If the 5' cap fits (wear it) - Non-canonical RNA capping
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
OP JAC, RNA4THERAPY, CZ.02.01.01/00/22_008/0004575
Ministry of Education, Youth and Sports
101041374
HORIZON EUROPE European Research Council
PubMed
39007883
PubMed Central
PMC11253889
DOI
10.1080/15476286.2024.2372138
Knihovny.cz E-zdroje
- Klíčová slova
- NAD, RNA, RNA cap, RNA modifications, dinucleoside polyphosphate, epitranscriptomics,
- MeSH
- Bacteria genetika metabolismus MeSH
- lidé MeSH
- RNA čepičky * metabolismus chemie MeSH
- RNA chemie metabolismus genetika MeSH
- stabilita RNA MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- RNA čepičky * MeSH
- RNA MeSH
RNA capping is a prominent RNA modification that influences RNA stability, metabolism, and function. While it was long limited to the study of the most abundant eukaryotic canonical m7G cap, the field recently went through a large paradigm shift with the discovery of non-canonical RNA capping in bacteria and ultimately all domains of life. The repertoire of non-canonical caps has expanded to encompass metabolite caps, including NAD, FAD, CoA, UDP-Glucose, and ADP-ribose, alongside alarmone dinucleoside polyphosphate caps, and methylated phosphate cap-like structures. This review offers an introduction into the field, presenting a summary of the current knowledge about non-canonical RNA caps. We highlight the often still enigmatic biological roles of the caps together with their processing enzymes, focusing on the most recent discoveries. Furthermore, we present the methods used for the detection and analysis of these non-canonical RNA caps and thus provide an introduction into this dynamic new field.
Department of Cell Biology Charles University Faculty of Science Prague 2 Czechia
Institute of Organic Chemistry and Biochemistry of the CAS Prague 6 Czechia
Zobrazit více v PubMed
Schaefer M, Kapoor U, Jantsch MF.. Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol. 2017;7(5):170077. PubMed PMC
Lewis CJT, Pan T, Kalsotra A. RNA modifications and structures cooperate to guide RNA–protein interactions. Nat Rev Mol Cell Biol. 2017;18(3):202–210. PubMed PMC
Cappannini A, Ray A, Purta E, et al. MODOMICS: a database of RNA modifications and related information. 2023 update. Nucleic Acids Res. 2024;52(D1):D239–D244. PubMed PMC
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - enzymes and mechanisms. Biochim Biophys Acta, Mol Cell Res. 2016;1863(12):3125–3147. PubMed
Viegas SC, Silva IJ, Apura P, et al. Surprises in the 3'-end: ‘U’ can decide too! FEBS J. 2015;282(18):3489–3499. PubMed
Zigáčková D, Vaňáčová Š. The role of 3' end uridylation in RNA metabolism and cellular physiology. Philos Trans R Soc B. 2018;373(1762):20180171. PubMed PMC
Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med. 2020;52(3):400–408. PubMed PMC
Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation. Cell 2017;169(7):1187–1200. PubMed PMC
Ramanathan A, Robb GB, Chan S. H. mRNA capping: biological functions and applications. Nucleic Acids Res. 2016;44(16):7511–7526. PubMed PMC
Lindell TJ, Miura K. A blocked structure at the 5' terminus of mRNA from cytoplasmic polyhedrosis virus. Nature. 1975;253(5490):374–375. PubMed
Urushibara T, Furuichi Y, Nishimura C, et al. A modified structure at the 5'-terminus of mRNA of vaccinia virus. FEBS Lett. 1975;49(3):385–389. PubMed
Wei CM, Gershowitz A, Moss B. Methylated nucleotides block 5' terminus of HeLa cell messenger RNA. Cell. 1975;4(4):379–386. PubMed
Muthukrishnan S, Both GW, Furuichi Y, et al. 5'-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature. 1975. 1975;255(5503)33–37. PubMed
Furuichi Y, LaFiandra A, Shatkin AJ. 5'-Terminal structure and mRNA stability. Nature 1977;266(5599):235–239. PubMed
Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol. 2004;5(10):827–835. PubMed PMC
Sonenberg N, Morgan MA, Merrick WC, et al. A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5'-terminal cap in mRNA. Proc Nat Acad Sci. 1978;75(10):4843–4847. PubMed PMC
Lahudkar S, Shukla A, Bajwa P, et al. The mRNA cap-binding complex stimulates the formation of pre-initiation complex at the promoter via its interaction with Mot1p in vivo. Nucleic Acids Res. 2011;39(6):2188–2209. PubMed PMC
Lewis JD, Izaurralde E. The role of the cap structure in RNA processing and nuclear export. Eur J Biochem. 1997;247(2):461–469. PubMed
Lewis JD, Izaurralde E, Jarmolowski A, et al. A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5' splice site. Genes Dev. 1996;10(13):1683–1698. PubMed
Pabis M, Neufeld N, Steiner MC, et al. The nuclear cap-binding complex interacts with the U4/U6·U5 tri-snRNP and promotes spliceosome assembly in mammalian cells. RNA. 2013;19(8):1054–1063. PubMed PMC
Flaherty SM, Fortes P, Izaurralde E, et al. Participation of the nuclear cap binding complex in pre-mRNA 3’ processing. Proc Natl Acad Sci USA. 1997;94(22):11893–11898. PubMed PMC
Narita T, Yung TMC, Yamamoto J, et al. NELF Interacts with CBC and Participates in 3' End Processing of Replication-Dependent Histone mRNAs. Mol Cell. 2007;26(3):349–365. PubMed
Charenton C, Graille M. mRNA decapping: finding the right structures. Philos Trans R Soc B. 2018;373(1762):20180164. PubMed PMC
Mildvan AS, Xia Z, Azurmendi HF, et al. Structures and mechanisms of Nudix hydrolases. Arch Biochem Biophys. 2005;433(1):129–143. PubMed
Wang Z, Jiao X, Carr-Schmid A, et al. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci USA. 2002;99(20):12663–12668. PubMed PMC
Carreras-Puigvert J, Zitnik M, Jemth A-S, et al. A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family. Nat Commun. 2017;8(1):1–17. PubMed PMC
Mititelu MB, Hudeček O, Gozdek A, et al. Arabidopsis thaliana NudiXes have RNA-decapping activity. RSC Chem Biol. 2023;4(3):223–228. PubMed PMC
Sharma S, Grudzien-Nogalska E, Hamilton K, et al. Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs. Nucleic Acids Res. 2020;48(12):6788–6798. PubMed PMC
Nojima T, Hirose T, Kimura H, et al. The Interaction between Cap-binding Complex and RNA Export Factor Is Required for Intronless mRNA Export. J Biol Chem. 2007;282(21):15645–15651. PubMed
Leung DW, Amarasinghe GK. When your cap matters: structural insights into self vs non-self recognition of 5' RNA by immunomodulatory host proteins. Curr Opin Struct Biol. 2016;36:133. PubMed PMC
Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020;20(9):537–551. PubMed PMC
Drazkowska K, Tomecki R, Warminski M, et al. 2'- O -Methylation of the second transcribed nucleotide within the mRNA 5' cap impacts the protein production level in a cell-specific manner and contributes to RNA immune evasion. Nucleic Acids Res. 2022;50(16):9051–9071. PubMed PMC
Devarkar SC, Wang C, Miller MT, et al. Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc Natl Acad Sci USA. 2016;113(3):596–601. PubMed PMC
Galloway A, Cowling V. H. mRNA cap regulation in mammalian cell function and fate. Biochim Biophys Acta Gene Regul Mech. 2019;1862(3):270–279. PubMed PMC
Topisirovic I, Svitkin YV, Sonenberg N, et al. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev RNA. 2011;2(2):277–298. PubMed
Hung T, Wang Y, Lin MF, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43(7):621–629. PubMed PMC
Wu H, Yang L, Chen -L-L. The Diversity of Long Noncoding RNAs and Their Generation. Trends Genet. 2017;33(8):540–552. PubMed
Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957. PubMed PMC
Xie M, Li M, Vilborg A, et al. Mammalian 5'-capped microRNA precursors that generate a single microRNA. Cell. 2013;155(7):1568. PubMed PMC
Otsuka Y, Kedersha NL, Schoenberg DR. Identification of a cytoplasmic complex that adds a cap onto 5'-monophosphate RNA. Mol Cell Biol. 2009;29(8):2155–2167. PubMed PMC
Borden KLB, Culjkovic-Kraljacic B, Cowling VH. To cap it all off, again: dynamic capping and recapping of coding and non-coding RNAs to control transcript fate and biological activity. Cell Cycle. 2021;20(14):1347–1360. PubMed PMC
Mattaj IW. Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding. Cell. 1986;46(6):905–911. PubMed
Pánek J, Roithová A, Radivojević N, et al. The SMN complex drives structural changes in human snRNAs to enable snRNP assembly. Nat Commun 2023. 2023;14(1):1–18. PubMed PMC
Fischer U, Lührmann R. An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus. PubMed
Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 2014;15(2):108–121. PubMed PMC
Watkins NJ, Lemm I, Ingelfinger D, et al. Assembly and Maturation of the U3 snoRNP in the Nucleoplasm in a Large Dynamic Multiprotein Complex. Mol Cell. 2004;16(5):789–798. PubMed
Terns MP, Grimm C, Lund E, et al. A common maturation pathway for small nucleolar RNAs. EMBO J. 1995;14(19):4860–4871. PubMed PMC
Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol. 2007;8(3):209–220. PubMed
McCracken S, Fong N, Rosonina E, et al. 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 1997;11(24):3306. PubMed PMC
Hopper AK. Transfer RNA Post-Transcriptional Processing, Turnover, and Subcellular Dynamics in the Yeast PubMed PMC
Ohira T, Suzuki T. Precursors of tRNAs are stabilized by methylguanosine cap structures. Nat Chem Biol. 2016;12(8):648–655. PubMed
Devanathan SK, Debnath TK, Xhemalçe B. Facile detection of RNA phospho-methylation in cells and tissues. Methods Enzymol. 2021;658:49–72. PubMed PMC
Shimba S, Buckley B, Reddy R, et al. Cap structure of U3 small nucleolar RNA in animal and plant cells is different. gamma-Monomethyl phosphate cap structure in plant RNA. J Biol Chem. 1992;267(19):13772–13777. PubMed
Shumyatsky GP, Tillib SV, Kramerov DA. B2 RNA and 7SK RNA, RNA polymerase III transcripts, have a cap-like structure at their 5' end. Nucleic Acids Res. 1990;18(21):6347–6351. PubMed PMC
Jeronimo C, Forget D, Bouchard A, et al. Systematic Analysis of the Protein Interaction Network for the Human Transcription Machinery Reveals the Identity of the 7SK Capping Enzyme. Mol Cell. 2007;27(2):262–274. PubMed PMC
Cosgrove MS, Ding Y, Rennie WA, et al. The Bin3 RNA methyltransferase targets 7SK RNA to control transcription and translation. Wiley Interdiscip Rev RNA. 2012;3(5):633–647. PubMed PMC
Espinoza CA, Allen TA, Hieb AR, et al. B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol. 2004;11(9):822–829. PubMed
Bhattacharya R, Perumal K, Sinha K, et al. Methylphosphate Cap Structure in Small RNAs Reduces the Affinity of RNAs to La Protein. Gene Expr. 2002;10(5):243. PubMed PMC
Xhemalce B, Robson SC, Kouzarides T. Human RNA Methyltransferase BCDIN3D Regulates MicroRNA Processing. Cell. 2012;151(2):278–288. PubMed PMC
Yao L, Chi Y, Hu X, et al. Elevated expression of RNA methyltransferase BCDIN3D predicts poor prognosis in breast cancer. Oncotarget. 2016;7(33):53895–53902. PubMed PMC
Reinsborough CW, et al. BCDIN3D RNA methyltransferase stimulates Aldolase C expression and glycolysis through let-7 microRNA in breast cancer cells. Oncogene 2021. 2021;40(13):2395–2406. PubMed PMC
Jin M, Wang L, Zheng T, et al. MiR-195-3p inhibits cell proliferation in cervical cancer by targeting BCDIN3D. J Reprod Immunol. 2021;143:103211. PubMed
Martinez A, Yamashita S, Nagaike T, et al. Human BCDIN3D monomethylates cytoplasmic histidine transfer RNA. Nucleic Acids Res. 2017;45(9):5423–5436. PubMed PMC
Tomita K, Liu Y. Human BCDIN3D is a cytoplasmic tRNAHis-specific 5'-monophosphate methyltransferase. Front Genet. 2018;9. PubMed PMC
Liu Y, Martinez A, Yamashita S, et al. Crystal structure of human cytoplasmic tRNAHis-specific 5'-monomethylphosphate capping enzyme. Nucleic Acids Res. 2020;48(3):1572–1582. PubMed PMC
Malygin AG, Shemyakin MF. Adenosine, NAD and FAD can initiate template-dependent RNA a synthesis catalyzed by PubMed
Huang F. Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription. Nucleic Acids Res. 2003;31(3):e8–e8. PubMed PMC
Bird JG, Zhang Y, Tian Y, et al. The mechanism of RNA 5' capping with NAD+, NADH and desphospho-CoA. Nature. 2016;535(7612):444–447. PubMed PMC
Kowtoniuk WE, Shen Y, Heemstra JM, et al. A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA. Proc Natl Acad Sci USA. 2009;106(19):7768–7773. PubMed PMC
Chen YG, Kowtoniuk WE, Agarwal I, et al. LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat Chem Biol. 2009;5(12):879–881. PubMed PMC
Deana A, Celesnik H, Belasco JG. The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal. Nature. 2008;451(7176):355–358. PubMed
Cahová H, Winz ML, Höfer K, et al. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature. 2014;519(7543)374–377. PubMed
Gomes-Filho JV, Breuer R, Morales-Filloy HG, et al. Identification of NAD-RNA species and ADPR-RNA decapping in Archaea. Nat Commun. 2023;14(1):1–12. PubMed PMC
Walters RW, Matheny T, Mizoue LS, et al. Identification of NAD + capped mRNAs in PubMed PMC
Jiao X, Doamekpor SK, Bird JG, et al. 5'-end NAD+ cap in human cells promotes RNA decay through DXO-mediated deNADding. Cell. 2017;168(6):1015. PubMed PMC
Wang Y, Li S, Zhao Y, et al. NAD + -capped RNAs are widespread in the Arabidopsis transcriptome and can probably be translated. Proc Natl Acad Sci USA. 2019;116(24):12094–12102. PubMed PMC
Vvedenskaya IO, Bird JG, Zhang Y, et al. CapZyme-Seq Comprehensively Defines Promoter-Sequence Determinants for RNA 5' Capping with NAD+. Mol Cell. 2018;70(3):553–564.e9. PubMed PMC
Zhang H, Zhong H, Zhang S, et al. NAD tagSeq reveals that NAD + -capped RNAs are mostly produced from a large number of protein-coding genes in Arabidopsis. Proc Natl Acad Sci USA. 2019;116(24):12072–12077. PubMed PMC
Zhang H, Zhong H, Wang X, et al. Use of NAD tagSeq II to identify growth phase-dependent alterations in E. coli RNA NAD + capping. Proc Natl Acad Sci USA. 2021;118(14):e2026183118. PubMed PMC
Hu H, Flynn N, Zhang H, et al. SPAAC-NAD-seq, a sensitive and accurate method to profile NAD + -capped transcripts. Proc Natl Acad Sci USA. 2021;118(13):e2025595118. PubMed PMC
Niu K, Zhang J, Ge S, et al. ONE-seq: epitranscriptome and gene-specific profiling of NAD-capped RNA. Nucleic Acids Res. 2023;51(2):e12–e12. PubMed PMC
Wulf MG, Buswell J, Chan SH, et al. The yeast scavenger decapping enzyme DcpS and its application for in vitro RNA recapping. Scientific Rep. 2019;9(1):1–9. PubMed PMC
Sharma S, Yang J, Favate J, et al. NADcapPro and circNC: methods for accurate profiling of NAD and non-canonical RNA caps in eukaryotes. Commun Biol. 2023;6(1):1–14. PubMed PMC
Möhler M, Jäschke A. Future Perspectives for the Identification and Sequencing of Nicotinamide Adenine Dinucleotide-Capped RNAs. Acc Chem Res. 2023;56(21):3000–3009. PubMed PMC
Julius C, Salgado PS, Yuzenkova Y. Metabolic cofactors NADH and FAD act as non-canonical initiating substrates for a primase and affect replication primer processing in vitro. Nucleic Acids Res. 2020;48(13):7298–7306. PubMed PMC
Wolfram-Schauerte M, Pozhydaieva N, Grawenhoff J, et al. A viral ADP-ribosyltransferase attaches RNA chains to host proteins. Nature. 2023;620(7976):1054–1062. PubMed PMC
Novick RP, Ross HF, Projan SJ, et al. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 1993;12(10):3967–3975. PubMed PMC
Morales-Filloy HG, Zhang Y, Nübel G, et al. The 5=NAD Cap of RNAIII modulates toxin production in staphylococcus aureus isolates. J Bacteriol. 2020;202(6). doi: 10.1128/JB.00591-19. PubMed DOI PMC
Frindert J, Zhang Y, Nübel G, et al. Identification, Biosynthesis, and Decapping of NAD-Capped RNAs in B. subtilis. Cell Rep. 2018;24(7):1890–1901.e8. PubMed
Ruiz-Larrabeiti O, Benoni R, Zemlianski V, et al. NAD+ capping of RNA in Archaea and Mycobacteria. bioRxiv. 2021;2021–12. doi: 10.1101/2021.12.14.472595 DOI
Wang X, et al. Toll/interleukin-1 receptor (TIR) domain-containing proteins have NAD-RNA decapping activity. Nat Commun 2024. 2024;15(1):1–14. PubMed PMC
Zhang Y, et al. Extensive 5'-surveillance guards against non-canonical NAD-caps of nuclear mRNAs in yeast. Nat Commun 2020. 2020;11(1):1–17. PubMed PMC
Bird JG, Basu U, Kuster D, et al. Highly efficient 5' capping of mitochondrial RNA with nad + and NADH by yeast and human mitochondrial RNA polymerase. Elife. 2018;7. doi: 10.7554/eLife.42179. PubMed DOI PMC
Sharma S, Yang J, Grudzien-Nogalska E, et al. Xrn1 is a deNADding enzyme modulating mitochondrial NAD-capped RNA. Nat Commun. 2022;13(1):1–11. PubMed PMC
Yu X, Willmann MR, Vandivier LE, et al. Messenger RNA 5' NAD+ Capping Is a Dynamic Regulatory Epitranscriptome Mark That Is Required for Proper Response to Abscisic Acid in Arabidopsis. Dev Cell. 2021;56(1):125–140.e6. PubMed PMC
Xiao C, Li K, Hua J, et al. Arabidopsis DXO1 activates RNMT1 to methylate the mRNA guanosine cap. Nat Commun. 2023;14(1):1–12. PubMed PMC
Abele F, Höfer K, Bernhard P, et al. A Novel NAD-RNA Decapping Pathway Discovered by Synthetic Light-Up NAD-RNAs. Biomolecules. 2020;10(4):513. PubMed PMC
Piedra-Quintero ZL, Wilson Z, Nava P, et al. CD38: an Immunomodulatory Molecule in Inflammation and Autoimmunity. Front Immunol. 2020;11:597959. PubMed PMC
Lu L, Wang J, Yang Q, et al. The role of CD38 in HIV infection. AIDS Res Ther. 2021;18(1):1–14. PubMed PMC
Benoni B, Potužník JF, Škríba A, et al. HIV-1 Infection Reduces NAD Capping of Host Cell snRNA and snoRNA. ACS Chem Biol. 2024;19(6):1243–1249. PubMed PMC
Covarrubias AJ, Perrone R, Grozio A, et al. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2020;22(2):119–141. PubMed PMC
Löcherer C, Bühler N, Lafrenz P, et al. Staphylococcus aureus small RNAs possess Dephospho-CoA 5'-Caps, but No CoAlation Marks. Noncoding RNA. 2022;8(4):46. PubMed PMC
Zhou W, Guan Z, Zhao F, et al. Structural insights into dpCoA-RNA decapping by NudC. RNA Biol. 2021;18:244. PubMed PMC
Spangler JR, Huang F. The E. coli NudL enzyme is a Nudix hydrolase that cleaves CoA and its derivatives. bioRxiv. 2020;2020. doi: 10.1101/2020.01.31.929182 DOI
Ravasco JMJM, Faustino H, Trindade A, et al. Bioconjugation with Maleimides: a Useful Tool for Chemical Biology. Chem Eur J. 2019;25(1):43–59. PubMed
Shao X, Zhang H, Zhu Z, et al. DpCoA tagSeq: barcoding dpCoA-Capped RNA for Direct Nanopore Sequencing via Maleimide-Thiol Reaction. Anal Chem. 2023;95(29):11124–11131. PubMed PMC
Vinther J. Comment on ‘DpCoA tagSeq: barcoding dpCoA-Capped RNA for Direct Nanopore Sequencing via Maleimide-Thiol Reaction’. Anal Chem. 2024;96(1):606–609. PubMed PMC
Shao X, Zhang H, Zhu Z, et al. Response to the Comment on “DpCoA tagSeq: barcoding dpCoA-Capped RNA for Direct Nanopore Sequencing via Maleimide-Thiol Reaction”. Anal Chem. 2023;96(1):610–613. PubMed
Sapkota K, Lucas JK, Faulkner JW, et al. Post-transcriptional capping generates coenzyme A-linked RNA. RNA Biol. 2024;21(1):1–12. PubMed PMC
Wang J, Alvin Chew BL, Lai Y, et al. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res. 2019;47(20):e130–e130. PubMed PMC
Doamekpor SK, Grudzien-Nogalska E, Mlynarska-Cieslak A, et al. DXO/Rai1 enzymes remove 5'-end FAD and dephospho-CoA caps on RNAs. Nucleic Acids Res. 2020;48(11):6136–6148. PubMed PMC
Sharma S, Yang J, Doamekpor SK, et al. Identification of a novel deFADding activity in human, yeast and bacterial 5' to 3' exoribonucleases. Nucleic Acids Res. 2022;50(15):8807–8817. PubMed PMC
Cai Z, Liang TJ, Luo G. Effects of Mutations of the Initiation Nucleotides on Hepatitis C Virus RNA Replication in the Cell. J Virol. 2004;78(7):3633–3643. PubMed PMC
Marceau CD, Puschnik AS, Majzoub K, et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature. 2016;535(7610):159–163. PubMed PMC
Sherwood AV, Rivera-Rangel LR, Ryberg LA, et al. Hepatitis C virus RNA is 5'-capped with flavin adenine dinucleotide. Nature. 2023;619(7971):811–818. PubMed PMC
McLennan AG. Dinucleoside polyphosphates—friend or foe?. Pharmacol Ther. 2000;87(2–3):73–89. PubMed
Giammarinaro PI, Young MKM, Steinchen W, et al. Diadenosine tetraphosphate regulates biosynthesis of GTP in PubMed PMC
Zegarra V, Mais C-N, Freitag J, et al. The mysterious diadenosine tetraphosphate (AP4A). MicroLife. 2023;4:1–8. PubMed PMC
Hudeček O, et al. Dinucleoside polyphosphates act as 5'-RNA caps in bacteria. Nat Commun. 2020;11(1):1–11. PubMed PMC
Benoni R, Culka M, Hudeček O, et al. Dinucleoside Polyphosphates as RNA Building Blocks with Pairing Ability in Transcription Initiation. ACS Chem Biol. 2020;15(7):1765–1772. PubMed
Levenson-Palmer R, Luciano DJ, Vasilyev N, et al. A distinct RNA recognition mechanism governs Np 4 decapping by RppH. Proc Natl Acad Sci USA. 2022;119(6):e2117318119. PubMed PMC
Luciano DJ, Levenson-Palmer R, Belasco JG. Stresses that Raise Np4A Levels Induce Protective Nucleoside Tetraphosphate Capping of Bacterial RNA. Mol Cell. 2019;75(5):957–966.e8. PubMed PMC
Chakravarty AK, Shuman S. RNA 3'-Phosphate Cyclase (RtcA) Catalyzes Ligase-like Adenylylation of DNA and RNA 5'-Monophosphate Ends. J Biol Chem. 2011;286(6):4117–4122. PubMed PMC
Zhelkovsky AM, McReynolds LA. Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase - engineering a thermostable ATP independent enzyme. BMC Mol Biol. 2012;13(1):1–10. PubMed PMC
František Potužník J, Nešuta O, Škríba A, et al. Diadenosine Tetraphosphate (AP4A) Serves as a 5' RNA Cap in Mammalian Cells. Angew Chem. 2024;63(6):e202314951. PubMed
Julius C, Yuzenkova Y. Bacterial RNA polymerase caps RNA with various cofactors and cell wall precursors. Nucleic Acids Res. 2017;45(14):8282–8290. PubMed PMC
Mirelman D. A rapid and simple procedure for the preparation of the two bacterial cell wall peptidoglycan nucleotide precursors labeled in their amino sugars. Anal Biochem. 1976;70(2):424–429. PubMed
Roeben A, Plitzko JM, Körner R, et al. Structural basis for subunit assembly in UDP-glucose pyrophosphorylase from PubMed
Idris F, Muharram SH, Diah S. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy. Arch Virol. 2016;161(7):1751. PubMed PMC
Hu J, Gao Q, Yang Y, et al. Hexosamine biosynthetic pathway promotes the antiviral activity of SAMHD1 by enhancing O-GlcNAc transferase-mediated protein O-GlcNAcylation. Theranostics. 2021;11(2):805. PubMed PMC
Ik F, Motzkus NA, Brandl L, et al. Identification and in vitro characterization of UDP-GlcNAc-RNA cap-modifying and decapping enzymes. Nucleic Acids Res. 2024;52(10):5438–5450. PubMed PMC
Carter M, Jemth A-S, Carreras-Puigvert J, et al. Human NUDT22 Is a UDP-Glucose/Galactose hydrolase exhibiting a unique structural fold. Structure. 2018;26(2):295–303.e6. PubMed
Lüscher B, Bütepage M, Eckei L, et al. ADP-Ribosylation, a multifaceted posttranslational modification involved in the control of cell physiology in health and disease. Chem Rev. 2018;118(3):1092–1136. PubMed
Munir A, Banerjee A, Shuman S. NAD+-dependent synthesis of a 5'-phospho-ADP-ribosylated RNA/DNA cap by RNA 2'-phosphotransferase Tpt1. Nucleic Acids Res. 2018;46(18):9617–9624. PubMed PMC
Mikolčević P, Hloušek-Kasun A, Ahel I, et al. ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J. 2021;19:2366–2383. PubMed PMC
Munnur D, Bartlett E, Mikolčević P, et al. Reversible ADP-ribosylation of RNA. Nucleic Acids Res. 2019;47(11):5658–5669. PubMed PMC
Weixler L, Feijs KLH, Zaja R. ADP-ribosylation of RNA in mammalian cells is mediated by TRPT1 and multiple PARPs. Nucleic Acids Res. 2022;50(16):9426–9441. PubMed PMC
Singh R, Reddy M. Gamma-monomethyl phosphate: a cap structure in spliceosomal U6 small nuclear RNA. Proc Natl Acad Sci USA. 1989;86(21):8280–8283. PubMed PMC
Schweibenz BD, Solotchi M, Hanpude P, et al. RIG-I recognizes metabolite-capped RNAs as signaling ligands. Nucleic Acids Res. 2023;51(15):8102–8114. PubMed PMC