukaryotický iniciační faktor 4A MeSH
- messenger RNA MeSH
- protozoální proteiny * MeSH
The exon junction complex (EJC) is a key player in metazoan mRNA quality control and is placed upstream of the exon-exon junction after splicing. Its inner core is composed of Magoh, Y14, eIF4AIII and BTZ and the outer core of proteins involved in mRNA splicing (CWC22), export (Yra1), translation (PYM) and nonsense mediated decay (NMD, UPF1/2/3). Trypanosoma brucei encodes only two genes with introns, but all mRNAs are processed by trans-splicing. The presence of three core EJC proteins and a potential BTZ homologue (Rbp25) in trypanosomes has been suggested to adapt of the EJC function to mark trans-spliced mRNAs. We analysed trypanosome EJC components and noticed major differences between eIF4AIII and Magoh/Y14: (i) whilst eIF4AIII is essential, knocking out both Magoh and Y14 elicits only a mild growth phenotype (ii) eIF4AIII localization is mostly nucleolar, while Magoh and Y14 are nucleolar and nucleoplasmic but excluded from the cytoplasm (iii) eIF4AIII associates with nucleolar proteins and the splicing factor CWC22, but not with Y14 or Magoh, while Magoh and Y14 associate with each other, but not with eIF4AIII, CWC22 or nucleolar proteins. Our data argue against the presence of a functional EJC in trypanosomes, but indicate that eIF4AIII adopted non-EJC related, essential functions, while Magoh and Y14 became redundant. Trypanosomes also possess homologues to the NMD proteins UPF1 and UPF2. Depletion of UPF1 causes only a minor reduction in growth and phylogenetic analyses show several independent losses of UPF1 and UPF2, as well as complete loss of UPF3 in the Kinetoplastida group, indicating that UPF1-dependent NMD is not essential. Regardless, we demonstrate that UPF1 depletion restores the mRNA levels of a PTC reporter. Altogether, we show that the almost intron-less trypanosomes are in the process of losing the canonical EJC/NMD pathways: Y14 and Magoh have become redundant and the still-functional UPF1-dependent NMD pathway is not essential.
Carlos Chagas Institute FIOCRUZ PR Curitiba Brazil
Department of Biochemistry Cambridge University Cambridge United Kingdom
Department of Cell and Developmental Biology University of Würzburg Würzburg Germany
Department of Parasitology Faculty of Science Charles University Prague Biocev Vestec Czech Republic
Zobrazit více v PubMed
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al.. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–50. doi: 10.1093/nar/gky1106 PubMed DOI PMC
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195(2):115–22. doi: 10.1016/j.molbiopara.2014.05.007 PubMed DOI
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al.. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309(5733):416–22. doi: 10.1126/science.1112642 PubMed DOI
Siegel TN, Hekstra DR, Kemp LE, Figueiredo LM, Lowell JE, Fenyo D, et al.. Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev. 2009;23(9):1063–76. doi: 10.1101/gad.1790409 PubMed DOI PMC
Günzl A, Bruderer T, Laufer G, Schimanski B, Tu L-C, Chung H-M, et al.. RNA polymerase I transcribes procyclin genes and variant surface glycoprotein gene expression sites in Trypanosoma brucei. Eukaryot Cell. 2003;2(3):542–51. doi: 10.1128/EC.2.3.542-551.2003 PubMed DOI PMC
Sutton RE, Boothroyd JC. Evidence for trans splicing in trypanosomes. Cell. 1986;47(4):527–35. doi: 10.1016/0092-8674(86)90617-3 PubMed DOI PMC
Murphy WJ, Watkins KP, Agabian N. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans splicing. Cell. 1986;47(4):517–25. doi: 10.1016/0092-8674(86)90616-1 PubMed DOI
Ullu E, Matthews KR, Tschudi C. Temporal order of RNA-processing reactions in trypanosomes: rapid trans splicing precedes polyadenylation of newly synthesized tubulin transcripts. Mol Cell Biol. 1993;13(1):720–5. doi: 10.1128/mcb.13.1.720-725.1993 PubMed DOI PMC
Matthews KR, Tschudi C, Ullu E. A common pyrimidine-rich motif governs trans-splicing and polyadenylation of tubulin polycistronic pre-mRNA in trypanosomes. Genes Dev. 1994;8(4):491–501. doi: 10.1101/gad.8.4.491 PubMed DOI
Bangs JD, Crain PF, Hashizume T, McCloskey JA, Boothroyd JC. Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J Biol Chem. 1992;267(14):9805–15. doi: 10.1016/s0021-9258(19)50165-x PubMed DOI
Perry KL, Watkins KP, Agabian N. Trypanosome mRNAs have unusual “cap 4” structures acquired by addition of a spliced leader. Proc Natl Acad Sci U S A. 1987;84(23):8190–4. doi: 10.1073/pnas.84.23.8190 PubMed DOI PMC
Li H, Tschudi C. Novel and essential subunits in the 300-kilodalton nuclear cap binding complex of Trypanosoma brucei. Mol Cell Biol. 2005;25(6):2216–26. doi: 10.1128/MCB.25.6.2216-2226.2005 PubMed DOI PMC
Serpeloni M, Moraes CB, Muniz JRC, Motta MCM, Ramos ASP, Kessler RL, et al.. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway. PLoS One. 2011;6(6):e20730.doi: 10.1371/journal.pone.0020730 PubMed DOI PMC
Butterfield ER, Obado SO, Scutts SR, Zhang W, Chait BT, Rout MP, et al.. A lineage-specific protein network at the trypanosome nuclear envelope. Nucleus. 2024;15(1):2310452. doi: 10.1080/19491034.2024.2310452 PubMed DOI PMC
Gabiatti BP, Krenzer J, Braune S, Krüger T, Zoltner M, Kramer S,. Detailed characterisation of the trypanosome nuclear pore architecture reveals conserved asymmetrical functional hubs that drive mRNA export. PLOS Biology. 2025;23(2): e3003024. doi: 10.1371/journal.pbio.3003024 PubMed DOI PMC
Schwede A, Manful T, Jha BA, Helbig C, Bercovich N, Stewart M, et al.. The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res. 2009;37(16):5511–28. doi: 10.1093/nar/gkp571 PubMed DOI PMC
Dostalova A, Käser S, Cristodero M, Schimanski B. The nuclear mRNA export receptor Mex67-Mtr2 of Trypanosoma brucei contains a unique and essential zinc finger motif. Mol Microbiol. 2013;88(4):728–39. doi: 10.1111/mmi.12217 PubMed DOI
Obado SO, Brillantes M, Uryu K, Zhang W, Ketaren NE, Chait BT, et al.. Interactome mapping reveals the evolutionary history of the nuclear pore complex. Schwartz TU, editor. PLoS biology. 2016;14:e1002365. doi: 10.1371/journal.pbio.1002365.s013 PubMed DOI PMC
Goos C, Dejung M, Wehman AM, M-Natus E, Schmidt J, Sunter J, et al.. Trypanosomes can initiate nuclear export co-transcriptionally. Nucleic Acids Res. 2019;47(1):266–82. doi: 10.1093/nar/gky1136 PubMed DOI PMC
Kramer S, Marnef A, Standart N, Carrington M. Inhibition of mRNA maturation in trypanosomes causes the formation of novel foci at the nuclear periphery containing cytoplasmic regulators of mRNA fate. J Cell Sci. 2012;125(Pt 12):2896–909. doi: 10.1242/jcs.099275 PubMed DOI PMC
Jäger AV, De Gaudenzi JG, Cassola A, D’Orso I, Frasch AC. mRNA maturation by two-step trans-splicing/polyadenylation processing in trypanosomes. Proc Natl Acad Sci U S A. 2007;104(7):2035–42. doi: 10.1073/pnas.0611125104 PubMed DOI PMC
Gerbracht JV, Boehm V, Britto-Borges T, Kallabis S, Wiederstein JL, Ciriello S, et al.. CASC3 promotes transcriptome-wide activation of nonsense-mediated decay by the exon junction complex. Nucleic Acids Res. 2020;48(15):8626–44. doi: 10.1093/nar/gkaa564 PubMed DOI PMC
Mabin JW, Woodward LA, Patton RD, Yi Z, Jia M, Wysocki VH, et al.. The exon junction complex undergoes a compositional switch that alters mRNP structure and nonsense-mediated mRNA decay activity. Cell Rep. 2018;25(9):2431-2446.e7. doi: 10.1016/j.celrep.2018.11.046 PubMed DOI PMC
Steckelberg A-L, Boehm V, Gromadzka AM, Gehring NH. CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Rep. 2012;2(3):454–61. doi: 10.1016/j.celrep.2012.08.017 PubMed DOI
Ballut L, Marchadier B, Baguet A, Tomasetto C, Séraphin B, Le Hir H. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat Struct Mol Biol. 2005;12(10):861–9. doi: 10.1038/nsmb990 PubMed DOI
Bono F, Ebert J, Lorentzen E, Conti E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell. 2006;126(4):713–25. doi: 10.1016/j.cell.2006.08.006 PubMed DOI
Zhao XF, Nowak NJ, Shows TB, Aplan PD. MAGOH interacts with a novel RNA-binding protein. Genomics. 2000;63(1):145–8. doi: 10.1006/geno.1999.6064 PubMed DOI
Lau C-K, Diem MD, Dreyfuss G, Van Duyne GD. Structure of the Y14-Magoh core of the exon junction complex. Curr Biol. 2003;13(11):933–41. doi: 10.1016/s0960-9822(03)00328-2 PubMed DOI
Gehring NH, Lamprinaki S, Hentze MW, Kulozik AE. The hierarchy of exon-junction complex assembly by the spliceosome explains key features of mammalian nonsense-mediated mRNA decay. PLoS Biol. 2009;7(5):e1000120. doi: 10.1371/journal.pbio.1000120 PubMed DOI PMC
Boehm V, Gehring NH. Exon junction complexes: supervising the gene expression assembly line. Trends Genet. 2016;32(11):724–35. doi: 10.1016/j.tig.2016.09.003 PubMed DOI
Pacheco-Fiallos B, Vorländer MK, Riabov-Bassat D, Fin L, O’Reilly FJ, Ayala FI, et al.. mRNA recognition and packaging by the human transcription-export complex. Nature. 2023;616(7958):828–35. doi: 10.1038/s41586-023-05904-0 PubMed DOI PMC
Gehring NH, Lamprinaki S, Kulozik AE, Hentze MW. Disassembly of exon junction complexes by PYM. Cell. 2009;137(3):536–48. doi: 10.1016/j.cell.2009.02.042 PubMed DOI
Nagy E, Maquat LE. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci. 1998;23(6):198–9. doi: 10.1016/s0968-0004(98)01208-0 PubMed DOI
Thermann R, Neu-Yilik G, Deters A, Frede U, Wehr K, Hagemeier C, et al.. Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J. 1998;17(12):3484–94. doi: 10.1093/emboj/17.12.3484 PubMed DOI PMC
Zhang J, Sun X, Qian Y, LaDuca JP, Maquat LE. At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol Cell Biol. 1998;18(9):5272–83. doi: 10.1128/MCB.18.9.5272 PubMed DOI PMC
Zhang J, Sun X, Qian Y, Maquat LE. Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA. 1998;4(7):801–15. doi: 10.1017/s1355838298971849 PubMed DOI PMC
Chamieh H, Ballut L, Bonneau F, Le Hir H. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat Struct Mol Biol. 2008;15(1):85–93. doi: 10.1038/nsmb1330 PubMed DOI
Gehring NH, Neu-Yilik G, Schell T, Hentze MW, Kulozik AE. Y14 and hUpf3b form an NMD-activating complex. Mol Cell. 2003;11(4):939–49. doi: 10.1016/s1097-2765(03)00142-4 PubMed DOI
Hogg JR, Goff SP. Upf1 senses 3’UTR length to potentiate mRNA decay. Cell. 2010;143(3):379–89. doi: 10.1016/j.cell.2010.10.005 PubMed DOI PMC
Carrard J, Lejeune F. Nonsense-mediated mRNA decay, a simplified view of a complex mechanism. BMB Rep. 2023;56(12):625–32. doi: 10.5483/BMBRep.2023-0190 PubMed DOI PMC
Muñoz O, Lore M, Jagannathan S. The long and short of EJC-independent nonsense-mediated RNA decay. Biochem Soc Trans. 2023;51(3):1121–9. doi: 10.1042/BST20221131 PubMed DOI
Bercovich N, Levin MJ, Clayton C, Vazquez MP. Identification of core components of the exon junction complex in trypanosomes. Mol Biochem Parasitol. 2009;166(2):190–3. doi: 10.1016/j.molbiopara.2009.03.008 PubMed DOI
Dhalia R, Marinsek N, Reis CRS, Katz R, Muniz JRC, Standart N, et al.. The two eIF4A helicases in trypanosoma brucei are functionally distinct. Nucleic Acids Res. 2006;34(9):2495–507. doi: 10.1093/nar/gkl290 PubMed DOI PMC
Inoue AH, Domingues PF, Serpeloni M, Hiraiwa PM, Vidal NM, Butterfield ER, et al.. Proteomics uncovers novel components of an interactive protein network supporting RNA export in trypanosomes. Mol Cell Proteomics. 2022;21(3):100208. doi: 10.1016/j.mcpro.2022.100208 PubMed DOI PMC
Bannerman BP, Kramer S, Dorrell RG, Carrington M. Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism. Elias MC, editor. PLoS ONE. 2018;13: e0192633-23. doi: 10.1371/journal.pone.0192633 PubMed DOI PMC
Clayton CE. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol. 2019;9(6):190072. doi: 10.1098/rsob.190072 PubMed DOI PMC
Delhi P, Queiroz R, Inchaustegui D, Carrington M, Clayton C. Is there a classical nonsense-mediated decay pathway in trypanosomes? PLoS One. 2011;6(9):e25112. doi: 10.1371/journal.pone.0025112 PubMed DOI PMC
Maudlin IE, Kelly S, Schwede A, Carrington M. VSG mRNA levels are regulated by the production of functional VSG protein. Mol Biochem Parasitol. 2021;241:111348. doi: 10.1016/j.molbiopara.2020.111348 PubMed DOI PMC
Cosentino RO, Brink BG, Siegel TN. Allele-specific assembly of a eukaryotic genome corrects apparent frameshifts and reveals a lack of nonsense-mediated mRNA decay. NAR Genom Bioinform. 2021;3(3):lqab082. doi: 10.1093/nargab/lqab082 PubMed DOI PMC
Jaillon O, Bouhouche K, Gout J-F, Aury J-M, Noel B, Saudemont B, et al.. Translational control of intron splicing in eukaryotes. Nature. 2008;451(7176):359–62. doi: 10.1038/nature06495 PubMed DOI
Contreras J, Begley V, Macias S, Villalobo E. An UPF3-based nonsense-mediated decay in Paramecium. Res Microbiol. 2014;165(10):841–6. doi: 10.1016/j.resmic.2014.10.008 PubMed DOI
Tian M, Yang W, Zhang J, Dang H, Lu X, Fu C, et al.. Nonsense-mediated mRNA decay in Tetrahymena is EJC independent and requires a protozoa-specific nuclease. Nucleic Acids Res. 2017;45(11):6848–63. doi: 10.1093/nar/gkx256 PubMed DOI PMC
Chen Y-H, Su L-H, Sun C-H. Incomplete nonsense-mediated mRNA decay in Giardia lamblia. Int J Parasitol. 2008;38(11):1305–17. doi: 10.1016/j.ijpara.2008.02.006 PubMed DOI
Chen Y-H, Su L-H, Huang Y-C, Wang Y-T, Kao Y-Y, Sun C-H. UPF1, a conserved nonsense-mediated mRNA decay factor, regulates cyst wall protein transcripts in Giardia lamblia. PLoS One. 2008;3(10):e3609. doi: 10.1371/journal.pone.0003609 PubMed DOI PMC
Odenwald J, Gabiatti B, Braune S, Shen S, Zoltner M, Kramer S. Detection of TurboID fusion proteins by fluorescent streptavidin outcompetes antibody signals and visualises targets not accessible to antibodies. Elife. 2024. Aug 29;13: RP95028. doi: 10.7554/eLife.95028 ; PMCID: PMC11361705 PubMed PMC
Brun R. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. short communication. Acta Trop. 1979;36(3):289–92. PubMed
McCulloch R, Vassella E, Burton P, Boshart M, Barry JD. Transformation of monomorphic and pleomorphic Trypanosoma brucei. Methods Mol Biol. 2004;262:53–86. doi: 10.1385/1-59259-761-0:053 PubMed DOI
Yesbolatova A, Saito Y, Kitamoto N, Makino-Itou H, Ajima R, Nakano R, et al.. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat Commun. 2020;11(1):5701. doi: 10.1038/s41467-020-19532-z PubMed DOI PMC
Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015;5(1):140197. doi: 10.1098/rsob.140197 PubMed DOI PMC
Arhin GK, Shen S, Ullu E, Tschudi C. A PCR-based method for gene deletion and protein tagging in Trypanosoma brucei. Methods Mol Biol. 2004;270:277–86. doi: 10.1385/1-59259-793-9:277 PubMed DOI
Moreira CM do N, Kelemen CD, Obado SO, Zahedifard F, Zhang N, Holetz FB, et al.. Impact of inherent biases built into proteomic techniques: Proximity labeling and affinity capture compared. J Biol Chem. 2023;299(1):102726. doi: 10.1016/j.jbc.2022.102726 PubMed DOI PMC
Marchetti MA, Tschudi C, Kwon H, Wolin SL, Ullu E. Import of proteins into the trypanosome nucleus and their distribution at karyokinesis. J Cell Sci. 2000;113 ( Pt 5):899–906. doi: 10.1242/jcs.113.5.899 PubMed DOI
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72. doi: 10.1038/nbt.1511 PubMed DOI
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M, et al.. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–26. doi: 10.1074/mcp.M113.031591 PubMed DOI PMC
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al.. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(Database issue):D457-62. doi: 10.1093/nar/gkp851 PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al.. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731–40. doi: 10.1038/nmeth.3901 PubMed DOI
Zoltner M, Del Pino RC, Field MC. Sorting the muck from the brass: analysis of protein complexes and cell lysates. Methods Mol Biol. 2020;2116:645–53. doi: 10.1007/978-1-0716-0294-2_38 PubMed DOI
Kramer S. Simultaneous detection of mRNA transcription and decay intermediates by dual colour single mRNA FISH on subcellular resolution. Nucleic Acids Res. 2017;45(7):e49. doi: 10.1093/nar/gkw1245 PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. doi: 10.1038/nmeth.2019 PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.. BLAST+: architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421 PubMed DOI PMC
Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I, et al.. GenBank. Nucleic Acids Res. 2019;47(D1):D94–9. doi: 10.1093/nar/gky989 PubMed DOI PMC
Yuan D, Ahamed A, Burgin J, Cummins C, Devraj R, Gueye K, et al.. The european nucleotide archive in 2023. Nucleic Acids Res. 2024;52(D1):D92–7. doi: 10.1093/nar/gkad1067 PubMed DOI PMC
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Series. 1999;41:95–8
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91. doi: 10.1093/bioinformatics/btp033 PubMed DOI PMC
Kramer S, Queiroz R, Ellis L, Webb H, Hoheisel JD, Clayton C, et al.. Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(alpha) phosphorylation at Thr169. J Cell Sci. 2008;121(Pt 18):3002–14. doi: 10.1242/jcs.031823 PubMed DOI PMC
Brenndörfer M, Boshart M. Selection of reference genes for mRNA quantification in Trypanosoma brucei. Mol Biochem Parasitol. 2010;172(1):52–5. doi: 10.1016/j.molbiopara.2010.03.007 PubMed DOI
Boisramé A, Devillers H, Onésime D, Brunel F, Pouch J, Piot M, et al.. Exon junction complex components Y14 and Mago still play a role in budding yeast. Sci Rep. 2019;9(1):849. doi: 10.1038/s41598-018-36785-3 PubMed DOI PMC
Contreras J, Begley V, Marsella L, Villalobo E. The splicing of tiny introns of Paramecium is controlled by MAGO. Gene. 2018;663:101–9. doi: 10.1016/j.gene.2018.04.007 PubMed DOI
Inoue AH, Serpeloni M, Hiraiwa PM, Yamada-Ogatta SF, Muniz JRC, Motta MCM, et al.. Identification of a novel nucleocytoplasmic shuttling RNA helicase of trypanosomes. PLoS One. 2014;9(10):e109521. doi: 10.1371/journal.pone.0109521 PubMed DOI PMC
Billington K, Halliday C, Madden R, Dyer P, Barker AR, Moreira-Leite FF, et al.. Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol. 2023;8(3):533–47. doi: 10.1038/s41564-022-01295-6 PubMed DOI PMC
Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, et al.. Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol. 2018;36(9):880–7. doi: 10.1038/nbt.4201 PubMed DOI PMC
Alexandrov A, Colognori D, Steitz JA. Human eIF4AIII interacts with an eIF4G-like partner, NOM1, revealing an evolutionarily conserved function outside the exon junction complex. Genes Dev. 2011;25(10):1078–90. doi: 10.1101/gad.2045411 PubMed DOI PMC
Tinti M, Ferguson MAJ. Visualisation of proteome-wide ordered protein abundances in Trypanosoma brucei. Wellcome Open Res. 2022;7:34. doi: 10.12688/wellcomeopenres.17607.1 PubMed DOI PMC
Cavalier-Smith T. Higher classification and phylogeny of Euglenozoa. Eur J Protistol. 2016;56:250–76. doi: 10.1016/j.ejop.2016.09.003 PubMed DOI
Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 2018;34(6):466–80. doi: 10.1016/j.pt.2018.03.002 PubMed DOI
Webb H, Burns R, Ellis L, Kimblin N, Carrington M. Developmentally regulated instability of the GPI-PLC mRNA is dependent on a short-lived protein factor. Nucleic Acids Res. 2005;33(5):1503–12. doi: 10.1093/nar/gki298 PubMed DOI PMC
Wen J, Brogna S. Splicing-dependent NMD does not require the EJC in Schizosaccharomyces pombe. EMBO J. 2010;29(9):1537–51. doi: 10.1038/emboj.2010.48 PubMed DOI PMC
de Freitas Nascimento J, Kelly S, Sunter J, Carrington M. Codon choice directs constitutive mRNA levels in trypanosomes. Elife. 2018;7:e32467. doi: 10.7554/eLife.32467 PubMed DOI PMC
Radhakrishnan A, Chen Y-H, Martin S, Alhusaini N, Green R, Coller J. The DEAD-box protein dhh1p couples mrna decay and translation by monitoring codon optimality. Cell. 2016;167(1):122-132.e9. doi: 10.1016/j.cell.2016.08.053 PubMed DOI PMC
Ruiz-Echevarría MJ, González CI, Peltz SW. Identifying the right stop: determining how the surveillance complex recognizes and degrades an aberrant mRNA. EMBO J. 1998;17(2):575–89. doi: 10.1093/emboj/17.2.575 PubMed DOI PMC
Kressler D, de la Cruz J, Rojo M, Linder P. Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae. Mol Cell Biol. 1997;17(12):7283–94. doi: 10.1128/MCB.17.12.7283 PubMed DOI PMC