Dynamic infrared imaging analysis of apical hook development in Arabidopsis: the case of brassinosteroids
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24611517
DOI
10.1111/nph.12751
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, apical hook, brassinosteroids (BRs), cross-talk, ethylene, infrared imaging, kinematics, light,
- MeSH
- Arabidopsis růst a vývoj fyziologie účinky záření MeSH
- brassinosteroidy metabolismus MeSH
- časové faktory MeSH
- ethyleny metabolismus MeSH
- infračervené záření MeSH
- regulátory růstu rostlin metabolismus MeSH
- semenáček růst a vývoj fyziologie účinky záření MeSH
- signální transdukce MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- brassinosteroidy MeSH
- ethylene MeSH Prohlížeč
- ethyleny MeSH
- regulátory růstu rostlin MeSH
Germination of Arabidopsis seeds in darkness induces apical hook development, based on a tightly regulated differential growth coordinated by a multiple hormone cross-talk. Here, we endeavoured to clarify the function of brassinosteroids (BRs) and cross-talk with ethylene in hook development. An automated infrared imaging system was developed to study the kinetics of hook development in etiolated Arabidopsis seedlings. To ascertain the photomorphogenic control of hook opening, the system was equipped with an automatic light dimmer. We demonstrate that ethylene and BRs are indispensable for hook formation and maintenance. Ethylene regulation of hook formation functions partly through BRs, with BR feedback inhibition of ethylene action. Conversely, BR-mediated extension of hook maintenance functions partly through ethylene. Furthermore, we revealed that a short light pulse is sufficient to induce rapid hook opening. Our dynamic infrared imaging system allows high-resolution, kinetic imaging of up to 112 seedlings in a single experimental run. At this high throughput, it is ideally suited to rapidly gain insight in pathway networks. We demonstrate that BRs and ethylene cooperatively regulate apical hook development in a phase-dependent manner. Furthermore, we show that light is a predominant regulator of hook opening, inhibiting ethylene- and BR-mediated postponement of hook opening.
Department of Plant Biotechnology and Bioinformatics Ghent University Gent Belgium
Department of Plant Systems Biology Vlaams Instituut voor Biotechnologie 9052 Gent Belgium
Institute of Science and Technology 3400 Klosterneuburg Austria
Laboratory of Functional Plant Biology Department of Physiology Ghent University 9000 Gent Belgium
Zobrazit více v PubMed
Abbas M, Alabadi D, Blàzquez M. 2013. Differential growth at the apical hook: all roads lead to auxin. Frontiers in Plant Science 4: 441-449.
Achard P, Vriezen WH, Van Der Straeten D, Harberd NP. 2003. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15: 2816-2825.
Alabadí D, Gallego-Bartolomé J, Orlando L, García-Carcel L, Rubio V, Martínez C, Frigerio M, Iglesias-Pedraz JM, Espinosa A, Deng XW et al. 2008. Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant Journal 53: 324-335.
Alabadí D, Gil J, Blázquez MA, García-Martínez JL. 2004. Gibberellins repress photomorphogenesis in darkness. Plant Physiology 134: 1050-1057.
Al-Sady B, Ni WM, Kircher S, Schäfer E, Quail PH. 2006. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasorne-mediated degradation. Molecular Cell 23: 439-446.
An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, Li M, Guo H. 2012. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Research 22: 915-927.
Arvidsson S, Pérez-Rodríguez P, Mueller-Roeber B. 2011. A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytologist 191: 895-907.
Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S. 2000. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiology 123: 93-99.
Basu P, Pal A, Lynch JP, Brown KM. 2007. A novel image-analysis technique for kinematic study of growth and curvature. Plant Physiology 145: 305-316.
Bauer D, Viczián A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KCS, Ádám E, Fejes E, Schäfer E et al. 2004. Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16: 1433-1445.
Belin E, Rousseau D, Rojas-Varela J, Demilly D, Wagner MH, Cathala MH, Dürr C. 2011. Thermography as non-invasive functional imaging for monitoring seedling growth. Computers and Electronics in Agriculture 79: 236-240.
Binder BM. 2007. Rapid kinetic analysis of ethylene growth responses in seedlings: new insights into ethylene signal transduction. Journal of Plant Growth Regulation 26: 131-142.
Binder BM, O'Malley RC, Wang WY, Moore JM, Parks BM, Spalding EP, Bleecker AB. 2004. Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. Plant Physiology 136: 2913-2920.
Binder BM, O'Malley RC, Wang WY, Zutz TC, Bleecker AB. 2006. Ethylene stimulates nutations that are dependent on the ETR1 receptor. Plant Physiology 142: 1690-1700.
Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Vanonckelen H, Vanmontagu M, Inzé D. 1995. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7: 1405-1419.
Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J. 2001. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13: 1499-1510.
Casal JJ, Fankhauser C, Coupland G, Blázquez MA. 2004. Signalling for developmental plasticity. Trends in Plant Science 9: 309-314.
Celenza JL, Grisafi PL, Fink GR. 1995. A pathway for lateral root-formation in Arabidopsis thaliana. Genes & Development 9: 2131-2142.
Chaudhury AM, Letham S, Craig S, Dennis ES. 1993. Amp1 - a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth constitutive photomorphogenesis and precocious flowering. Plant Journal 4: 907-916.
Chory J, Nagpal P, Peto CA. 1991. Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3: 445-459.
Clouse SD, Sasse JM. 1998. Brassinosteroids: essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology 49: 427-451.
Darwin C, Darwin F. 1881. The power of movement in plants. New York, NY, USA: D. Appleton and Co.
De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D. 2005. Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant and Cell Physiology 46: 827-836.
Degli Agosti R, Greppin H, Quirici G. 2002. Fluorescent light-independent computer-assisted imaging of shape changes and movements of Arabidopsis plants with digital cameras and infra-red light. Archives Des Sciences 55: 149-160.
Deng XW, Quail PH. 1999. Signalling in light-controlled development. Seminars in Cell & Developmental Biology 10: 121-129.
Deng ZP, Zhang X, Tang WQ, Oses-Prieto JA, Suzuki N, Gendron JM, Chen HJ, Guan SH, Chalkley RJ, Peterman TK et al. 2007. A proteomics study of brassinosteroid response in Arabidopsis. Molecular & Cellular Proteomics 6: 2058-2071.
Ecker JR. 1995. The ethylene signal-transduction pathway in plants. Science 268: 667-675.
Fankhauser C. 2001. The phytochromes, a family of Red/Far-red absorbing photoreceptors. Journal of Biological Chemistry 276: 11 453-11 456.
Franklin KA, Quail PH. 2010. Phytochrome functions in Arabidopsis development. Journal of Experimental Botany 61: 11-24.
Gallego-Bartolomé J, Arana MV, Vandenbussche F, Žádníková P, Minguet EG, Guardiola V, Van Der Straeten D, Benková E, Alabadí D, Blázquez MA. 2011. Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant Journal 67: 622-634.
Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Höfte H. 1997. Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiology 114: 295-305.
Gendron JM, Haque A, Gendron N, Chang T, Asami T, Wang ZY. 2008. Chemical genetic dissection of brassinosteroid-ethylene interaction. Molecular Plant 1: 368-379.
Guzmán P, Ecker JR. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2: 513-523.
Hansen M, Chae HS, Kieber JJ. 2009. Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant Journal 57: 606-614.
Harpham NVJ, Berry AW, Knee EM, Rovedahoyos G, Raskin I, Sanders IO, Smith AR, Wood CK, Hall MA. 1991. The effect of ethylene on the growth and development of wild-type and mutant Arabidopsis thaliana (L) Heynh. Annals of Botany 68: 55-61.
Hou YM, Von Arnim AG, Deng XW. 1993. A new class of Arabidopsis constitutive photomorphogenic genes involved in regulating cotyledon development. Plant Cell 5: 329-339.
Josse E-M, Halliday KJ. 2008. Skotomorphogenesis: the dark side of light signalling. Current Biology 18: 1144-1146.
Katsumi M. 1985. Interaction of a brassinosteroid with IAA and GA3 in the elongation of cucumber hypocotyl sections. Plant and Cell Physiology 26: 615-625.
Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T. 1996. Genetic evidence for an essential role of brassinosteroids in plant development. Plant Journal 9: 701-713.
Kendrick RE, Kronenberg GHM. 1994. Photomorphogenesis in plants, 2nd edn. Dordrecht, the Netherlands: Kluwer Academic.
King JJ, Stimart DP, Fisher RH, Bleecker AB. 1995. A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7: 2023-2037.
Klahre U, Noguchi T, Fujioka S, Takatsuto S, Yokota T, Nomura T, Yoshida S, Chua NH. 1998. The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell 10: 1677-1690.
Laxmi A, Paul LK, Peters JL, Khurana JP. 2004. Arabidopsis constitutive photomorphogenic mutant, bls1, displays altered brassinosteroid response and sugar sensitivity. Plant Molecular Biology 56: 185-201.
Lehman A, Black R, Ecker JR. 1996. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85: 183-194.
Leister D, Varotto C, Pesaresi P, Niwergall A, Salamini F. 1999. Large-scale evaluation of plant growth in Arabidopsis thaliana by non-invasive image analysis. Plant Physiology and Biochemistry 37: 671-678.
Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM, Ecker JR, Quail PH. 2008. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20: 337-352.
Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR. 2004. Convergence of signaling of differential cell growth pathways in the control of differential cell growth in Arabidopsis. Developmental Cell 7: 193-204.
Li JM, Nagpal P, Vitart V, McMorris TC, Chory J. 1996. A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398-401.
Lincoln C, Britton JH, Estelle M. 1990. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2: 1071-1080.
Liscum E, Hangarter RP. 1993. Light-stimulated apical hook opening in wild-type Arabidopsis thaliana seedlings. Plant Physiology 101: 567-572.
Mandava NB, Sasse JM, Yopp JH. 1981. Brassinolide, a growth-promoting steroidal lactone. II. Activity in selected gibberellin and cytokinin bioassays. Physiologia Plantarum 53: 453-461.
Mazzella MA, Arana MV, Staneloni RJ, Perelman S, Batiller MJR, Muschietti J, Cerdán PD, Chen KH, Sánchez RA, Zhu T et al. 2005. Phytochrome control of the Arabidopsis transcriptome anticipates seedling exposure to light. Plant Cell 17: 2507-2516.
Men Y, Yu Q, Chen Z, Wang J, Huang Y, Guo H. 2012. A high-throughput imaging system to quantitatively analyze the growth dynamics of plant seedlings. Integrative Biology 4: 945-952.
Miller ND, Parks BM, Spalding EP. 2007. Computer-vision analysis of seedling responses to light and gravity. Plant Journal 52: 374-381.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.
Müssig C, Fischer S, Altmann T. 2002. Brassinosteroid-regulated gene expression. Plant Physiology 129: 1241-1251.
Neff MM, Fankhauser C, Chory J. 2000. Light: an indicator of time and place. Genes & Development 14: 257-271.
Nemhauser JL, Mockler TC, Chory J. 2004. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. Plos Biology 2: 1460-1471.
Parks BM, Spalding EP. 1999. Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proceedings of the National Academy of Sciences, USA 96: 14 142-14 146.
Rabe C, Kutschera U. 1999. Rapid light-induced enhancement of sucrose catabolism in the apical hook of sunflower hypocotyls. Journal of Plant Physiology 155: 538-542.
Raz V, Ecker JR. 1999. Regulation of differential growth in the apical hook of Arabidopsis. Development 126: 3661-3668.
Sappl PG, Heisler MG. 2013. Live-imaging of plant development: latest approaches. Current Opinion in Plant Biology 16: 33-40.
Schwark A, Schierle J. 1992. Interaction of ethylene and auxin in the regulation of hook growth. I. The role of auxin in different growing regions of the hypocotyl hook of Phaseolus vulgaris. Journal of Plant Physiology 140: 562-570.
Shen H, Moon J, Huq E. 2005. PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis. Plant Journal 44: 1023-1035.
Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E. 2008. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20: 1586-1602.
Shen Y, Khanna R, Carle CM, Quail PH. 2007. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiology 145: 1043-1051.
Spalding EP, Miller ND. 2013. Image analysis is driving a renaissance in growth measurement. Current Opinion in Plant Biology 16: 100-104.
Sullivan JA, Deng XW. 2003. From seed to seed: the role of photoreceptors in Arabidopsis development. Developmental Biology 260: 289-297.
Sun Y, Fan XY, Cao DM, Tang WQ, He K, Zhu JY, He JX, Bai MY, Zhu SW, Oh E et al. 2010. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell 19: 765-777.
Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C. 1996. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171-182.
Takahashi T, Gasch A, Nishizawa N, Chua NH. 1995. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes & Development 9: 97-107.
Vandenbussche F, Callebert P, Žádníková P, Benková E, Van Der Straeten D. 2013. Brassinosteroid control of shoot gravitropism interacts with ethylene and depends in auxin signalling components. American Journal of Botany 100: 215-225.
Vandenbussche F, Petrášek J, Žádníková P, Hoyerová K, Pešek B, Raz V, Swarup R, Bennett M, Žádníková E, Benková E et al. 2010. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137: 597-606.
Vandenbussche F, Verbelen JP, Van Der Straeten D. 2005. Of light and length: regulation of hypocotyl growth in Arabidopsis. BioEssays 27: 275-284.
Vriezen WH, Achard P, Harberd NP, Van Der Straeten D. 2004. Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant Journal 37: 505-516.
Wang HY. 2005. Signaling mechanisms of higher plant photoreceptors: a structure-function perspective. Current Topics in Developmental Biology 68: 227-261.
Wang LY, Uilecan IV, Assadi AH, Kozmik CA, Spalding EP. 2009. HYPOTrace: Image analysis software for measuring hypocotyl growth and shape demonstrated on Arabidopsis seedlings undergoing photomorphogenesis. Plant Physiology 149: 1632-1637.
Woeste KE, Vogel JP, Kieber JJ. 1999. Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiologia Plantarum 105: 478-484.
Yopp JH, Mandava NB, Sasse JM. 1981. Brassinolide, a growth-promoting steroidal lactone. I. Activity in selected auxin bioassays. Physiologia Plantarum 53: 445-452.
Žádníková P, Petrášek J, Marhavý P, Raz V, Vandenbussche F, Ding Z, Schwarzerová K, Morita MT, Tasaka M, Hejátko J et al. 2010. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137: 607-617.
Zheng X, Wu SW, Zhai HQ, Zhou P, Song MF, Su L, Xi YL, Li ZY, Cai YF, Meng FH et al. 2013. Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under Far-Red light. Plant Cell 25: 115-133.