Dinucleoside polyphosphates act as 5'-RNA caps in bacteria
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32103016
PubMed Central
PMC7044304
DOI
10.1038/s41467-020-14896-8
PII: 10.1038/s41467-020-14896-8
Knihovny.cz E-zdroje
- MeSH
- bakteriální RNA genetika MeSH
- dinukleosidfosfáty genetika MeSH
- DNA řízené RNA-polymerasy genetika MeSH
- Escherichia coli genetika MeSH
- hydrolasy působící na anhydridy kyselin metabolismus MeSH
- konformace nukleové kyseliny MeSH
- metylace MeSH
- proteiny z Escherichia coli metabolismus MeSH
- RNA čepičky genetika MeSH
- stabilita RNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ApaH protein, E coli MeSH Prohlížeč
- bakteriální RNA MeSH
- dinukleosidfosfáty MeSH
- DNA řízené RNA-polymerasy MeSH
- hydrolasy působící na anhydridy kyselin MeSH
- proteiny z Escherichia coli MeSH
- RNA čepičky MeSH
- RppH protein, E coli MeSH Prohlížeč
It has been more than 50 years since the discovery of dinucleoside polyphosphates (NpnNs) and yet their roles and mechanisms of action remain unclear. Here, we show that both methylated and non-methylated NpnNs serve as RNA caps in Escherichia coli. NpnNs are excellent substrates for T7 and E. coli RNA polymerases (RNAPs) and efficiently initiate transcription. We demonstrate, that the E. coli enzymes RNA 5'-pyrophosphohydrolase (RppH) and bis(5'-nucleosyl)-tetraphosphatase (ApaH) are able to remove the NpnN-caps from RNA. ApaH is able to cleave all NpnN-caps, while RppH is unable to cleave the methylated forms suggesting that the methylation adds an additional layer to RNA stability regulation. Our work introduces a different perspective on the chemical structure of RNA in prokaryotes and on the role of RNA caps. We bring evidence that small molecules, such as NpnNs are incorporated into RNA and may thus influence the cellular metabolism and RNA turnover.
Zobrazit více v PubMed
Cahová H, Winz M-L, Höfer K, Nübel G, Jäschke A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature. 2014;519:374. doi: 10.1038/nature14020. PubMed DOI
Chen YG, Kowtoniuk WE, Agarwal I, Shen Y, Liu DR. LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat. Chem. Biol. 2009;5:879. doi: 10.1038/nchembio.235. PubMed DOI PMC
Kowtoniuk WE, Shen Y, Heemstra JM, Agarwal I, Liu DR. A chemical screen for biological small molecule–RNA conjugates reveals CoA-linked RNA. Proc. Natl Acad. Sci. 2009;106:7768–7773. doi: 10.1073/pnas.0900528106. PubMed DOI PMC
McLennan AG. Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both? Cell. Mol. Life Sci. 2013;70:373–385. doi: 10.1007/s00018-012-1210-3. PubMed DOI PMC
Höfer K, et al. Structure and function of the bacterial decapping enzyme NudC. Nat. Chem. Biol. 2016;12:730. doi: 10.1038/nchembio.2132. PubMed DOI PMC
Zhang D, et al. Structural basis of prokaryotic NAD-RNA decapping by NudC. Cell Res. 2016;26:1062. doi: 10.1038/cr.2016.98. PubMed DOI PMC
Deana A, Celesnik H, Belasco JG. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature. 2008;451:355. doi: 10.1038/nature06475. PubMed DOI
Luciano DJ, Vasilyev N, Richards J, Serganov A, Belasco JG. A novel RNA phosphorylation state enables 5′ end-dependent degradation in Escherichia coli. Mol. Cell. 2017;67:44–54. e46. doi: 10.1016/j.molcel.2017.05.035. PubMed DOI PMC
Grudzien-Nogalska E, Kiledjian M. New insights into decapping enzymes and selective mRNA decay. Wiley Interdiscip. Rev. RNA. 2017;8:e1379. doi: 10.1002/wrna.1379. PubMed DOI PMC
Song, M.-G., Li, Y. & Kiledjian, M. Multiple mRNA decapping enzymes in mammalian cells. Mol. Cell40, 423-432 (2010). PubMed PMC
McLennan, A. G. Ap4a and Other Dinucleoside Polyphosphates (Taylor & Francis, 1992).
McLennan AG. The Nudix hydrolase superfamily. Cell. Mol. Life Sci. CMLS. 2006;63:123–143. doi: 10.1007/s00018-005-5386-7. PubMed DOI PMC
Zamecnik PG, Stephenson ML, Janeway CM, Randerath K. Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-sRNA synthetase. Biochem. Biophys. Res. Commun. 1966;24:91–97. doi: 10.1016/0006-291X(66)90415-3. PubMed DOI
McLennan AG. Dinucleoside polyphosphates—friend or foe? Pharmacol. Therapeutics. 2000;87:73–89. doi: 10.1016/S0163-7258(00)00041-3. PubMed DOI
Despotović D, et al. Diadenosine tetraphosphate (Ap4A) – an E. coli alarmone or a damage metabolite? FEBS J. 2017;284:2194–2215. doi: 10.1111/febs.14113. PubMed DOI
VanBogelen RA, Kelley PM, Neidhardt FC. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J. Bacteriol. 1987;169:26–32. doi: 10.1128/JB.169.1.26-32.1987. PubMed DOI PMC
Guranowski A. Studies on dinucleoside polyphosphates some intriguing biochemical, physiological, and medical aspects. J. Clin. Biochem. Nutr. 2000;28:177–189. doi: 10.3164/jcbn.28.177. DOI
Götz KH, et al. Formation of the alarmones diadenosine triphosphate and tetraphosphate by ubiquitin- and ubiquitin-like-activating enzymes. Cell Chem. Biol. 2019;26:1535–1543. e1535. doi: 10.1016/j.chembiol.2019.08.004. PubMed DOI
Walters RW, et al. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA. 2017;114:480–485. doi: 10.1073/pnas.1619369114. PubMed DOI PMC
Jiao X, et al. 5′ End nicotinamide adenine dinucleotide cap in human cells promotes rna decay through dxo-mediated deNADding. Cell. 2017;168:1015–1027.e1010. doi: 10.1016/j.cell.2017.02.019. PubMed DOI PMC
Adams JM, Cory S. Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature. 1975;255:28–33. doi: 10.1038/255028a0. PubMed DOI
Bird JG, et al. The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA. Nature. 2016;535:444. doi: 10.1038/nature18622. PubMed DOI PMC
Huang F. Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription. Nucleic Acids Res. 2003;31:e8–e8. doi: 10.1093/nar/gng008. PubMed DOI PMC
Durniak KJ, Bailey S, Steitz TA. The structure of a transcribing T7 RNA polymerase in transition from initiation to elongation. Science. 2008;322:553–557. doi: 10.1126/science.1163433. PubMed DOI PMC
JEMIELITY J, et al. Novel “anti-reverse” cap analogs with superior translational properties. RNA. 2003;9:1108–1122. doi: 10.1261/rna.5430403. PubMed DOI PMC
Barvík I, Rejman D, Šanderová H, Panova N, Krásný L. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiol. Rev. 2016;41:131–138. PubMed
Vvedenskaya IO, et al. CapZyme-seq comprehensively defines promoter-sequence determinants for RNA 5′ capping with NAD+ Mol. Cell. 2018;70:553–564. e559. doi: 10.1016/j.molcel.2018.03.014. PubMed DOI PMC
Lee PC, Bochner BR, Ames BN. AppppA, heat-shock stress, and cell oxidation. Proc. Natl Acad. Sci. 1983;80:7496–7500. doi: 10.1073/pnas.80.24.7496. PubMed DOI PMC
Bessman, M. J. et al. The gene, ygdP, associated with the invasiveness of Escherichia coli K1, designates a nudix hydrolase (Orf 176) active on Adenosine (5’) pentaphospho (5’) adenosine. J. Biol. Chem.276, 37834–37838 (2001). PubMed
Guranowski A, Jakubowski H, Holler E. Catabolism of diadenosine 5’,5”‘-P1,P4-tetraphosphate in procaryotes. Purification and properties of diadenosine 5’,5”‘-P1,P4-tetraphosphate (symmetrical) pyrophosphohydrolase from Escherichia coli K12. J. Biol. Chem. 1983;258:14784–14789. PubMed
Foley, P. L., Hsieh, P.-k., Luciano, D. J. & Belasco, J. G. Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH. J. Biol. Chem.290, 9478–9486 (2015). PubMed PMC
Kröger C, et al. An infection-relevant transcriptomic compendium for <em>Salmonella enterica</em> Serovar Typhimurium. Cell Host Microbe. 2013;14:683–695. doi: 10.1016/j.chom.2013.11.010. PubMed DOI
Mauer J, et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature. 2016;541:371. doi: 10.1038/nature21022. PubMed DOI PMC
Luciano DJ, Levenson-Palmer R, Belasco JG. Stresses that raise Np4A levels induce protective nucleoside tetraphosphate capping of bacterial RNA. Mol. Cell. 2019;75:957–966. e958. doi: 10.1016/j.molcel.2019.05.031. PubMed DOI PMC
Rasband, W. S. ImageJ. U. S. National Institutes of Health (Bethesda, Maryland, USA, 1997–2018).
Qi Y, Hulett FM. PhoP~P and RNA polymerase σA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP~P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol. 1998;28:1187–1197. doi: 10.1046/j.1365-2958.1998.00882.x. PubMed DOI
Oslovsky VE, Drenichev MS, Mikhailov SN. Regioselective 1-N-alkylation and rearrangement of adenosine derivatives. Nucleosides, Nucleotides Nucleic Acids. 2015;34:475–499. doi: 10.1080/15257770.2015.1016169. PubMed DOI
Jones JW, Robins RK. Purine nucleosides. III. Methylation studies of certain naturally occurring purine nucleosides. J. Am. Chem. Soc. 1963;85:193–201. doi: 10.1021/ja00885a019. DOI
Moreau C, et al. Aberrant cyclization affords a C-6 modified cyclic adenosine 5′-diphosphoribose analogue with biological activity in Jurkat T cells. J. Med. Chem. 2012;55:1478–1489. doi: 10.1021/jm201127y. PubMed DOI PMC
Graham SM, Macaya DJ, Sengupta RN, Turner KB. cADPR analogues: effect of an adenosine 2‘- or 3‘-methoxy group on conformation. Org. Lett. 2004;6:233–236. doi: 10.1021/ol036152r. PubMed DOI
Goh GB, Hodas NO, Vishnu A. Deep learning for computational chemistry. J. Comput. Chem. 2017;38:1291–1307. doi: 10.1002/jcc.24764. PubMed DOI
Alarcos N, Cohen B, Ziółek M, Douhal A. Photochemistry and photophysics in silica-based materials: ultrafast and single molecule spectroscopy observation. Chem. Rev. 2017;117:13639–13720. doi: 10.1021/acs.chemrev.7b00422. PubMed DOI
Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA. Striking plasticity of CRISPR-Cas9 and key role of non-target DNA, as revealed by molecular simulations. ACS Cent. Sci. 2016;2:756–763. doi: 10.1021/acscentsci.6b00218. PubMed DOI PMC
Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI
Wang J, et al. Twin defect derived growth of atomically thin MoS2 dendrites. ACS Nano. 2018;12:635–643. doi: 10.1021/acsnano.7b07693. PubMed DOI
Yang Q, et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 2018;140:1715–1724. doi: 10.1021/jacs.7b10334. PubMed DOI
Shupanov R, Chertovich A, Kos P. Micellar polymerization: computer simulations by dissipative particle dynamics. J. Comput. Chem. 2018;39:1275–1284. doi: 10.1002/jcc.25194. PubMed DOI
Gaussian 09, Revision A.02 (2016).
A. Case, et al. AMBER (University of California, San Francisco, 2016).
DeLano WL. Pymol: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002;40:82–92.
The Mysterious World of Non-Canonical Caps - What We Know and Why We Need New Sequencing Techniques
HIV-1 Infection Reduces NAD Capping of Host Cell snRNA and snoRNA
If the 5' cap fits (wear it) - Non-canonical RNA capping
A unique mRNA decapping complex in trypanosomes
Arabidopsis thaliana NudiXes have RNA-decapping activity
Coronaviral RNA-methyltransferases: function, structure and inhibition
β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck
Substrate Specificity of SARS-CoV-2 Nsp10-Nsp16 Methyltransferase