A unique mRNA decapping complex in trypanosomes

. 2023 Aug 11 ; 51 (14) : 7520-7540.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37309887

Grantová podpora
217138/Z/19/Z Wellcome Trust - United Kingdom
204697/Z/16/Z Wellcome Trust - United Kingdom
097945/B/11/Z Wellcome Trust - United Kingdom

Removal of the mRNA 5' cap primes transcripts for degradation and is central for regulating gene expression in eukaryotes. The canonical decapping enzyme Dcp2 is stringently controlled by assembly into a dynamic multi-protein complex together with the 5'-3'exoribonuclease Xrn1. Kinetoplastida lack Dcp2 orthologues but instead rely on the ApaH-like phosphatase ALPH1 for decapping. ALPH1 is composed of a catalytic domain flanked by C- and N-terminal extensions. We show that T. brucei ALPH1 is dimeric in vitro and functions within a complex composed of the trypanosome Xrn1 ortholog XRNA and four proteins unique to Kinetoplastida, including two RNA-binding proteins and a CMGC-family protein kinase. All ALPH1-associated proteins share a unique and dynamic localization to a structure at the posterior pole of the cell, anterior to the microtubule plus ends. XRNA affinity capture in T. cruzi recapitulates this interaction network. The ALPH1 N-terminus is not required for viability in culture, but essential for posterior pole localization. The C-terminus, in contrast, is required for localization to all RNA granule types, as well as for dimerization and interactions with XRNA and the CMGC kinase, suggesting possible regulatory mechanisms. Most significantly, the trypanosome decapping complex has a unique composition, differentiating the process from opisthokonts.

Zobrazit více v PubMed

Erben E., Chakraborty C., Clayton C.E.. The CAF1-NOT complex of trypanosomes. Front Genet. 2014; 4:299. PubMed PMC

Schwede A., Ellis L., Luther J., Carrington M., Stoecklin G., Clayton C.E.. A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res. 2008; 36:3374–3388. PubMed PMC

Manful T., Fadda A., Clayton C.E.. The role of the 5′-3′ exoribonuclease XRNA in transcriptome-wide mRNA degradation. RNA. 2011; 17:2039–2047. PubMed PMC

Li C.-H., Irmer H., Gudjonsdottir-Planck D., Freese S., Salm H., Haile S., Estevez A.M., Clayton C.E.. Roles of a trypanosoma brucei 5′→3′ exoribonuclease homolog in mRNA degradation. RNA. 2006; 12:2171–2186. PubMed PMC

Kramer S. The ApaH-like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes. PLoS Pathog. 2017; 13:e1006456. PubMed PMC

Londoño P.A.C., Banholzer N., Bannermann B., Kramer S.. Is mRNA decapping by ApaH like phosphatases present in eukaryotes beyond the kinetoplastida?. BMC Ecol Evol. 2021; 21:131. PubMed PMC

Andreeva A.V., Kutuzov M.A.. Widespread presence of “bacterial-like” PPP phosphatases in eukaryotes. BMC Evol. Biol. 2004; 4:47. PubMed PMC

Uhrig R.G., Kerk D., Moorhead G.B.. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer. Plant Physiol. 2013; 163:1829–1843. PubMed PMC

Luciano D.J., Levenson-Palmer R., Belasco J.G.. Stresses that raise Np4A levels induce protective nucleoside tetraphosphate capping of bacterial RNA. Mol. Cell. 2019; 75:957–966. PubMed PMC

Luciano D.J., Belasco J.G.. Np4A alarmones function in bacteria as precursors to RNA caps. Proc. Nat. Acad. Sci. U.S.A. 2020; 117:3560–3567. PubMed PMC

Hudeček O., Benoni R., Reyes-Gutierrez P.E., Culka M., Šanderová H., Hubálek M., Rulíšek L., Cvačka J., Krásný L., Cahová H.. Dinucleoside polyphosphates act as 5′-RNA caps in bacteria. Nat. Commun. 2020; 11:1052–1011. PubMed PMC

Gerasimaitė R., Mayer A.. Ppn2, a novel Zn2+-dependent polyphosphatase in the acidocalcisome-like yeast vacuole. J. Cell Sci. 2017; 130:1625–1636. PubMed

Plateau P., Fromant M., Brevet A., Gesquière A., Blanquet S.. Catabolism of bis(5′-nucleosidyl) oligophosphates in Escherichia coli: metal requirements and substrate specificity of homogeneous diadenosine-5′,5″′-P1,P4-tetraphosphate pyrophosphohydrolase. Biochemistry. 1985; 24:914–922. PubMed

Guranowski A., Jakubowski H., Holler E.. Catabolism of diadenosine 5′,5″′-P1,P4-tetraphosphate in procaryotes. Purification and properties of diadenosine 5′,5″′-P1,P4-tetraphosphate (symmetrical) pyrophosphohydrolase from Escherichia coli K12. J. Biol. Chem. 1983; 258:14784–14789. PubMed

Guranowski A. Specific and nonspecific enzymes involved in the catabolism of mononucleoside and dinucleoside polyphosphates. Pharmacol. Ther. 2000; 87:117–139. PubMed

Sasaki M., Takegawa K., Kimura Y.. Enzymatic characteristics of an ApaH-like phosphatase, PrpA, and a diadenosine tetraphosphate hydrolase, ApaH, from Myxococcus xanthus. FEBS Lett. 2014; 588:3395–3402. PubMed

Bernhofer M., Dallago C., Karl T., Satagopam V., Heinzinger M., Littmann M., Olenyi T., Qiu J., Schütze K., Yachdav G.et al. .. PredictProtein - predicting protein structure and function for 29 years. Nucleic Acids Res. 2021; 49:W535–W540. PubMed PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A.et al. .. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–589. PubMed PMC

Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., Yuan D., Stroe O., Wood G., Laydon A.et al. .. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022; 50:D439–D444. PubMed PMC

Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E.. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021; 30:70–82. PubMed PMC

Sunter J., Wickstead B., Gull K., Carrington M.. A new generation of T7 RNA polymerase-independent inducible expression plasmids for Trypanosoma brucei. PLoS One. 2012; 7:e35167. PubMed PMC

Brun R., Schönenberger. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop. 1979; 36:289–292. PubMed

McCulloch R., Vassella E., Burton P., Boshart M., Barry J.D.. Transformation of monomorphic and pleomorphic Trypanosoma brucei. Methods Mol. Biol. 2004; 262:53–86. PubMed

Burkard G.S., Jutzi P., Roditi I.. Genome-wide rnai screens in bloodstream form trypanosomes identify drug transporters. Mol. Biochem. Parasit. 2011; 175:91–94. PubMed

Contreras V.T., Araújo-Jorge T.C., Bonaldo M.C., Thomaz N., Barbosa H.S., Meirelles M.N.S.L., Goldenberg S.. Biological aspects of the DM28C clone of Trypanosoma cruzi after metacylogenesis in chemically defined media. Mem. Inst. Oswaldo Cruz. 1988; 83:123–133. PubMed

Pacheco-Lugo L., Díaz-Olmos Y., Sáenz-García J., Probst C.M., DaRocha W.D.. Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection. Parasitol. Int. 2017; 66:236–239. PubMed

Kelly S., Reed J., Kramer S., Ellis L., Webb H., Sunter J., Salje J., Marinsek N., Gull K., Wickstead B.et al. .. Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol. Biochem. Parasitol. 2007; 154:103–109. PubMed PMC

Dean S., Sunter J., Wheeler R.J., Hodkinson I., Gluenz E., Gull K.. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015; 5:140197. PubMed PMC

Batista M., Marchini F.K., Celedon P.A., Fragoso S.P., Probst C.M., Preti H., Ozaki L.S., Buck G.A., Goldenberg S., Krieger M.A.. A high-throughput cloning system for reverse genetics in Trypanosoma cruzi. BMC Microbiol. 2010; 10:259–259. PubMed PMC

Kramer S., Marnef A., Standart N., Carrington M.. Inhibition of mRNA maturation in trypanosomes causes the formation of novel foci at the nuclear periphery containing cytoplasmic regulators of mRNA fate. J. Cell Sci. 2012; 125:2896–2909. PubMed PMC

Kramer S., Queiroz R., Ellis L., Webb H., Hoheisel J.D., Clayton C.E., Carrington M.. Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(alpha) phosphorylation at Thr169. J. Cell Sci. 2008; 121:3002–3014. PubMed PMC

Zoltner M., Krienitz N., Field M.C., Kramer S.. Comparative proteomics of the two T. brucei pabps suggests that PABP2 controls bulk mRNA. PLoS Negl. Trop. Dis. 2018; 12:e0006679. PubMed PMC

Zoltner M., Pino R.C.D., Field M.C.. Sorting the muck from the brass: analysis of protein complexes and cell lysates. Methods Mol. Biol. 2020; 2116:645–653. PubMed

Obado S.O., Field M.C., Chait B.T., Rout M.P.. High-efficiency isolation of nuclear envelope protein complexes from trypanosomes. Methods Mol. Biol. 2016; 1411:67–80. PubMed

Mureev S., Kovtun O., Nguyen U.T.T., Alexandrov K.. Species-independent translational leaders facilitate cell-free expression. Nat. Biotechnol. 2009; 27:747–752. PubMed

Fridy P.C., Li Y., Keegan S., Thompson M.K., Nudelman I., Scheid J.F., Oeffinger M., Nussenzweig M.C., Fenyo D., Chait B.T.et al. .. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods. 2014; 11:1253–1260. PubMed PMC

Rappsilber J., Ishihama Y., Mann M.. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 2003; 75:663–670. PubMed

Freire E.R., Moura D.M.N., Bezerra M.J.R., Xavier C.C., Morais-Sobral M.C., Vashisht A.A., Rezende A.M., Wohlschlegel J.A., Sturm N.R., Neto O.P.et al. .. Trypanosoma brucei EIF4E2 cap-binding protein binds a homolog of the histone-mRNA stem-loop-binding protein. Curr. Genet. 2018; 64:821–839. PubMed

Rappsilber J., Mann M., Ishihama Y.. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007; 2:1896–1906. PubMed

Cox J., Mann M.. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008; 26:1367–1372. PubMed

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M.. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ*. Mol. Cell. Proteomics. 2014; 13:2513–2526. PubMed PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016; 13:731–740. PubMed

Potter S.C., Luciani A., Eddy S.R., Park Y., Lopez R., Finn R.D.. HMMER web server: 2018 update. Nucleic Acids Res. 2018; 46:W200–W204. PubMed PMC

Dean S., Sunter J.D., Wheeler R.J.. TrypTag.Org: a trypanosome genome-wide protein localisation resource. Trends Parasitol. 2017; 33:80–82. PubMed PMC

West S., Gromak N., Proudfoot N.J.. Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature. 2004; 432:522–525. PubMed

Ebenezer T.E., Zoltner M., Burrell A., Nenarokova A., Vanclová A.M.G.N., Prasad B., Soukal P., Santana-Molina C., O’Neill E., Nankissoor N.N.et al. .. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 2019; 17:11–23. PubMed PMC

Almo S.C., Bonanno J.B., Sauder J.M., Emtage S., Dilorenzo T.P., Malashkevich V., Wasserman S.R., Swaminathan S., Eswaramoorthy S., Agarwal R.et al. .. Structural genomics of protein phosphatases. J. Struct. Funct. Genomics. 2007; 8:121–140. PubMed PMC

Krissinel E., Henrick K.. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. 2004; 60:2256–2268. PubMed

Jinek M., Eulalio A., Lingel A., Helms S., Conti E., Izaurralde E.. The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. RNA. 2008; 14:1991–1998. PubMed PMC

Chang C.-T., Bercovich N., Loh B., Jonas S., Izaurralde E.. The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic Acids Res. 2014; 42:5217–5233. PubMed PMC

Braun J.E., Truffault V., Boland A., Huntzinger E., Chang C.-T., Haas G., Weichenrieder O., Coles M., Izaurralde E.. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nat. Struct. Mol. Biol. 2012; 19:1324–1331. PubMed

Charenton C., Graille M.. mRNA decapping: finding the right structures. Philos. Trans. Roy. Soc. B Biol. Sci. 2018; 373:20180164. PubMed PMC

Moreira C.M.N., Kelemen C.D., Obado S.O., Zahedifard F., Zhang N., Holetz F.B., Gauglitz L., Dallagiovanna B., Field M.C., Kramer S.et al. .. Impact of inherent biases built into proteomic techniques: proximity labeling and affinity capture compared. J. Biol. Chem. 2023; 299:102726. PubMed PMC

Goos C., Dejung M., Wehman A.M., M-Natus E., Schmidt J., Sunter J., Engstler M., Butter F., Kramer S.. Trypanosomes can initiate nuclear export co-transcriptionally. Nucleic Acids Res. 2019; 47:266–282. PubMed PMC

Lueong S., Merce C., Fischer B., Hoheisel J.D., Erben E.D.. Gene expression regulatory networks in Trypanosoma brucei: insights into the role of the mRNA-binding proteome. Mol. Microbiol. 2016; 100:457–471. PubMed

Lesénéchal M., Duret L., Cano M.I., Mortara R.A., Jolivet M., Camargo M.E., Silveira J.F., Paranhos-Baccalà G.. Cloning and characterization of a gene encoding a novel immunodominant antigen of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1997; 87:193–204. PubMed

Fritz M., Vanselow J., Sauer N., Lamer S., Goos C., Siegel T.N., Subota I., Schlosser A., Carrington M., Kramer S.. Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve. Nucleic Acids Res. 2015; 43:8013–8032. PubMed PMC

Kramer S., Kimblin N.C., Carrington M.. Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genomics (Electronic Resource). 2010; 11:283. PubMed PMC

Erben E.D., Fadda A., Lueong S., Hoheisel J.D., Clayton C.E.. A genome-wide tethering screen reveals novel potential post-transcriptional regulators in Trypanosoma brucei. PLoS Pathog. 2014; 10:e1004178. PubMed PMC

Jha B.A., Fadda A., Merce C., Mugo E., Droll D., Clayton C.E.. Depletion of the trypanosome Pumilio domain protein PUF2 or of some other essential proteins causes transcriptome changes related to coding region length. Eukaryot. Cell. 2014; 13:664–674. PubMed PMC

Kramer S., Queiroz R., Ellis L., Hoheisel J.D., Clayton C.E., Carrington M.. The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes. J. Cell Sci. 2010; 123:699–711. PubMed PMC

Wurm J.P., Sprangers R.. Dcp2: an mRNA decapping enzyme that adopts many different shapes and forms. Curr. Opin. Struct. Biol. 2019; 59:115–123. PubMed PMC

He F., Wu C., Jacobson A.. Dcp2 C-terminal cis-binding elements control selective targeting of the decapping enzyme by forming distinct decapping complexes. Elife. 2022; 11:e74410. PubMed PMC

HAILE S., ESTÉVEZ A.M., CLAYTON C.. A role for the exosome in the in vivo degradation of unstable mRNAs. RNA. 2003; 9:1491–1501. PubMed PMC

Sherwin T., Gull K.. The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos. Trans. Roy. Soc. Lond. Ser. B Biol. Sci. 1989; 323:573–588. PubMed

Woodward R., Gull K.. Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J. Cell Sci. 1990; 95:49–57. PubMed

Wheeler R.J., Scheumann N., Wickstead B., Gull K., Vaughan S.. Cytokinesis in Trypanosoma brucei differs between bloodstream and tsetse trypomastigote forms: implications for microtubule-based morphogenesis and mutant analysis. Mol. Microbiol. 2013; 90:1339–1355. PubMed PMC

Robinson D.R., Sherwin T., Ploubidou A., Byard E.H., Gull K.. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J. Cell Biol. 1995; 128:1163–1172. PubMed PMC

Kramer S. Simultaneous detection of mRNA transcription and decay intermediates by dual colour single mRNA FISH on subcellular resolution. Nucleic Acids Res. 2017; 45:e49–e49. PubMed PMC

Kramer S., Piper S., Estevez A.M., Carrington M.. Polycistronic trypanosome mRNAs are a target for the exosome. Mol. Biochem. Parasitol. 2016; 205:1–5. PubMed PMC

Yoon J.-H., Choi E.-J., Parker R.. Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae. J. Cell Biol. 2010; 189:813–827. PubMed PMC

Tenekeci U., Poppe M., Beuerlein K., Buro C., Müller H., Weiser H., Kettner-Buhrow D., Porada K., Newel D., Xu M.et al. .. K63-Ubiquitylation and TRAF6 pathways regulate mammalian P-body formation and mRNA decapping. Mol. Cell. 2016; 62:943–957. PubMed

Bannerman B.P., Kramer S., Dorrell R.G., Carrington M.. Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism. PLoS One. 2018; 13:e0192633-23. PubMed PMC

Charenton C., Gaudon-Plesse C., Fourati Z., Taverniti V., Back R., Kolesnikova O., Séraphin B., Graille M.. A unique surface on Pat1 C-terminal domain directly interacts with Dcp2 decapping enzyme and Xrn1 5′–3′ mRNA exonuclease in yeast. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:E9493–E9501. PubMed PMC

Fromm S.A., Truffault V., Kamenz J., Braun J.E., Hoffmann N.A., Izaurralde E., Sprangers R.. The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:dcp2 mRNA decapping complex. EMBO J. 2012; 31:279–290. PubMed PMC

McLennan A.G. Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both?. Cell. Mol. Life Sci. 2012; 70:373–385. PubMed PMC

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M.et al. .. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019; 47:D442–D450. PubMed PMC

Holden J.M., Koreny L., Obado S., Ratushny A.V., Chen W.M., Chiang J.H., Kelly S., Chait B.T., Aitchison J.D., Rout M.P.et al. .. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Mol. Biol. Cell. 2014; 25:1421–1436. PubMed PMC

Holden J.M., Koreny L., Obado S., Ratushny A.V., Chen W.-M., Bart J.-M., Navarro M., Chait B.T., Aitchison J.D., Rout M.P.et al. .. Involvement in surface antigen expression by a moonlighting FG-repeat nucleoporin in trypanosomes. Mol. Biol. Cell. 2018; 29:1100–1110. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace