Crosstalk between Brassinosteroids and Ethylene during Plant Growth and under Abiotic Stress Conditions

. 2018 Oct 22 ; 19 (10) : . [epub] 20181022

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30360451

Grantová podpora
LO1204 Ministerstvo Školství, Mládeže a Tělovýchovy

Plant hormones through signaling networks mutually regulate several signaling and metabolic systems essential for both plant development and plant responses to different environmental stresses. Extensive research has enabled the main effects of all known phytohormones classes to be identified. Therefore, it is now possible to investigate the interesting topic of plant hormonal crosstalk more fully. In this review, we focus on the role of brassinosteroids and ethylene during plant growth and development especially flowering, ripening of fruits, apical hook development, and root and shoot growth. As well as it summarizes their interaction during various abiotic stress conditions.

Zobrazit více v PubMed

Druege U., Franken P., Hajirezaei M.R. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00381. PubMed DOI PMC

Oklestkova J., Rárová L., Kvasnica M., Strnad M. Brassinosteroids: Synthesis and biological activities. Phytochem. Rev. 2015;14:1053–1072. doi: 10.1007/s11101-015-9446-9. DOI

Verma V., Ravindran P., Kumar P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16 doi: 10.1186/s12870-016-0771-y. PubMed DOI PMC

Bleecker A.B., Kende H. Ethylene: A gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 2000;16:1–18. doi: 10.1146/annurev.cellbio.16.1.1. PubMed DOI

Aloni R., Aloni E., Langhans M., Ullrich C.I. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 2006;97:883–893. doi: 10.1093/aob/mcl027. PubMed DOI PMC

Swanson S., Gilroy S. ROS in plant development. Physiol. Plant. 2010;138:384–392. doi: 10.1111/j.1399-3054.2009.01313.x. PubMed DOI

Lv B., Tian H., Zhang F., Liu J., Lu S., Bai M., Li C., Ding Z. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLOS Genet. 2018;14 doi: 10.1371/journal.pgen.1007144. PubMed DOI PMC

Singh M., Gupta A., Laxmi A. Glucose control of root growth direction in Arabidopsis thaliana. J. Exp. Bot. 2014;65:2981–2993. doi: 10.1093/jxb/eru146. PubMed DOI PMC

Singh M., Gupta A., Laxmi A. Glucose and phytohormone interplay in controlling root directional growth in Arabidopsis. Plant Signal. Behav. 2014;9 doi: 10.4161/psb.29219. PubMed DOI PMC

Bergonci T., Silva-Filho M.C., Moura D.S. Antagonistic relationship between AtRALF1 and brassinosteroid regulates cellexpansion-related genes. Plant Signal. Behav. 2014;9 doi: 10.4161/15592324.2014.976146. PubMed DOI PMC

Park C.H., Kim T.W., Son S.H., Hwang J.Y., Lee S.C., Chang S.C., Kim S.H., Kim S.W., Kim S.K. Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana. Phytochemistry. 2010;71:380–387. doi: 10.1016/j.phytochem.2009.11.003. PubMed DOI

Son S.H., Chang S.C., Park C.H., Kim S.K. Ethylene negatively regulates EXPA5 expression in Arabidopsis thaliana. Physiol. Plant. 2012;144:254–262. doi: 10.1111/j.1399-3054.2011.01552.x. PubMed DOI

Chen I.J., Lo W.S., Chuang J.Y., Cheuh C.M., Fan Y.S., Lin L.C., Wu S.J., Wang L.C. A chemical genetics approach reveals a role of brassinolide and cellulose synthase in hypocotyl elongation of etiolated Arabidopsis seedlings. Plant Sci. 2013;209:46–57. doi: 10.1016/j.plantsci.2013.04.005. PubMed DOI

Vandenbussche F., Callebert P., Zadnikova P., Benkova E., Van Der Straeten D. Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. Am. J. Bot. 2013;100:215–225. doi: 10.3732/ajb.1200264. PubMed DOI

Mazzella M.A., Casal J.J., Muschietti J.P., Fox A.R. Hormonal networks involved in apical hook development in darkness and their response to light. Front. Plant Sci. 2014;5 doi: 10.3389/fpls.2014.00052. PubMed DOI PMC

Smet D., Žádníková P., Vandenbussche F., Benková E., Van Der Straeten D. Dynamic infrared imaging analysis of apical hook development in Arabidopsis: The case of brassinosteroids. New Phytol. 2014;202:1398–1411. doi: 10.1111/nph.12751. PubMed DOI

Papadopoulou E., Grumet R. Brassinosteriod-induced femaleness in cucumber and relationship to ethylene production. HortScience. 2005;40:1763–1767.

Manzano S., Martínez C., Megías Z., Gómez P., Garrido D., Jamilena M. The role of ethylene and brassinosteroids in the control of sex expression and flower development in Cucurbita pepo. Plant Growth Regul. 2011;65:213–221. doi: 10.1007/s10725-011-9589-7. DOI

Giovannoni J. Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001;52:725–749. doi: 10.1146/annurev.arplant.52.1.725. PubMed DOI

Zhu T., Tan W.R., Deng X.G., Zheng T., Zhang D.W., Lin H.H. Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biol. Tech. 2015;100:196–204. doi: 10.1016/j.postharvbio.2014.09.016. DOI

Guo Y., Shan W., Liang S., Wu C., Wei W., Chen J., Lu W., Kuang J. MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physiol. Plant. 2018 doi: 10.1111/ppl.12750. PubMed DOI

Ayub R.A., Reis L., Lopes P.Z., Bosetto L. Ethylene and brassinosteroid effect on strawberry ripening after field spray. Rev. Bras. Frutic. 2018;40 doi: 10.1590/0100-29452018544. DOI

Morgan P.W., Drew M.C. Ethylene and plant responses to stress. Physiol. Plantarum. 1997;100:620–630. doi: 10.1111/j.1399-3054.1997.tb03068.x. DOI

Müller M., Munné-Bosch S. Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiol. 2015;169:32–41. doi: 10.1104/pp.15.00677. PubMed DOI PMC

Fariduddin Q., Yusuf M., Ahmad I., Ahmad A. Brassinosteroids and their role in response of plants to abiotic stresses. Biol. Plant. 2014;58:9–17. doi: 10.1007/s10535-013-0374-5. DOI

Krishna P. Brassinosteroid-mediated stress responses. J. Plant Growth Regul. 2003;22:289–297. doi: 10.1007/s00344-003-0058-z. PubMed DOI

Wei L.J., Deng X.G., Zhu T., Zheng T., Li P.X., Wu J.Q., Zhang D.W., Lin H.H. Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00982. PubMed DOI PMC

Roelfsema M.R.G., Hedrich R. In the light of stomatal opening: New insights into ‘the Watergate’: Tansley review. New Phytol. 2005;167:665–691. doi: 10.1111/j.1469-8137.2005.01460.x. PubMed DOI

Shi C., Qi C., Ren H., Huang A., Hei S., She X. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. Plant J. 2015;82:280–301. doi: 10.1111/tpj.12815. PubMed DOI

Wang B., Zhang J., Xia X., Zhang W.H. Ameliorative effect of brassinosteroid and ethylene on germination of cucumber seeds in the presence of sodium chloride. Plant Growth Regul. 2011;65:407–413. doi: 10.1007/s10725-011-9595-9. DOI

Zhu T., Deng X., Zhou X., Zhu L., Zou L., Li P., Zhang D., Lin H. Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Sci. Rep. 2016;6 doi: 10.1038/srep35392. PubMed DOI PMC

Locato V., Cimini S., Gara L.D. Strategies to increase vitamin C in plants: From plant defense perspective to food biofortification. Front. Plant Sci. 2013;4 doi: 10.3389/fpls.2013.00152. PubMed DOI PMC

Mazorra Morales L.M., Senn M.E., Grozeff G.E.G., Fanello D.D., Carrión C.A., Núñez M., Bishop G.J., Bartoli C.G. Impact of brassinosteroids and ethylene on ascorbic acid accumulation in tomato leaves. Plant Physiol. Biochem. 2014;74:315–322. doi: 10.1016/j.plaphy.2013.11.021. PubMed DOI

Serna M., Coll Y., Zapata P.J., Botella M.Á., Pretel M.T., Amorós A. A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamines in lettuce plants. Sci. Hortic. 2015;185:105–112. doi: 10.1016/j.scienta.2015.01.005. DOI

Weller J.L., Foo E.M., Hecht V., Ridge S., Vander Schoor J.K., Reid J.B. Ethylene signaling influences light-regulated development in Pea. Plant Physiol. 2015;169:115–124. doi: 10.1104/pp.15.00164. PubMed DOI PMC

Ferguson B.J. Nodulation phenotypes of gibberellin and brassinosteroid mutants of Pea. Plant Physiol. 2005;138:2396–2405. doi: 10.1104/pp.105.062414. PubMed DOI PMC

Foo E., McAdam E.L., Weller J.L., Reid J.B. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. J. Exp. Bot. 2016;67:2413–2424. doi: 10.1093/jxb/erw047. PubMed DOI PMC

Lafi F.F., Alam I., Geurts R., Bisseling T., Bajic V.B., Hirt H., Saad M.M. Draft genome sequence of Enterobacter sp. Sa187, an endophytic bacterium isolated from the desert plant Indigofera argentea. Genome Announc. 2017;5 doi: 10.1128/genomeA.01638-16. PubMed DOI PMC

de Zélicourt A., Synek L., Saad M.M., Alzubaidy H., Jalal R., Xie Y., Andrés-Barrao C., Rolli E., Guerard F., Mariappan K.G., et al. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production. PLOS Genet. 2018;14:e1007273. doi: 10.1371/journal.pgen.1007273. PubMed DOI PMC

Tao J.J., Chen H.W., Ma B., Zhang W.K., Chen S.Y., Zhang J.S. The role of ethylene in plants under salinity stress. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.01059. PubMed DOI PMC

Kumar M., Choi J., An G., Kim S.R. Ectopic Expression of OsSta2 Enhances Salt Stress Tolerance in Rice. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00316. PubMed DOI PMC

Kim H., Hwang H., Hong J.W., Lee Y.N., Ahn I.P., Yoon I.S., Yoo S.D., Lee S., Lee S.C., Kim B.G. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J. Exp. Bot. 2012;63:1013–1024. doi: 10.1093/jxb/err338. PubMed DOI

Kumar M., Lee S.C., Kim J.Y., Kim S.J., Aye S.S., Kim S.R. Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.) J. Plant Biol. 2014;57:383–393. doi: 10.1007/s12374-014-0487-1. DOI

Lee S.C., Lee W.K., Ali A., Kumar M., Yang T.J., Song K. Genome-wide identification and classification of the AP2/EREBP gene family in the Cucurbitaceae species. Plant Br. Biotechnol. 2017;5:123–133. doi: 10.9787/PBB.2017.5.2.123. DOI

Lee S.C., Lee W.K., Ali A., Kumar M., Yang T.J., Song K. Genome-wide identification of the dehydrin genes in the Cucurbitaceae species. Plant Br. Biotechnol. 2017;5:282–292. doi: 10.9787/PBB.2017.5.4.282. DOI

Chen T., Yang Q., Zhang X., Ding W., Gruber M. An alfalfa (Medicago sativa L.) ethylene response factor gene, MsERF11, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Rep. 2012;31:1737–1746. doi: 10.1007/s00299-012-1287-z. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...