Arabidopsis thaliana NudiXes have RNA-decapping activity

. 2023 Mar 08 ; 4 (3) : 223-228. [epub] 20230109

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36908703

Recent discoveries of various noncanonical RNA caps, such as dinucleoside polyphosphates (Np n N), coenzyme A (CoA), and nicotinamide adenine dinucleotide (NAD) in all domains of life have led to a revision of views on RNA cap function and metabolism. Enzymes from the NudiX family capable of hydrolyzing a polyphosphate backbone attached to a nucleoside are the strongest candidates for degradation of noncanonically capped RNA. The model plant organism Arabidopsis thaliana encodes as many as 28 NudiX enzymes. For most of them, only in vitro substrates in the form of small molecules are known. In our study, we focused on four A. thaliana NudiX enzymes (AtNUDT6, AtNUDT7, AtNUDT19 and AtNUDT27), and we studied whether these enzymes can cleave RNA capped with Np n Ns (Ap2-5A, Gp3-4G, Ap3-5G, m7Gp3G, m7Gp3A), CoA, ADP-ribose, or NAD(H). While AtNUDT19 preferred NADH-RNA over other types of capped RNA, AtNUDT6 and AtNUDT7 preferentially cleaved Ap4A-RNA. The most powerful decapping enzyme was AtNUDT27, which cleaved almost all types of capped RNA at a tenfold lower concentration than the other enzymes. We also compared cleavage efficiency of each enzyme on free small molecules with RNA capped with corresponding molecules. We found that AtNUDT6 prefers free Ap4A, while AtNUDT7 preferentially cleaved Ap4A-RNA. These findings show that NudiX enzymes may act as RNA-decapping enzymes in A. thaliana and that other noncanonical RNA caps such as Ap4A and NADH should be searched for in plant RNA.

Zobrazit více v PubMed

Boccaletto P. Machnicka M. A. Purta E. Piątkowski P. Bagiński B. Wirecki T. K. de Crécy-Lagard V. Ross R. Limbach P. A. Kotter A. Helm M. Bujnicki J. M. Nucleic Acids Res. 2017;46:D303–D307. doi: 10.1093/nar/gkx1030. PubMed DOI PMC

Cahová H. Winz M.-L. Höfer K. Nübel G. Jäschke A. Nature. 2014;519:374. doi: 10.1038/nature14020. PubMed DOI

Wang Y. Li S. Zhao Y. You C. Le B. Gong Z. Mo B. Xia Y. Chen X. Proc. Natl. Acad. Sci. 2019;116:12094–12102. doi: 10.1073/pnas.1903682116. PubMed DOI PMC

Jiao X. Doamekpor S. K. Bird J. G. Nickels B. E. Tong L. Hart R. P. Kiledjian M. Cell. 2017;168:1015–1027.e1010. doi: 10.1016/j.cell.2017.02.019. PubMed DOI PMC

Ruiz-Larrabeiti O., Benoni R., Zemlianski V., Hanišáková N., Schwarz M., Brezovská B., Benoni B., Hnilicová J., Kaberdin V. R., Cahová H., Vítězová M., Převorovský M. and Krásný L., bioRxiv, 2021, Preprint, 2021.2012.2014.47259510.1101/2021.12.14.472595 DOI

Bird J. G. Basu U. Kuster D. Ramachandran A. Grudzien-Nogalska E. Towheed A. Wallace D. C. Kiledjian M. Temiakov D. Patel S. S. Ebright R. H. Nickels B. E. eLife. 2018;7:e42179. doi: 10.7554/eLife.42179. PubMed DOI PMC

Kowtoniuk W. E. Shen Y. Heemstra J. M. Agarwal I. Liu D. R. Proc. Natl. Acad. Sci. 2009;106:7768–7773. doi: 10.1073/pnas.0900528106. PubMed DOI PMC

Wang J. Alvin Chew B. L. Lai Y. Dong H. Xu L. Balamkundu S. Cai W. M. Cui L. Liu C. F. Fu X.-Y. Lin Z. Shi P.-Y. Lu T. K. Luo D. Jaffrey S. R. Dedon P. C. Nucleic Acids Res. 2019;47:e130–e130. doi: 10.1093/nar/gkz751. PubMed DOI PMC

Hudeček O. Benoni R. Reyes-Gutierrez P. E. Culka M. Šanderová H. Hubálek M. Rulíšek L. Cvačka J. Krásný L. Cahová H. Nat. Commun. 2020;11:1052. doi: 10.1038/s41467-020-14896-8. PubMed DOI PMC

Rapaport E. Zamecnik P. C. Proc. Natl. Acad. Sci. 1976;73:3984–3988. doi: 10.1073/pnas.73.11.3984. PubMed DOI PMC

Zamecnik P. Anal. Biochem. 1983;134:1–10. doi: 10.1016/0003-2697(83)90255-5. PubMed DOI

Zamecnik P. G. Stephenson M. L. Janeway C. M. Randerath K. Biochem. Biophys. Res. Commun. 1966;24:91–97. doi: 10.1016/0006-291X(66)90415-3. PubMed DOI

Pietrowska-Borek M. Nuc K. Zielezińska M. Guranowski A. FEBS Open Bio. 2011;1:1–6. doi: 10.1016/j.fob.2011.10.002. PubMed DOI PMC

Yoshimura K. Shigeoka S. Biosci., Biotechnol., Biochem. 2015;79:354–366. doi: 10.1080/09168451.2014.987207. PubMed DOI

McLennan A. G. Cell. Mol. Life Sci. CMLS. 2006;63:123–143. doi: 10.1007/s00018-005-5386-7. PubMed DOI PMC

Song M. G. Bail S. Kiledjian M. RNA. 2013;19:390–399. doi: 10.1261/rna.037309.112. PubMed DOI PMC

Kramer S. McLennan A. G. Wiley Interdiscip. Rev.: RNA. 2019;10:e1511. PubMed

Grudzien-Nogalska E. Jiao X. Song M. G. Hart R. P. Kiledjian M. RNA. 2016;22:773–781. doi: 10.1261/rna.055699.115. PubMed DOI PMC

Song M.-G. Li Y. Kiledjian M. Mol. Cell. 2010;40:423–432. doi: 10.1016/j.molcel.2010.10.010. PubMed DOI PMC

Grudzien-Nogalska E. Wu Y. Jiao X. Cui H. Mateyak M. K. Hart R. P. Tong L. Kiledjian M. Nat. Chem. Biol. 2019;15:575–582. doi: 10.1038/s41589-019-0293-7. PubMed DOI PMC

Sharma S. Grudzien-Nogalska E. Hamilton K. Jiao X. Yang J. Tong L. Kiledjian M. Nucleic Acids Res. 2020;48:6788–6798. doi: 10.1093/nar/gkaa402. PubMed DOI PMC

Ogawa T. Yoshimura K. Miyake H. Ishikawa K. Ito D. Tanabe N. Shigeoka S. Plant Physiol. 2008;148:1412–1424. doi: 10.1104/pp.108.128413. PubMed DOI PMC

Ogawa T. Ueda Y. Yoshimura K. Shigeoka S. J. Biol. Chem. 2005;280:25277–25283. doi: 10.1074/jbc.M503536200. PubMed DOI

Olejnik K. Murcha M. W. Whelan J. Kraszewska E. FEBS J. 2007;274:4877–4885. doi: 10.1111/j.1742-4658.2007.06009.x. PubMed DOI

Ogawa T. Muramoto K. Takada R. Nakagawa S. Shigeoka S. Yoshimura K. Plant Cell Physiol. 2016;57:1295–1308. doi: 10.1093/pcp/pcw078. PubMed DOI

Zhang H. Zhong H. Zhang S. Shao X. Ni M. Cai Z. Chen X. Xia Y. Proc. Natl. Acad. Sci. 2019;116:12072–12077. doi: 10.1073/pnas.1903683116. PubMed DOI PMC

Studier F. W. Protein Expression Purif. 2005;41:207–234. doi: 10.1016/j.pep.2005.01.016. PubMed DOI

Rasband W. S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2018

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...