A unique mRNA decapping complex in trypanosomes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
217138/Z/19/Z
Wellcome Trust - United Kingdom
204697/Z/16/Z
Wellcome Trust - United Kingdom
097945/B/11/Z
Wellcome Trust - United Kingdom
PubMed
37309887
PubMed Central
PMC10415143
DOI
10.1093/nar/gkad497
PII: 7195032
Knihovny.cz E-zdroje
- MeSH
- endoribonukleasy * metabolismus MeSH
- messenger RNA genetika metabolismus MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- RNA čepičky * genetika metabolismus MeSH
- stabilita RNA MeSH
- Trypanosoma * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- endoribonukleasy * MeSH
- messenger RNA MeSH
- mRNA decapping enzymes MeSH Prohlížeč
- proteiny vázající RNA MeSH
- RNA čepičky * MeSH
Removal of the mRNA 5' cap primes transcripts for degradation and is central for regulating gene expression in eukaryotes. The canonical decapping enzyme Dcp2 is stringently controlled by assembly into a dynamic multi-protein complex together with the 5'-3'exoribonuclease Xrn1. Kinetoplastida lack Dcp2 orthologues but instead rely on the ApaH-like phosphatase ALPH1 for decapping. ALPH1 is composed of a catalytic domain flanked by C- and N-terminal extensions. We show that T. brucei ALPH1 is dimeric in vitro and functions within a complex composed of the trypanosome Xrn1 ortholog XRNA and four proteins unique to Kinetoplastida, including two RNA-binding proteins and a CMGC-family protein kinase. All ALPH1-associated proteins share a unique and dynamic localization to a structure at the posterior pole of the cell, anterior to the microtubule plus ends. XRNA affinity capture in T. cruzi recapitulates this interaction network. The ALPH1 N-terminus is not required for viability in culture, but essential for posterior pole localization. The C-terminus, in contrast, is required for localization to all RNA granule types, as well as for dimerization and interactions with XRNA and the CMGC kinase, suggesting possible regulatory mechanisms. Most significantly, the trypanosome decapping complex has a unique composition, differentiating the process from opisthokonts.
Biocenter University of Würzburg Würzburg Germany
Biological and Chemical Research Centre Department of Chemistry University of Warsaw Warsaw Poland
Biology Centre Czech Academy of Sciences Institute of Parasitology České Budějovice Czech Republic
Carlos Chagas Institute FIOCRUZ PR Curitiba Brazil
Department of Biochemistry University of Cambridge Cambridge UK
Department of Parasitology Faculty of Science Charles University Prague Biocev Vestec Czech Republic
Nencki Institute of Experimental Biology Polish Academy of Sciences Warsaw Poland
Zobrazit více v PubMed
Erben E., Chakraborty C., Clayton C.E.. The CAF1-NOT complex of trypanosomes. Front Genet. 2014; 4:299. PubMed PMC
Schwede A., Ellis L., Luther J., Carrington M., Stoecklin G., Clayton C.E.. A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res. 2008; 36:3374–3388. PubMed PMC
Manful T., Fadda A., Clayton C.E.. The role of the 5′-3′ exoribonuclease XRNA in transcriptome-wide mRNA degradation. RNA. 2011; 17:2039–2047. PubMed PMC
Li C.-H., Irmer H., Gudjonsdottir-Planck D., Freese S., Salm H., Haile S., Estevez A.M., Clayton C.E.. Roles of a trypanosoma brucei 5′→3′ exoribonuclease homolog in mRNA degradation. RNA. 2006; 12:2171–2186. PubMed PMC
Kramer S. The ApaH-like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes. PLoS Pathog. 2017; 13:e1006456. PubMed PMC
Londoño P.A.C., Banholzer N., Bannermann B., Kramer S.. Is mRNA decapping by ApaH like phosphatases present in eukaryotes beyond the kinetoplastida?. BMC Ecol Evol. 2021; 21:131. PubMed PMC
Andreeva A.V., Kutuzov M.A.. Widespread presence of “bacterial-like” PPP phosphatases in eukaryotes. BMC Evol. Biol. 2004; 4:47. PubMed PMC
Uhrig R.G., Kerk D., Moorhead G.B.. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer. Plant Physiol. 2013; 163:1829–1843. PubMed PMC
Luciano D.J., Levenson-Palmer R., Belasco J.G.. Stresses that raise Np4A levels induce protective nucleoside tetraphosphate capping of bacterial RNA. Mol. Cell. 2019; 75:957–966. PubMed PMC
Luciano D.J., Belasco J.G.. Np4A alarmones function in bacteria as precursors to RNA caps. Proc. Nat. Acad. Sci. U.S.A. 2020; 117:3560–3567. PubMed PMC
Hudeček O., Benoni R., Reyes-Gutierrez P.E., Culka M., Šanderová H., Hubálek M., Rulíšek L., Cvačka J., Krásný L., Cahová H.. Dinucleoside polyphosphates act as 5′-RNA caps in bacteria. Nat. Commun. 2020; 11:1052–1011. PubMed PMC
Gerasimaitė R., Mayer A.. Ppn2, a novel Zn2+-dependent polyphosphatase in the acidocalcisome-like yeast vacuole. J. Cell Sci. 2017; 130:1625–1636. PubMed
Plateau P., Fromant M., Brevet A., Gesquière A., Blanquet S.. Catabolism of bis(5′-nucleosidyl) oligophosphates in Escherichia coli: metal requirements and substrate specificity of homogeneous diadenosine-5′,5″′-P1,P4-tetraphosphate pyrophosphohydrolase. Biochemistry. 1985; 24:914–922. PubMed
Guranowski A., Jakubowski H., Holler E.. Catabolism of diadenosine 5′,5″′-P1,P4-tetraphosphate in procaryotes. Purification and properties of diadenosine 5′,5″′-P1,P4-tetraphosphate (symmetrical) pyrophosphohydrolase from Escherichia coli K12. J. Biol. Chem. 1983; 258:14784–14789. PubMed
Guranowski A. Specific and nonspecific enzymes involved in the catabolism of mononucleoside and dinucleoside polyphosphates. Pharmacol. Ther. 2000; 87:117–139. PubMed
Sasaki M., Takegawa K., Kimura Y.. Enzymatic characteristics of an ApaH-like phosphatase, PrpA, and a diadenosine tetraphosphate hydrolase, ApaH, from Myxococcus xanthus. FEBS Lett. 2014; 588:3395–3402. PubMed
Bernhofer M., Dallago C., Karl T., Satagopam V., Heinzinger M., Littmann M., Olenyi T., Qiu J., Schütze K., Yachdav G.et al. .. PredictProtein - predicting protein structure and function for 29 years. Nucleic Acids Res. 2021; 49:W535–W540. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A.et al. .. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–589. PubMed PMC
Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., Yuan D., Stroe O., Wood G., Laydon A.et al. .. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022; 50:D439–D444. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E.. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021; 30:70–82. PubMed PMC
Sunter J., Wickstead B., Gull K., Carrington M.. A new generation of T7 RNA polymerase-independent inducible expression plasmids for Trypanosoma brucei. PLoS One. 2012; 7:e35167. PubMed PMC
Brun R., Schönenberger. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop. 1979; 36:289–292. PubMed
McCulloch R., Vassella E., Burton P., Boshart M., Barry J.D.. Transformation of monomorphic and pleomorphic Trypanosoma brucei. Methods Mol. Biol. 2004; 262:53–86. PubMed
Burkard G.S., Jutzi P., Roditi I.. Genome-wide rnai screens in bloodstream form trypanosomes identify drug transporters. Mol. Biochem. Parasit. 2011; 175:91–94. PubMed
Contreras V.T., Araújo-Jorge T.C., Bonaldo M.C., Thomaz N., Barbosa H.S., Meirelles M.N.S.L., Goldenberg S.. Biological aspects of the DM28C clone of Trypanosoma cruzi after metacylogenesis in chemically defined media. Mem. Inst. Oswaldo Cruz. 1988; 83:123–133. PubMed
Pacheco-Lugo L., Díaz-Olmos Y., Sáenz-García J., Probst C.M., DaRocha W.D.. Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection. Parasitol. Int. 2017; 66:236–239. PubMed
Kelly S., Reed J., Kramer S., Ellis L., Webb H., Sunter J., Salje J., Marinsek N., Gull K., Wickstead B.et al. .. Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol. Biochem. Parasitol. 2007; 154:103–109. PubMed PMC
Dean S., Sunter J., Wheeler R.J., Hodkinson I., Gluenz E., Gull K.. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015; 5:140197. PubMed PMC
Batista M., Marchini F.K., Celedon P.A., Fragoso S.P., Probst C.M., Preti H., Ozaki L.S., Buck G.A., Goldenberg S., Krieger M.A.. A high-throughput cloning system for reverse genetics in Trypanosoma cruzi. BMC Microbiol. 2010; 10:259–259. PubMed PMC
Kramer S., Marnef A., Standart N., Carrington M.. Inhibition of mRNA maturation in trypanosomes causes the formation of novel foci at the nuclear periphery containing cytoplasmic regulators of mRNA fate. J. Cell Sci. 2012; 125:2896–2909. PubMed PMC
Kramer S., Queiroz R., Ellis L., Webb H., Hoheisel J.D., Clayton C.E., Carrington M.. Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(alpha) phosphorylation at Thr169. J. Cell Sci. 2008; 121:3002–3014. PubMed PMC
Zoltner M., Krienitz N., Field M.C., Kramer S.. Comparative proteomics of the two T. brucei pabps suggests that PABP2 controls bulk mRNA. PLoS Negl. Trop. Dis. 2018; 12:e0006679. PubMed PMC
Zoltner M., Pino R.C.D., Field M.C.. Sorting the muck from the brass: analysis of protein complexes and cell lysates. Methods Mol. Biol. 2020; 2116:645–653. PubMed
Obado S.O., Field M.C., Chait B.T., Rout M.P.. High-efficiency isolation of nuclear envelope protein complexes from trypanosomes. Methods Mol. Biol. 2016; 1411:67–80. PubMed
Mureev S., Kovtun O., Nguyen U.T.T., Alexandrov K.. Species-independent translational leaders facilitate cell-free expression. Nat. Biotechnol. 2009; 27:747–752. PubMed
Fridy P.C., Li Y., Keegan S., Thompson M.K., Nudelman I., Scheid J.F., Oeffinger M., Nussenzweig M.C., Fenyo D., Chait B.T.et al. .. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods. 2014; 11:1253–1260. PubMed PMC
Rappsilber J., Ishihama Y., Mann M.. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 2003; 75:663–670. PubMed
Freire E.R., Moura D.M.N., Bezerra M.J.R., Xavier C.C., Morais-Sobral M.C., Vashisht A.A., Rezende A.M., Wohlschlegel J.A., Sturm N.R., Neto O.P.et al. .. Trypanosoma brucei EIF4E2 cap-binding protein binds a homolog of the histone-mRNA stem-loop-binding protein. Curr. Genet. 2018; 64:821–839. PubMed
Rappsilber J., Mann M., Ishihama Y.. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007; 2:1896–1906. PubMed
Cox J., Mann M.. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008; 26:1367–1372. PubMed
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M.. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ*. Mol. Cell. Proteomics. 2014; 13:2513–2526. PubMed PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016; 13:731–740. PubMed
Potter S.C., Luciani A., Eddy S.R., Park Y., Lopez R., Finn R.D.. HMMER web server: 2018 update. Nucleic Acids Res. 2018; 46:W200–W204. PubMed PMC
Dean S., Sunter J.D., Wheeler R.J.. TrypTag.Org: a trypanosome genome-wide protein localisation resource. Trends Parasitol. 2017; 33:80–82. PubMed PMC
West S., Gromak N., Proudfoot N.J.. Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature. 2004; 432:522–525. PubMed
Ebenezer T.E., Zoltner M., Burrell A., Nenarokova A., Vanclová A.M.G.N., Prasad B., Soukal P., Santana-Molina C., O’Neill E., Nankissoor N.N.et al. .. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 2019; 17:11–23. PubMed PMC
Almo S.C., Bonanno J.B., Sauder J.M., Emtage S., Dilorenzo T.P., Malashkevich V., Wasserman S.R., Swaminathan S., Eswaramoorthy S., Agarwal R.et al. .. Structural genomics of protein phosphatases. J. Struct. Funct. Genomics. 2007; 8:121–140. PubMed PMC
Krissinel E., Henrick K.. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. 2004; 60:2256–2268. PubMed
Jinek M., Eulalio A., Lingel A., Helms S., Conti E., Izaurralde E.. The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. RNA. 2008; 14:1991–1998. PubMed PMC
Chang C.-T., Bercovich N., Loh B., Jonas S., Izaurralde E.. The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic Acids Res. 2014; 42:5217–5233. PubMed PMC
Braun J.E., Truffault V., Boland A., Huntzinger E., Chang C.-T., Haas G., Weichenrieder O., Coles M., Izaurralde E.. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nat. Struct. Mol. Biol. 2012; 19:1324–1331. PubMed
Charenton C., Graille M.. mRNA decapping: finding the right structures. Philos. Trans. Roy. Soc. B Biol. Sci. 2018; 373:20180164. PubMed PMC
Moreira C.M.N., Kelemen C.D., Obado S.O., Zahedifard F., Zhang N., Holetz F.B., Gauglitz L., Dallagiovanna B., Field M.C., Kramer S.et al. .. Impact of inherent biases built into proteomic techniques: proximity labeling and affinity capture compared. J. Biol. Chem. 2023; 299:102726. PubMed PMC
Goos C., Dejung M., Wehman A.M., M-Natus E., Schmidt J., Sunter J., Engstler M., Butter F., Kramer S.. Trypanosomes can initiate nuclear export co-transcriptionally. Nucleic Acids Res. 2019; 47:266–282. PubMed PMC
Lueong S., Merce C., Fischer B., Hoheisel J.D., Erben E.D.. Gene expression regulatory networks in Trypanosoma brucei: insights into the role of the mRNA-binding proteome. Mol. Microbiol. 2016; 100:457–471. PubMed
Lesénéchal M., Duret L., Cano M.I., Mortara R.A., Jolivet M., Camargo M.E., Silveira J.F., Paranhos-Baccalà G.. Cloning and characterization of a gene encoding a novel immunodominant antigen of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1997; 87:193–204. PubMed
Fritz M., Vanselow J., Sauer N., Lamer S., Goos C., Siegel T.N., Subota I., Schlosser A., Carrington M., Kramer S.. Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve. Nucleic Acids Res. 2015; 43:8013–8032. PubMed PMC
Kramer S., Kimblin N.C., Carrington M.. Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genomics (Electronic Resource). 2010; 11:283. PubMed PMC
Erben E.D., Fadda A., Lueong S., Hoheisel J.D., Clayton C.E.. A genome-wide tethering screen reveals novel potential post-transcriptional regulators in Trypanosoma brucei. PLoS Pathog. 2014; 10:e1004178. PubMed PMC
Jha B.A., Fadda A., Merce C., Mugo E., Droll D., Clayton C.E.. Depletion of the trypanosome Pumilio domain protein PUF2 or of some other essential proteins causes transcriptome changes related to coding region length. Eukaryot. Cell. 2014; 13:664–674. PubMed PMC
Kramer S., Queiroz R., Ellis L., Hoheisel J.D., Clayton C.E., Carrington M.. The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes. J. Cell Sci. 2010; 123:699–711. PubMed PMC
Wurm J.P., Sprangers R.. Dcp2: an mRNA decapping enzyme that adopts many different shapes and forms. Curr. Opin. Struct. Biol. 2019; 59:115–123. PubMed PMC
He F., Wu C., Jacobson A.. Dcp2 C-terminal cis-binding elements control selective targeting of the decapping enzyme by forming distinct decapping complexes. Elife. 2022; 11:e74410. PubMed PMC
HAILE S., ESTÉVEZ A.M., CLAYTON C.. A role for the exosome in the in vivo degradation of unstable mRNAs. RNA. 2003; 9:1491–1501. PubMed PMC
Sherwin T., Gull K.. The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos. Trans. Roy. Soc. Lond. Ser. B Biol. Sci. 1989; 323:573–588. PubMed
Woodward R., Gull K.. Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J. Cell Sci. 1990; 95:49–57. PubMed
Wheeler R.J., Scheumann N., Wickstead B., Gull K., Vaughan S.. Cytokinesis in Trypanosoma brucei differs between bloodstream and tsetse trypomastigote forms: implications for microtubule-based morphogenesis and mutant analysis. Mol. Microbiol. 2013; 90:1339–1355. PubMed PMC
Robinson D.R., Sherwin T., Ploubidou A., Byard E.H., Gull K.. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J. Cell Biol. 1995; 128:1163–1172. PubMed PMC
Kramer S. Simultaneous detection of mRNA transcription and decay intermediates by dual colour single mRNA FISH on subcellular resolution. Nucleic Acids Res. 2017; 45:e49–e49. PubMed PMC
Kramer S., Piper S., Estevez A.M., Carrington M.. Polycistronic trypanosome mRNAs are a target for the exosome. Mol. Biochem. Parasitol. 2016; 205:1–5. PubMed PMC
Yoon J.-H., Choi E.-J., Parker R.. Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae. J. Cell Biol. 2010; 189:813–827. PubMed PMC
Tenekeci U., Poppe M., Beuerlein K., Buro C., Müller H., Weiser H., Kettner-Buhrow D., Porada K., Newel D., Xu M.et al. .. K63-Ubiquitylation and TRAF6 pathways regulate mammalian P-body formation and mRNA decapping. Mol. Cell. 2016; 62:943–957. PubMed
Bannerman B.P., Kramer S., Dorrell R.G., Carrington M.. Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism. PLoS One. 2018; 13:e0192633-23. PubMed PMC
Charenton C., Gaudon-Plesse C., Fourati Z., Taverniti V., Back R., Kolesnikova O., Séraphin B., Graille M.. A unique surface on Pat1 C-terminal domain directly interacts with Dcp2 decapping enzyme and Xrn1 5′–3′ mRNA exonuclease in yeast. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:E9493–E9501. PubMed PMC
Fromm S.A., Truffault V., Kamenz J., Braun J.E., Hoffmann N.A., Izaurralde E., Sprangers R.. The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:dcp2 mRNA decapping complex. EMBO J. 2012; 31:279–290. PubMed PMC
McLennan A.G. Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both?. Cell. Mol. Life Sci. 2012; 70:373–385. PubMed PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M.et al. .. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019; 47:D442–D450. PubMed PMC
Holden J.M., Koreny L., Obado S., Ratushny A.V., Chen W.M., Chiang J.H., Kelly S., Chait B.T., Aitchison J.D., Rout M.P.et al. .. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Mol. Biol. Cell. 2014; 25:1421–1436. PubMed PMC
Holden J.M., Koreny L., Obado S., Ratushny A.V., Chen W.-M., Bart J.-M., Navarro M., Chait B.T., Aitchison J.D., Rout M.P.et al. .. Involvement in surface antigen expression by a moonlighting FG-repeat nucleoporin in trypanosomes. Mol. Biol. Cell. 2018; 29:1100–1110. PubMed PMC