Dinucleoside polyphosphates act as 5'-RNA caps in bacteria

. 2020 Feb 26 ; 11 (1) : 1052. [epub] 20200226

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32103016
Odkazy

PubMed 32103016
PubMed Central PMC7044304
DOI 10.1038/s41467-020-14896-8
PII: 10.1038/s41467-020-14896-8
Knihovny.cz E-zdroje

It has been more than 50 years since the discovery of dinucleoside polyphosphates (NpnNs) and yet their roles and mechanisms of action remain unclear. Here, we show that both methylated and non-methylated NpnNs serve as RNA caps in Escherichia coli. NpnNs are excellent substrates for T7 and E. coli RNA polymerases (RNAPs) and efficiently initiate transcription. We demonstrate, that the E. coli enzymes RNA 5'-pyrophosphohydrolase (RppH) and bis(5'-nucleosyl)-tetraphosphatase (ApaH) are able to remove the NpnN-caps from RNA. ApaH is able to cleave all NpnN-caps, while RppH is unable to cleave the methylated forms suggesting that the methylation adds an additional layer to RNA stability regulation. Our work introduces a different perspective on the chemical structure of RNA in prokaryotes and on the role of RNA caps. We bring evidence that small molecules, such as NpnNs are incorporated into RNA and may thus influence the cellular metabolism and RNA turnover.

Zobrazit více v PubMed

Cahová H, Winz M-L, Höfer K, Nübel G, Jäschke A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature. 2014;519:374. doi: 10.1038/nature14020. PubMed DOI

Chen YG, Kowtoniuk WE, Agarwal I, Shen Y, Liu DR. LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat. Chem. Biol. 2009;5:879. doi: 10.1038/nchembio.235. PubMed DOI PMC

Kowtoniuk WE, Shen Y, Heemstra JM, Agarwal I, Liu DR. A chemical screen for biological small molecule–RNA conjugates reveals CoA-linked RNA. Proc. Natl Acad. Sci. 2009;106:7768–7773. doi: 10.1073/pnas.0900528106. PubMed DOI PMC

McLennan AG. Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both? Cell. Mol. Life Sci. 2013;70:373–385. doi: 10.1007/s00018-012-1210-3. PubMed DOI PMC

Höfer K, et al. Structure and function of the bacterial decapping enzyme NudC. Nat. Chem. Biol. 2016;12:730. doi: 10.1038/nchembio.2132. PubMed DOI PMC

Zhang D, et al. Structural basis of prokaryotic NAD-RNA decapping by NudC. Cell Res. 2016;26:1062. doi: 10.1038/cr.2016.98. PubMed DOI PMC

Deana A, Celesnik H, Belasco JG. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature. 2008;451:355. doi: 10.1038/nature06475. PubMed DOI

Luciano DJ, Vasilyev N, Richards J, Serganov A, Belasco JG. A novel RNA phosphorylation state enables 5′ end-dependent degradation in Escherichia coli. Mol. Cell. 2017;67:44–54. e46. doi: 10.1016/j.molcel.2017.05.035. PubMed DOI PMC

Grudzien-Nogalska E, Kiledjian M. New insights into decapping enzymes and selective mRNA decay. Wiley Interdiscip. Rev. RNA. 2017;8:e1379. doi: 10.1002/wrna.1379. PubMed DOI PMC

Song, M.-G., Li, Y. & Kiledjian, M. Multiple mRNA decapping enzymes in mammalian cells. Mol. Cell40, 423-432 (2010). PubMed PMC

McLennan, A. G. Ap4a and Other Dinucleoside Polyphosphates (Taylor & Francis, 1992).

McLennan AG. The Nudix hydrolase superfamily. Cell. Mol. Life Sci. CMLS. 2006;63:123–143. doi: 10.1007/s00018-005-5386-7. PubMed DOI PMC

Zamecnik PG, Stephenson ML, Janeway CM, Randerath K. Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-sRNA synthetase. Biochem. Biophys. Res. Commun. 1966;24:91–97. doi: 10.1016/0006-291X(66)90415-3. PubMed DOI

McLennan AG. Dinucleoside polyphosphates—friend or foe? Pharmacol. Therapeutics. 2000;87:73–89. doi: 10.1016/S0163-7258(00)00041-3. PubMed DOI

Despotović D, et al. Diadenosine tetraphosphate (Ap4A) – an E. coli alarmone or a damage metabolite? FEBS J. 2017;284:2194–2215. doi: 10.1111/febs.14113. PubMed DOI

VanBogelen RA, Kelley PM, Neidhardt FC. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J. Bacteriol. 1987;169:26–32. doi: 10.1128/JB.169.1.26-32.1987. PubMed DOI PMC

Guranowski A. Studies on dinucleoside polyphosphates some intriguing biochemical, physiological, and medical aspects. J. Clin. Biochem. Nutr. 2000;28:177–189. doi: 10.3164/jcbn.28.177. DOI

Götz KH, et al. Formation of the alarmones diadenosine triphosphate and tetraphosphate by ubiquitin- and ubiquitin-like-activating enzymes. Cell Chem. Biol. 2019;26:1535–1543. e1535. doi: 10.1016/j.chembiol.2019.08.004. PubMed DOI

Walters RW, et al. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA. 2017;114:480–485. doi: 10.1073/pnas.1619369114. PubMed DOI PMC

Jiao X, et al. 5′ End nicotinamide adenine dinucleotide cap in human cells promotes rna decay through dxo-mediated deNADding. Cell. 2017;168:1015–1027.e1010. doi: 10.1016/j.cell.2017.02.019. PubMed DOI PMC

Adams JM, Cory S. Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature. 1975;255:28–33. doi: 10.1038/255028a0. PubMed DOI

Bird JG, et al. The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA. Nature. 2016;535:444. doi: 10.1038/nature18622. PubMed DOI PMC

Huang F. Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription. Nucleic Acids Res. 2003;31:e8–e8. doi: 10.1093/nar/gng008. PubMed DOI PMC

Durniak KJ, Bailey S, Steitz TA. The structure of a transcribing T7 RNA polymerase in transition from initiation to elongation. Science. 2008;322:553–557. doi: 10.1126/science.1163433. PubMed DOI PMC

JEMIELITY J, et al. Novel “anti-reverse” cap analogs with superior translational properties. RNA. 2003;9:1108–1122. doi: 10.1261/rna.5430403. PubMed DOI PMC

Barvík I, Rejman D, Šanderová H, Panova N, Krásný L. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiol. Rev. 2016;41:131–138. PubMed

Vvedenskaya IO, et al. CapZyme-seq comprehensively defines promoter-sequence determinants for RNA 5′ capping with NAD+ Mol. Cell. 2018;70:553–564. e559. doi: 10.1016/j.molcel.2018.03.014. PubMed DOI PMC

Lee PC, Bochner BR, Ames BN. AppppA, heat-shock stress, and cell oxidation. Proc. Natl Acad. Sci. 1983;80:7496–7500. doi: 10.1073/pnas.80.24.7496. PubMed DOI PMC

Bessman, M. J. et al. The gene, ygdP, associated with the invasiveness of Escherichia coli K1, designates a nudix hydrolase (Orf 176) active on Adenosine (5’) pentaphospho (5’) adenosine. J. Biol. Chem.276, 37834–37838 (2001). PubMed

Guranowski A, Jakubowski H, Holler E. Catabolism of diadenosine 5’,5”‘-P1,P4-tetraphosphate in procaryotes. Purification and properties of diadenosine 5’,5”‘-P1,P4-tetraphosphate (symmetrical) pyrophosphohydrolase from Escherichia coli K12. J. Biol. Chem. 1983;258:14784–14789. PubMed

Foley, P. L., Hsieh, P.-k., Luciano, D. J. & Belasco, J. G. Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH. J. Biol. Chem.290, 9478–9486 (2015). PubMed PMC

Kröger C, et al. An infection-relevant transcriptomic compendium for <em>Salmonella enterica</em> Serovar Typhimurium. Cell Host Microbe. 2013;14:683–695. doi: 10.1016/j.chom.2013.11.010. PubMed DOI

Mauer J, et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature. 2016;541:371. doi: 10.1038/nature21022. PubMed DOI PMC

Luciano DJ, Levenson-Palmer R, Belasco JG. Stresses that raise Np4A levels induce protective nucleoside tetraphosphate capping of bacterial RNA. Mol. Cell. 2019;75:957–966. e958. doi: 10.1016/j.molcel.2019.05.031. PubMed DOI PMC

Rasband, W. S. ImageJ. U. S. National Institutes of Health (Bethesda, Maryland, USA, 1997–2018).

Qi Y, Hulett FM. PhoP~P and RNA polymerase σA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP~P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol. 1998;28:1187–1197. doi: 10.1046/j.1365-2958.1998.00882.x. PubMed DOI

Oslovsky VE, Drenichev MS, Mikhailov SN. Regioselective 1-N-alkylation and rearrangement of adenosine derivatives. Nucleosides, Nucleotides Nucleic Acids. 2015;34:475–499. doi: 10.1080/15257770.2015.1016169. PubMed DOI

Jones JW, Robins RK. Purine nucleosides. III. Methylation studies of certain naturally occurring purine nucleosides. J. Am. Chem. Soc. 1963;85:193–201. doi: 10.1021/ja00885a019. DOI

Moreau C, et al. Aberrant cyclization affords a C-6 modified cyclic adenosine 5′-diphosphoribose analogue with biological activity in Jurkat T cells. J. Med. Chem. 2012;55:1478–1489. doi: 10.1021/jm201127y. PubMed DOI PMC

Graham SM, Macaya DJ, Sengupta RN, Turner KB. cADPR analogues: effect of an adenosine 2‘- or 3‘-methoxy group on conformation. Org. Lett. 2004;6:233–236. doi: 10.1021/ol036152r. PubMed DOI

Goh GB, Hodas NO, Vishnu A. Deep learning for computational chemistry. J. Comput. Chem. 2017;38:1291–1307. doi: 10.1002/jcc.24764. PubMed DOI

Alarcos N, Cohen B, Ziółek M, Douhal A. Photochemistry and photophysics in silica-based materials: ultrafast and single molecule spectroscopy observation. Chem. Rev. 2017;117:13639–13720. doi: 10.1021/acs.chemrev.7b00422. PubMed DOI

Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA. Striking plasticity of CRISPR-Cas9 and key role of non-target DNA, as revealed by molecular simulations. ACS Cent. Sci. 2016;2:756–763. doi: 10.1021/acscentsci.6b00218. PubMed DOI PMC

Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI

Wang J, et al. Twin defect derived growth of atomically thin MoS2 dendrites. ACS Nano. 2018;12:635–643. doi: 10.1021/acsnano.7b07693. PubMed DOI

Yang Q, et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 2018;140:1715–1724. doi: 10.1021/jacs.7b10334. PubMed DOI

Shupanov R, Chertovich A, Kos P. Micellar polymerization: computer simulations by dissipative particle dynamics. J. Comput. Chem. 2018;39:1275–1284. doi: 10.1002/jcc.25194. PubMed DOI

Gaussian 09, Revision A.02 (2016).

A. Case, et al. AMBER (University of California, San Francisco, 2016).

DeLano WL. Pymol: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002;40:82–92.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Mysterious World of Non-Canonical Caps - What We Know and Why We Need New Sequencing Techniques

. 2025 Feb 01 ; 26 (3) : e202400604. [epub] 20241027

HIV-1 Infection Reduces NAD Capping of Host Cell snRNA and snoRNA

. 2024 Jun 21 ; 19 (6) : 1243-1249. [epub] 20240515

If the 5' cap fits (wear it) - Non-canonical RNA capping

. 2024 Jan ; 21 (1) : 1-13. [epub] 20240715

A unique mRNA decapping complex in trypanosomes

. 2023 Aug 11 ; 51 (14) : 7520-7540.

Arabidopsis thaliana NudiXes have RNA-decapping activity

. 2023 Mar 08 ; 4 (3) : 223-228. [epub] 20230109

Crystal structure of SARS-CoV-2 nsp10-nsp16 in complex with small molecule inhibitors, SS148 and WZ16

. 2022 Sep ; 31 (9) : e4395.

Coronaviral RNA-methyltransferases: function, structure and inhibition

. 2022 Jan 25 ; 50 (2) : 635-650.

β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck

. 2021 Oct 11 ; 49 (18) : 10221-10234.

Substrate Specificity of SARS-CoV-2 Nsp10-Nsp16 Methyltransferase

. 2021 Aug 30 ; 13 (9) : . [epub] 20210830

It's the Little Things (in Viral RNA)

. 2020 Sep 15 ; 11 (5) : . [epub] 20200915

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...