Arabidopsis thaliana NudiXes have RNA-decapping activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36908703
PubMed Central
PMC9994101
DOI
10.1039/d2cb00213b
PII: d2cb00213b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Recent discoveries of various noncanonical RNA caps, such as dinucleoside polyphosphates (Np n N), coenzyme A (CoA), and nicotinamide adenine dinucleotide (NAD) in all domains of life have led to a revision of views on RNA cap function and metabolism. Enzymes from the NudiX family capable of hydrolyzing a polyphosphate backbone attached to a nucleoside are the strongest candidates for degradation of noncanonically capped RNA. The model plant organism Arabidopsis thaliana encodes as many as 28 NudiX enzymes. For most of them, only in vitro substrates in the form of small molecules are known. In our study, we focused on four A. thaliana NudiX enzymes (AtNUDT6, AtNUDT7, AtNUDT19 and AtNUDT27), and we studied whether these enzymes can cleave RNA capped with Np n Ns (Ap2-5A, Gp3-4G, Ap3-5G, m7Gp3G, m7Gp3A), CoA, ADP-ribose, or NAD(H). While AtNUDT19 preferred NADH-RNA over other types of capped RNA, AtNUDT6 and AtNUDT7 preferentially cleaved Ap4A-RNA. The most powerful decapping enzyme was AtNUDT27, which cleaved almost all types of capped RNA at a tenfold lower concentration than the other enzymes. We also compared cleavage efficiency of each enzyme on free small molecules with RNA capped with corresponding molecules. We found that AtNUDT6 prefers free Ap4A, while AtNUDT7 preferentially cleaved Ap4A-RNA. These findings show that NudiX enzymes may act as RNA-decapping enzymes in A. thaliana and that other noncanonical RNA caps such as Ap4A and NADH should be searched for in plant RNA.
Charles University Faculty of Science Department of Cell Biology Viničná 7 Prague 2 Czechia
Institute of Organic Chemistry and Biochemistry of the CAS Flemingovo náměstí 2 Prague 6 Czechia
Zobrazit více v PubMed
Boccaletto P. Machnicka M. A. Purta E. Piątkowski P. Bagiński B. Wirecki T. K. de Crécy-Lagard V. Ross R. Limbach P. A. Kotter A. Helm M. Bujnicki J. M. Nucleic Acids Res. 2017;46:D303–D307. doi: 10.1093/nar/gkx1030. PubMed DOI PMC
Cahová H. Winz M.-L. Höfer K. Nübel G. Jäschke A. Nature. 2014;519:374. doi: 10.1038/nature14020. PubMed DOI
Wang Y. Li S. Zhao Y. You C. Le B. Gong Z. Mo B. Xia Y. Chen X. Proc. Natl. Acad. Sci. 2019;116:12094–12102. doi: 10.1073/pnas.1903682116. PubMed DOI PMC
Jiao X. Doamekpor S. K. Bird J. G. Nickels B. E. Tong L. Hart R. P. Kiledjian M. Cell. 2017;168:1015–1027.e1010. doi: 10.1016/j.cell.2017.02.019. PubMed DOI PMC
Ruiz-Larrabeiti O., Benoni R., Zemlianski V., Hanišáková N., Schwarz M., Brezovská B., Benoni B., Hnilicová J., Kaberdin V. R., Cahová H., Vítězová M., Převorovský M. and Krásný L., bioRxiv, 2021, Preprint, 2021.2012.2014.47259510.1101/2021.12.14.472595 DOI
Bird J. G. Basu U. Kuster D. Ramachandran A. Grudzien-Nogalska E. Towheed A. Wallace D. C. Kiledjian M. Temiakov D. Patel S. S. Ebright R. H. Nickels B. E. eLife. 2018;7:e42179. doi: 10.7554/eLife.42179. PubMed DOI PMC
Kowtoniuk W. E. Shen Y. Heemstra J. M. Agarwal I. Liu D. R. Proc. Natl. Acad. Sci. 2009;106:7768–7773. doi: 10.1073/pnas.0900528106. PubMed DOI PMC
Wang J. Alvin Chew B. L. Lai Y. Dong H. Xu L. Balamkundu S. Cai W. M. Cui L. Liu C. F. Fu X.-Y. Lin Z. Shi P.-Y. Lu T. K. Luo D. Jaffrey S. R. Dedon P. C. Nucleic Acids Res. 2019;47:e130–e130. doi: 10.1093/nar/gkz751. PubMed DOI PMC
Hudeček O. Benoni R. Reyes-Gutierrez P. E. Culka M. Šanderová H. Hubálek M. Rulíšek L. Cvačka J. Krásný L. Cahová H. Nat. Commun. 2020;11:1052. doi: 10.1038/s41467-020-14896-8. PubMed DOI PMC
Rapaport E. Zamecnik P. C. Proc. Natl. Acad. Sci. 1976;73:3984–3988. doi: 10.1073/pnas.73.11.3984. PubMed DOI PMC
Zamecnik P. Anal. Biochem. 1983;134:1–10. doi: 10.1016/0003-2697(83)90255-5. PubMed DOI
Zamecnik P. G. Stephenson M. L. Janeway C. M. Randerath K. Biochem. Biophys. Res. Commun. 1966;24:91–97. doi: 10.1016/0006-291X(66)90415-3. PubMed DOI
Pietrowska-Borek M. Nuc K. Zielezińska M. Guranowski A. FEBS Open Bio. 2011;1:1–6. doi: 10.1016/j.fob.2011.10.002. PubMed DOI PMC
Yoshimura K. Shigeoka S. Biosci., Biotechnol., Biochem. 2015;79:354–366. doi: 10.1080/09168451.2014.987207. PubMed DOI
McLennan A. G. Cell. Mol. Life Sci. CMLS. 2006;63:123–143. doi: 10.1007/s00018-005-5386-7. PubMed DOI PMC
Song M. G. Bail S. Kiledjian M. RNA. 2013;19:390–399. doi: 10.1261/rna.037309.112. PubMed DOI PMC
Kramer S. McLennan A. G. Wiley Interdiscip. Rev.: RNA. 2019;10:e1511. PubMed
Grudzien-Nogalska E. Jiao X. Song M. G. Hart R. P. Kiledjian M. RNA. 2016;22:773–781. doi: 10.1261/rna.055699.115. PubMed DOI PMC
Song M.-G. Li Y. Kiledjian M. Mol. Cell. 2010;40:423–432. doi: 10.1016/j.molcel.2010.10.010. PubMed DOI PMC
Grudzien-Nogalska E. Wu Y. Jiao X. Cui H. Mateyak M. K. Hart R. P. Tong L. Kiledjian M. Nat. Chem. Biol. 2019;15:575–582. doi: 10.1038/s41589-019-0293-7. PubMed DOI PMC
Sharma S. Grudzien-Nogalska E. Hamilton K. Jiao X. Yang J. Tong L. Kiledjian M. Nucleic Acids Res. 2020;48:6788–6798. doi: 10.1093/nar/gkaa402. PubMed DOI PMC
Ogawa T. Yoshimura K. Miyake H. Ishikawa K. Ito D. Tanabe N. Shigeoka S. Plant Physiol. 2008;148:1412–1424. doi: 10.1104/pp.108.128413. PubMed DOI PMC
Ogawa T. Ueda Y. Yoshimura K. Shigeoka S. J. Biol. Chem. 2005;280:25277–25283. doi: 10.1074/jbc.M503536200. PubMed DOI
Olejnik K. Murcha M. W. Whelan J. Kraszewska E. FEBS J. 2007;274:4877–4885. doi: 10.1111/j.1742-4658.2007.06009.x. PubMed DOI
Ogawa T. Muramoto K. Takada R. Nakagawa S. Shigeoka S. Yoshimura K. Plant Cell Physiol. 2016;57:1295–1308. doi: 10.1093/pcp/pcw078. PubMed DOI
Zhang H. Zhong H. Zhang S. Shao X. Ni M. Cai Z. Chen X. Xia Y. Proc. Natl. Acad. Sci. 2019;116:12072–12077. doi: 10.1073/pnas.1903683116. PubMed DOI PMC
Studier F. W. Protein Expression Purif. 2005;41:207–234. doi: 10.1016/j.pep.2005.01.016. PubMed DOI
Rasband W. S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2018