Detection of TurboID fusion proteins by fluorescent streptavidin outcompetes antibody signals and visualises targets not accessible to antibodies

. 2024 Aug 29 ; 13 () : . [epub] 20240829

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39206942

Grantová podpora
21-19503J Czech Science Foundation
KR4017/9-1 Deutsche Forschungsgemeinschaft

Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an 'all in one' solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.

Před aktualizací

doi: 10.1101/2023.12.01.569576 PubMed

Před aktualizací

doi: 10.7554/eLife.95028.1 PubMed

Před aktualizací

doi: 10.7554/eLife.95028.2 PubMed

Zobrazit více v PubMed

Alberti S, Saha S, Woodruff JB, Franzmann TM, Wang J, Hyman AA. A user’s guide for phase separation assays with purified proteins. Journal of Molecular Biology. 2018;430:4806–4820. doi: 10.1016/j.jmb.2018.06.038. PubMed DOI PMC

Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ, Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, Ramasamy G, Rogers MB, Roos DS, Ross C, Sivam D, Smith DF, Srinivasamoorthy G, Stoeckert CJ, Subramanian S, Thibodeau R, Tivey A, Treatman C, Velarde G, Wang H. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Research. 2010;38:D457–D462. doi: 10.1093/nar/gkp851. PubMed DOI PMC

Bear J, Tan W, Zolotukhin AS, Tabernero C, Hudson EA, Felber BK. Identification of novel import and export signals of human TAP, the protein that binds to the constitutive transport element of the type D retrovirus mRNAs. Molecular and Cellular Biology. 1999;19:6306–6317. doi: 10.1128/MCB.19.9.6306. PubMed DOI PMC

Ben-Yishay R, Mor A, Shraga A, Ashkenazy-Titelman A, Kinor N, Schwed-Gross A, Jacob A, Kozer N, Kumar P, Garini Y, Shav-Tal Y. Imaging within single NPCs reveals NXF1’s role in mRNA export on the cytoplasmic side of the pore. The Journal of Cell Biology. 2019;218:2962–2981. doi: 10.1083/jcb.201901127. PubMed DOI PMC

Billington K, Halliday C, Madden R, Dyer P, Barker AR, Moreira-Leite FF, Carrington M, Vaughan S, Hertz-Fowler C, Dean S, Sunter JD, Wheeler RJ, Gull K. Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nature Microbiology. 2023;8:533–547. doi: 10.1038/s41564-022-01295-6. PubMed DOI PMC

Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, Feldman JL, Perrimon N, Ting AY. Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology. 2018;36:880–887. doi: 10.1038/nbt.4201. PubMed DOI PMC

Brun R. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Tropica. 1979;36:289–292. PubMed

Chakraborty P, Zweckstetter M. Role of aberrant phase separation in pathological protein aggregation. Current Opinion in Structural Biology. 2023;82:102678. doi: 10.1016/j.sbi.2023.102678. PubMed DOI

Chen F, Tillberg PW, Boyden ES. Expansion microscopy. Science. 2015;347:543–548. doi: 10.1126/science.1260088. PubMed DOI PMC

Chen R, Zhang N, Zhou Y, Jing J. Optical sensors and actuators for probing proximity-dependent biotinylation in living cells. Frontiers in Cellular Neuroscience. 2022;16:801644. doi: 10.3389/fncel.2022.801644. PubMed DOI PMC

Chivers CE, Koner AL, Lowe ED, Howarth M. How the biotin-streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer. The Biochemical Journal. 2011;435:55–63. doi: 10.1042/BJ20101593. PubMed DOI PMC

Cho KF, Branon TC, Rajeev S, Svinkina T, Udeshi ND, Thoudam T, Kwak C, Rhee HW, Lee IK, Carr SA, Ting AY. Split-TurboID enables contact-dependent proximity labeling in cells. PNAS. 2020;117:12143–12154. doi: 10.1073/pnas.1919528117. PubMed DOI PMC

Chu X, Sun T, Li Q, Xu Y, Zhang Z, Lai L, Pei J. Prediction of liquid-liquid phase separating proteins using machine learning. BMC Bioinformatics. 2022;23:72. doi: 10.1186/s12859-022-04599-w. PubMed DOI PMC

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & Cellular Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Dai Z, Yang X. The regulation of liquid-liquid phase separated condensates containing nucleic acids. The FEBS Journal. 2024;291:2320–2331. doi: 10.1111/febs.16959. PubMed DOI

Davis LK, Ford IJ, Hoogenboom BW. Crowding-induced phase separation of nuclear transport receptors in FG nucleoporin assemblies. eLife. 2022;11:e72627. doi: 10.7554/eLife.72627. PubMed DOI PMC

Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biology. 2015;5:140197. doi: 10.1098/rsob.140197. PubMed DOI PMC

Derrer CP, Mancini R, Vallotton P, Huet S, Weis K, Dultz E. The RNA export factor Mex67 functions as a mobile nucleoporin. The Journal of Cell Biology. 2019;218:3967–3976. doi: 10.1083/jcb.201909028. PubMed DOI PMC

Dostalova A, Käser S, Cristodero M, Schimanski B. The nuclear mRNA export receptor Mex67-Mtr2 of Trypanosoma brucei contains a unique and essential zinc finger motif. Molecular Microbiology. 2013;88:728–739. doi: 10.1111/mmi.12217. PubMed DOI

Fritz M, Vanselow J, Sauer N, Lamer S, Goos C, Siegel TN, Subota I, Schlosser A, Carrington M, Kramer S. Novel insights into RNP granules by employing the trypanosome’s microtubule skeleton as a molecular sieve. Nucleic Acids Research. 2015;43:8013–8032. doi: 10.1093/nar/gkv731. PubMed DOI PMC

Gambarotto D, Zwettler FU, Le Guennec M, Schmidt-Cernohorska M, Fortun D, Borgers S, Heine J, Schloetel JG, Reuss M, Unser M, Boyden ES, Sauer M, Hamel V, Guichard P. Imaging cellular ultrastructures using expansion microscopy (U-ExM) Nature Methods. 2019;16:71–74. doi: 10.1038/s41592-018-0238-1. PubMed DOI PMC

Gambarotto D, Hamel V, Guichard P. Ultrastructure expansion microscopy (U-ExM) Methods in Cell Biology. 2021;161:57–81. doi: 10.1016/bs.mcb.2020.05.006. PubMed DOI

Holden JM, Koreny L, Obado S, Ratushny AV, Chen W-M, Chiang J-H, Kelly S, Chait BT, Aitchison JD, Rout MP, Field MC. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Molecular Biology of the Cell. 2014;25:1421–1436. doi: 10.1091/mbc.E13-12-0750. PubMed DOI PMC

Katahira J, Strässer K, Podtelejnikov A, Mann M, Jung JU, Hurt E. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. The EMBO Journal. 1999;18:2593–2609. doi: 10.1093/emboj/18.9.2593. PubMed DOI PMC

Kelly S, Reed J, Kramer S, Ellis L, Webb H, Sunter J, Salje J, Marinsek N, Gull K, Wickstead B, Carrington M. Functional genomics in Trypanosoma brucei: A collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Molecular and Biochemical Parasitology. 2007;154:103–109. doi: 10.1016/j.molbiopara.2007.03.012. PubMed DOI PMC

Kim DI, Birendra KC, Zhu W, Motamedchaboki K, Doye V, Roux KJ. Probing nuclear pore complex architecture with proximity-dependent biotinylation. PNAS. 2014;111:E2453–E2461. doi: 10.1073/pnas.1406459111. PubMed DOI PMC

Kim DI, Jensen SC, Noble KA, Kc B, Roux KH, Motamedchaboki K, Roux KJ. An improved smaller biotin ligase for BioID proximity labeling. Molecular Biology of the Cell. 2016;27:1188–1196. doi: 10.1091/mbc.E15-12-0844. PubMed DOI PMC

Köhler A, Hurt E. Exporting RNA from the nucleus to the cytoplasm. Nature Reviews. Molecular Cell Biology. 2007;8:761–773. doi: 10.1038/nrm2255. PubMed DOI

Kramer S, Queiroz R, Ellis L, Webb H, Hoheisel JD, Clayton C, Carrington M. Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(alpha) phosphorylation at Thr169. Journal of Cell Science. 2008;121:3002–3014. doi: 10.1242/jcs.031823. PubMed DOI PMC

Kramer S, Kimblin NC, Carrington M. Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genomics. 2010;11:283. doi: 10.1186/1471-2164-11-283. PubMed DOI PMC

Kramer S, Bannerman-Chukualim B, Ellis L, Boulden EA, Kelly S, Field MC, Carrington M. Differential localization of the two T. brucei poly(A) binding proteins to the nucleus and RNP granules suggests binding to distinct mRNA pools. PLOS ONE. 2013;8:e54004. doi: 10.1371/journal.pone.0054004. PubMed DOI PMC

Kramer S. The ApaH-like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes. PLOS Pathogens. 2017;13:e1006456. doi: 10.1371/journal.ppat.1006456. PubMed DOI PMC

Kramer S, Meyer-Natus E, Stigloher C, Thoma H, Schnaufer A, Engstler M. Parallel monitoring of RNA abundance, localization and compactness with correlative single molecule FISH on LR White embedded samples. Nucleic Acids Research. 2021;49:e14. doi: 10.1093/nar/gkaa1142. PubMed DOI PMC

Kramer S, Karolak NK, Odenwald J, Gabiatti B, Castañeda Londoño PA, Zavřelová A, Freire ER, Almeida KS, Braune S, Moreira C, Eder A, Goos C, Field M, Carrington M, Holetz F, Górna MW, Zoltner M. A unique mRNA decapping complex in trypanosomes. Nucleic Acids Research. 2023;51:7520–7540. doi: 10.1093/nar/gkad497. PubMed DOI PMC

Laitinen OH, Hytönen VP, Nordlund HR, Kulomaa MS. Genetically engineered avidins and streptavidins. Cellular and Molecular Life Sciences. 2006;63:2992–3017. doi: 10.1007/s00018-006-6288-z. PubMed DOI PMC

Luong JHT, Vashist SK. Chemistry of biotin-streptavidin and the growing concern of an emerging biotin interference in clinical immunoassays. ACS Omega. 2020;5:10–18. doi: 10.1021/acsomega.9b03013. PubMed DOI PMC

Mangus DA, Evans MC, Jacobson A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biology. 2003;4:223. doi: 10.1186/gb-2003-4-7-223. PubMed DOI PMC

May DG, Scott KL, Campos AR, Roux KJ. Comparative application of BioID and TurboID for protein-proximity biotinylation. Cells. 2020;9:1070. doi: 10.3390/cells9051070. PubMed DOI PMC

McCulloch R, Vassella E, Burton P, Boshart M, Barry JD. Transformation of monomorphic and pleomorphic Trypanosoma brucei. Methods in Molecular Biology. 2004;262:53–86. doi: 10.1385/1-59259-761-0:053. PubMed DOI

Misteli T. Physiological importance of RNA and protein mobility in the cell nucleus. Histochemistry and Cell Biology. 2008;129:5–11. doi: 10.1007/s00418-007-0355-x. PubMed DOI PMC

Moreira do CN, Kelemen CD, Obado SO, Zahedifard F, Zhang N, Holetz FB, Gauglitz L, Dallagiovanna B, Field MC, Kramer S, Zoltner M. Impact of inherent biases built into proteomic techniques: Proximity labeling and affinity capture compared. The Journal of Biological Chemistry. 2023;299:102726. doi: 10.1016/j.jbc.2022.102726. PubMed DOI PMC

Morelle C, Sterkers Y, Crobu L, MBang-Benet DE, Kuk N, Portalès P, Bastien P, Pagès M, Lachaud L. The nucleoporin Mlp2 is involved in chromosomal distribution during mitosis in trypanosomatids. Nucleic Acids Research. 2015;43:4013–4027. doi: 10.1093/nar/gkv056. PubMed DOI PMC

Musinova YR, Lisitsyna OM, Golyshev SA, Tuzhikov AI, Polyakov VY, Sheval EV. Nucleolar localization/retention signal is responsible for transient accumulation of histone H2B in the nucleolus through electrostatic interactions. Biochimica et Biophysica Acta. 2011;1813:27–38. doi: 10.1016/j.bbamcr.2010.11.003. PubMed DOI

Nag N, Sasidharan S, Uversky VN, Saudagar P, Tripathi T. Phase separation of FG-nucleoporins in nuclear pore complexes. Biochimica et Biophysica Acta. Molecular Cell Research. 2022;1869:119205. doi: 10.1016/j.bbamcr.2021.119205. PubMed DOI

Neuhaus EM, Horstmann H, Almers W, Maniak M, Soldati T. Ethane-freezing/methanol-fixation of cell monolayers: A procedure for improved preservation of structure and antigenicity for light and electron microscopies. Journal of Structural Biology. 1998;121:326–342. doi: 10.1006/jsbi.1998.3971. PubMed DOI

Obado SO, Brillantes M, Uryu K, Zhang W, Ketaren NE, Chait BT, Field MC, Rout MP. Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLOS Biology. 2016;14:e1002365. doi: 10.1371/journal.pbio.1002365. PubMed DOI PMC

Ong JY, Torres JZ. Phase separation in cell division. Molecular Cell. 2020;80:9–20. doi: 10.1016/j.molcel.2020.08.007. PubMed DOI PMC

Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Piña R, Santos-Díaz AI, Orta-Salazar E, Aguilar-Vazquez AR, Mantellero CA, Acosta-Galeana I, Estrada-Mondragon A, Prior-Gonzalez M, Martinez-Cruz JI, Rosas-Arellano A. Ten approaches that improve immunostaining: A review of the latest advances for the optimization of immunofluorescence. International Journal of Molecular Sciences. 2022;23:1426. doi: 10.3390/ijms23031426. PubMed DOI PMC

Pozzi B, Naguleswaran A, Florini F, Rezaei Z, Roditi I. The RNA export factor TbMex67 connects transcription and RNA export in Trypanosoma brucei and sets boundaries for RNA polymerase I. Nucleic Acids Research. 2023;51:5177–5192. doi: 10.1093/nar/gkad251. PubMed DOI PMC

Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI

Rodriguez MS, Dargemont C, Stutz F. Nuclear export of RNA. Biology of the Cell. 2004;96:639–655. doi: 10.1016/j.biolcel.2004.04.014. PubMed DOI

Schwede A, Manful T, Jha BA, Helbig C, Bercovich N, Stewart M, Clayton CE. The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Research. 2009;37:5511–5528. doi: 10.1093/nar/gkp571. PubMed DOI PMC

Shafraz O, Davis CMO, Sivasankar S. Light-activated BioID - an optically activated proximity labeling system to study protein-protein interactions. Journal of Cell Science. 2023;136:jcs261430. doi: 10.1242/jcs.261430. PubMed DOI PMC

Sherwin T, Gull K. Visualization of detyrosination along single microtubules reveals novel mechanisms of assembly during cytoskeletal duplication in trypanosomes. Cell. 1989;57:211–221. doi: 10.1016/0092-8674(89)90959-8. PubMed DOI

Sheval EV, Polzikov MA, Olson MOJ, Zatsepina OV. A higher concentration of an antigen within the nucleolus may prevent its proper recognition by specific antibodies. European Journal of Histochemistry. 2005;49:117–123. PubMed

So C, Cheng S, Schuh M. Phase separation during germline development. Trends in Cell Biology. 2021;31:254–268. doi: 10.1016/j.tcb.2020.12.004. PubMed DOI

Stewart M. Polyadenylation and nuclear export of mRNAs. The Journal of Biological Chemistry. 2019;294:2977–2987. doi: 10.1074/jbc.REV118.005594. PubMed DOI PMC

Strässer K, Bassler J, Hurt E. Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export. The Journal of Cell Biology. 2000;150:695–706. doi: 10.1083/jcb.150.4.695. PubMed DOI PMC

Sun D-E, Fan X, Shi Y, Zhang H, Huang Z, Cheng B, Tang Q, Li W, Zhu Y, Bai J, Liu W, Li Y, Wang X, Lei X, Chen X. Click-ExM enables expansion microscopy for all biomolecules. Nature Methods. 2021;18:107–113. doi: 10.1038/s41592-020-01005-2. PubMed DOI

Sunter J, Wickstead B, Gull K, Carrington M. A new generation of T7 RNA polymerase-independent inducible expression plasmids for Trypanosoma brucei. PLOS ONE. 2012;7:e35167. doi: 10.1371/journal.pone.0035167. PubMed DOI PMC

Svistunova DM, Musinova YR, Polyakov VYu, Sheval EV. A simple method for the immunocytochemical detection of proteins inside nuclear structures that are inaccessible to specific antibodies. The Journal of Histochemistry and Cytochemistry. 2012;60:152–158. doi: 10.1369/0022155411429704. PubMed DOI PMC

Terry LJ, Wente SR. Nuclear mRNA export requires specific FG nucleoporins for translocation through the nuclear pore complex. The Journal of Cell Biology. 2007;178:1121–1132. doi: 10.1083/jcb.200704174. PubMed DOI PMC

Tillberg PW, Chen F, Piatkevich KD, Zhao Y, Yu C-CJ, English BP, Gao L, Martorell A, Suk H-J, Yoshida F, DeGennaro EM, Roossien DH, Gong G, Seneviratne U, Tannenbaum SR, Desimone R, Cai D, Boyden ES. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nature Biotechnology. 2016;34:987–992. doi: 10.1038/nbt.3625. PubMed DOI PMC

Tinti M, Ferguson MAJ. Visualisation of proteome-wide ordered protein abundances in Trypanosoma brucei. Wellcome Open Research. 2022;7:34. doi: 10.12688/wellcomeopenres.17607.2. PubMed DOI PMC

Tsoi PS, Quan MD, Ferreon JC, Ferreon ACM. Aggregation of disordered proteins associated with neurodegeneration. International Journal of Molecular Sciences. 2023;24:3380. doi: 10.3390/ijms24043380. PubMed DOI PMC

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

Venko K, Žerovnik E. Protein condensates and protein aggregates in vitro, in the cell, and in silico. Front. Biosci.-Landmark. 2023;28:183. doi: 10.31083/j.fbl2808183. PubMed DOI

Youn JY, Dunham WH, Hong SJ, Knight JDR, Bashkurov M, Chen GI, Bagci H, Rathod B, MacLeod G, Eng SWM, Angers S, Morris Q, Fabian M, Côté JF, Gingras AC. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Molecular Cell. 2018;69:517–532. doi: 10.1016/j.molcel.2017.12.020. PubMed DOI

Zatsepina OV, Todorov IT, Philipova RN, Krachmarov CP, Trendelenburg MF, Jordan EG. Cell cycle-dependent translocations of a major nucleolar phosphoprotein, B23, and some characteristics of its variants. European Journal of Cell Biology. 1997;73:58–70. PubMed

Zhang Y, Shen L. An in vitro assay to probe the formation of biomolecular condensates. Bio-Protocol. 2023;13:e4813. doi: 10.21769/BioProtoc.4813. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...