Crosstalk between Brassinosteroids and Ethylene during Plant Growth and under Abiotic Stress Conditions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LO1204
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30360451
PubMed Central
PMC6214044
DOI
10.3390/ijms19103283
PII: ijms19103283
Knihovny.cz E-zdroje
- Klíčová slova
- brassinosteroid, ethylene, plant growth, stress tolerance,
- MeSH
- brassinosteroidy metabolismus MeSH
- ethyleny metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- signální transdukce fyziologie MeSH
- vývoj rostlin fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- brassinosteroidy MeSH
- ethylene MeSH Prohlížeč
- ethyleny MeSH
Plant hormones through signaling networks mutually regulate several signaling and metabolic systems essential for both plant development and plant responses to different environmental stresses. Extensive research has enabled the main effects of all known phytohormones classes to be identified. Therefore, it is now possible to investigate the interesting topic of plant hormonal crosstalk more fully. In this review, we focus on the role of brassinosteroids and ethylene during plant growth and development especially flowering, ripening of fruits, apical hook development, and root and shoot growth. As well as it summarizes their interaction during various abiotic stress conditions.
Zobrazit více v PubMed
Druege U., Franken P., Hajirezaei M.R. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00381. PubMed DOI PMC
Oklestkova J., Rárová L., Kvasnica M., Strnad M. Brassinosteroids: Synthesis and biological activities. Phytochem. Rev. 2015;14:1053–1072. doi: 10.1007/s11101-015-9446-9. DOI
Verma V., Ravindran P., Kumar P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16 doi: 10.1186/s12870-016-0771-y. PubMed DOI PMC
Bleecker A.B., Kende H. Ethylene: A gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 2000;16:1–18. doi: 10.1146/annurev.cellbio.16.1.1. PubMed DOI
Aloni R., Aloni E., Langhans M., Ullrich C.I. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 2006;97:883–893. doi: 10.1093/aob/mcl027. PubMed DOI PMC
Swanson S., Gilroy S. ROS in plant development. Physiol. Plant. 2010;138:384–392. doi: 10.1111/j.1399-3054.2009.01313.x. PubMed DOI
Lv B., Tian H., Zhang F., Liu J., Lu S., Bai M., Li C., Ding Z. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLOS Genet. 2018;14 doi: 10.1371/journal.pgen.1007144. PubMed DOI PMC
Singh M., Gupta A., Laxmi A. Glucose control of root growth direction in Arabidopsis thaliana. J. Exp. Bot. 2014;65:2981–2993. doi: 10.1093/jxb/eru146. PubMed DOI PMC
Singh M., Gupta A., Laxmi A. Glucose and phytohormone interplay in controlling root directional growth in Arabidopsis. Plant Signal. Behav. 2014;9 doi: 10.4161/psb.29219. PubMed DOI PMC
Bergonci T., Silva-Filho M.C., Moura D.S. Antagonistic relationship between AtRALF1 and brassinosteroid regulates cellexpansion-related genes. Plant Signal. Behav. 2014;9 doi: 10.4161/15592324.2014.976146. PubMed DOI PMC
Park C.H., Kim T.W., Son S.H., Hwang J.Y., Lee S.C., Chang S.C., Kim S.H., Kim S.W., Kim S.K. Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana. Phytochemistry. 2010;71:380–387. doi: 10.1016/j.phytochem.2009.11.003. PubMed DOI
Son S.H., Chang S.C., Park C.H., Kim S.K. Ethylene negatively regulates EXPA5 expression in Arabidopsis thaliana. Physiol. Plant. 2012;144:254–262. doi: 10.1111/j.1399-3054.2011.01552.x. PubMed DOI
Chen I.J., Lo W.S., Chuang J.Y., Cheuh C.M., Fan Y.S., Lin L.C., Wu S.J., Wang L.C. A chemical genetics approach reveals a role of brassinolide and cellulose synthase in hypocotyl elongation of etiolated Arabidopsis seedlings. Plant Sci. 2013;209:46–57. doi: 10.1016/j.plantsci.2013.04.005. PubMed DOI
Vandenbussche F., Callebert P., Zadnikova P., Benkova E., Van Der Straeten D. Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. Am. J. Bot. 2013;100:215–225. doi: 10.3732/ajb.1200264. PubMed DOI
Mazzella M.A., Casal J.J., Muschietti J.P., Fox A.R. Hormonal networks involved in apical hook development in darkness and their response to light. Front. Plant Sci. 2014;5 doi: 10.3389/fpls.2014.00052. PubMed DOI PMC
Smet D., Žádníková P., Vandenbussche F., Benková E., Van Der Straeten D. Dynamic infrared imaging analysis of apical hook development in Arabidopsis: The case of brassinosteroids. New Phytol. 2014;202:1398–1411. doi: 10.1111/nph.12751. PubMed DOI
Papadopoulou E., Grumet R. Brassinosteriod-induced femaleness in cucumber and relationship to ethylene production. HortScience. 2005;40:1763–1767.
Manzano S., Martínez C., Megías Z., Gómez P., Garrido D., Jamilena M. The role of ethylene and brassinosteroids in the control of sex expression and flower development in Cucurbita pepo. Plant Growth Regul. 2011;65:213–221. doi: 10.1007/s10725-011-9589-7. DOI
Giovannoni J. Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001;52:725–749. doi: 10.1146/annurev.arplant.52.1.725. PubMed DOI
Zhu T., Tan W.R., Deng X.G., Zheng T., Zhang D.W., Lin H.H. Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biol. Tech. 2015;100:196–204. doi: 10.1016/j.postharvbio.2014.09.016. DOI
Guo Y., Shan W., Liang S., Wu C., Wei W., Chen J., Lu W., Kuang J. MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physiol. Plant. 2018 doi: 10.1111/ppl.12750. PubMed DOI
Ayub R.A., Reis L., Lopes P.Z., Bosetto L. Ethylene and brassinosteroid effect on strawberry ripening after field spray. Rev. Bras. Frutic. 2018;40 doi: 10.1590/0100-29452018544. DOI
Morgan P.W., Drew M.C. Ethylene and plant responses to stress. Physiol. Plantarum. 1997;100:620–630. doi: 10.1111/j.1399-3054.1997.tb03068.x. DOI
Müller M., Munné-Bosch S. Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiol. 2015;169:32–41. doi: 10.1104/pp.15.00677. PubMed DOI PMC
Fariduddin Q., Yusuf M., Ahmad I., Ahmad A. Brassinosteroids and their role in response of plants to abiotic stresses. Biol. Plant. 2014;58:9–17. doi: 10.1007/s10535-013-0374-5. DOI
Krishna P. Brassinosteroid-mediated stress responses. J. Plant Growth Regul. 2003;22:289–297. doi: 10.1007/s00344-003-0058-z. PubMed DOI
Wei L.J., Deng X.G., Zhu T., Zheng T., Li P.X., Wu J.Q., Zhang D.W., Lin H.H. Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00982. PubMed DOI PMC
Roelfsema M.R.G., Hedrich R. In the light of stomatal opening: New insights into ‘the Watergate’: Tansley review. New Phytol. 2005;167:665–691. doi: 10.1111/j.1469-8137.2005.01460.x. PubMed DOI
Shi C., Qi C., Ren H., Huang A., Hei S., She X. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. Plant J. 2015;82:280–301. doi: 10.1111/tpj.12815. PubMed DOI
Wang B., Zhang J., Xia X., Zhang W.H. Ameliorative effect of brassinosteroid and ethylene on germination of cucumber seeds in the presence of sodium chloride. Plant Growth Regul. 2011;65:407–413. doi: 10.1007/s10725-011-9595-9. DOI
Zhu T., Deng X., Zhou X., Zhu L., Zou L., Li P., Zhang D., Lin H. Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Sci. Rep. 2016;6 doi: 10.1038/srep35392. PubMed DOI PMC
Locato V., Cimini S., Gara L.D. Strategies to increase vitamin C in plants: From plant defense perspective to food biofortification. Front. Plant Sci. 2013;4 doi: 10.3389/fpls.2013.00152. PubMed DOI PMC
Mazorra Morales L.M., Senn M.E., Grozeff G.E.G., Fanello D.D., Carrión C.A., Núñez M., Bishop G.J., Bartoli C.G. Impact of brassinosteroids and ethylene on ascorbic acid accumulation in tomato leaves. Plant Physiol. Biochem. 2014;74:315–322. doi: 10.1016/j.plaphy.2013.11.021. PubMed DOI
Serna M., Coll Y., Zapata P.J., Botella M.Á., Pretel M.T., Amorós A. A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamines in lettuce plants. Sci. Hortic. 2015;185:105–112. doi: 10.1016/j.scienta.2015.01.005. DOI
Weller J.L., Foo E.M., Hecht V., Ridge S., Vander Schoor J.K., Reid J.B. Ethylene signaling influences light-regulated development in Pea. Plant Physiol. 2015;169:115–124. doi: 10.1104/pp.15.00164. PubMed DOI PMC
Ferguson B.J. Nodulation phenotypes of gibberellin and brassinosteroid mutants of Pea. Plant Physiol. 2005;138:2396–2405. doi: 10.1104/pp.105.062414. PubMed DOI PMC
Foo E., McAdam E.L., Weller J.L., Reid J.B. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. J. Exp. Bot. 2016;67:2413–2424. doi: 10.1093/jxb/erw047. PubMed DOI PMC
Lafi F.F., Alam I., Geurts R., Bisseling T., Bajic V.B., Hirt H., Saad M.M. Draft genome sequence of Enterobacter sp. Sa187, an endophytic bacterium isolated from the desert plant Indigofera argentea. Genome Announc. 2017;5 doi: 10.1128/genomeA.01638-16. PubMed DOI PMC
de Zélicourt A., Synek L., Saad M.M., Alzubaidy H., Jalal R., Xie Y., Andrés-Barrao C., Rolli E., Guerard F., Mariappan K.G., et al. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production. PLOS Genet. 2018;14:e1007273. doi: 10.1371/journal.pgen.1007273. PubMed DOI PMC
Tao J.J., Chen H.W., Ma B., Zhang W.K., Chen S.Y., Zhang J.S. The role of ethylene in plants under salinity stress. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.01059. PubMed DOI PMC
Kumar M., Choi J., An G., Kim S.R. Ectopic Expression of OsSta2 Enhances Salt Stress Tolerance in Rice. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00316. PubMed DOI PMC
Kim H., Hwang H., Hong J.W., Lee Y.N., Ahn I.P., Yoon I.S., Yoo S.D., Lee S., Lee S.C., Kim B.G. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J. Exp. Bot. 2012;63:1013–1024. doi: 10.1093/jxb/err338. PubMed DOI
Kumar M., Lee S.C., Kim J.Y., Kim S.J., Aye S.S., Kim S.R. Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.) J. Plant Biol. 2014;57:383–393. doi: 10.1007/s12374-014-0487-1. DOI
Lee S.C., Lee W.K., Ali A., Kumar M., Yang T.J., Song K. Genome-wide identification and classification of the AP2/EREBP gene family in the Cucurbitaceae species. Plant Br. Biotechnol. 2017;5:123–133. doi: 10.9787/PBB.2017.5.2.123. DOI
Lee S.C., Lee W.K., Ali A., Kumar M., Yang T.J., Song K. Genome-wide identification of the dehydrin genes in the Cucurbitaceae species. Plant Br. Biotechnol. 2017;5:282–292. doi: 10.9787/PBB.2017.5.4.282. DOI
Chen T., Yang Q., Zhang X., Ding W., Gruber M. An alfalfa (Medicago sativa L.) ethylene response factor gene, MsERF11, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Rep. 2012;31:1737–1746. doi: 10.1007/s00299-012-1287-z. PubMed DOI