ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28922768
PubMed Central
PMC5853866
DOI
10.1093/jxb/erx242
PII: 4036431
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, auxin homeostasis, chemical genetics, ethylene signaling, herbicide, quinoline carboxamide, reactive oxygen species, triple response,
- MeSH
- aminokyseliny cyklické metabolismus MeSH
- Arabidopsis genetika metabolismus MeSH
- chinolony metabolismus MeSH
- ethyleny metabolismus MeSH
- exprese genu MeSH
- herbicidy chemie MeSH
- homeostáza MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- semenáček metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-aminocyclopropane-1-carboxylic acid MeSH Prohlížeč
- aminokyseliny cyklické MeSH
- chinolony MeSH
- ethylene MeSH Prohlížeč
- ethyleny MeSH
- herbicidy MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- reaktivní formy kyslíku MeSH
The volatile two-carbon hormone ethylene acts in concert with an array of signals to affect etiolated seedling development. From a chemical screen, we isolated a quinoline carboxamide designated ACCERBATIN (AEX) that exacerbates the 1-aminocyclopropane-1-carboxylic acid-induced triple response, typical for ethylene-treated seedlings in darkness. Phenotypic analyses revealed distinct AEX effects including inhibition of root hair development and shortening of the root meristem. Mutant analysis and reporter studies further suggested that AEX most probably acts in parallel to ethylene signaling. We demonstrated that AEX functions at the intersection of auxin metabolism and reactive oxygen species (ROS) homeostasis. AEX inhibited auxin efflux in BY-2 cells and promoted indole-3-acetic acid (IAA) oxidation in the shoot apical meristem and cotyledons of etiolated seedlings. Gene expression studies and superoxide/hydrogen peroxide staining further revealed that the disrupted auxin homeostasis was accompanied by oxidative stress. Interestingly, in light conditions, AEX exhibited properties reminiscent of the quinoline carboxylate-type auxin-like herbicides. We propose that AEX interferes with auxin transport from its major biosynthesis sites, either as a direct consequence of poor basipetal transport from the shoot meristematic region, or indirectly, through excessive IAA oxidation and ROS accumulation. Further investigation of AEX can provide new insights into the mechanisms connecting auxin and ROS homeostasis in plant development and provide useful tools to study auxin-type herbicides.
Centre for Environmental Sciences Hasselt University Agoralaan Building D 3590 Diepenbeek Belgium
Department of Plant Systems Biology VIB Technologiepark 927 B 9052 Ghent Belgium
Institute of Experimental Botany ASCR 16500 Praha 6 Czech Republic
NMR and Structure Analysis Department of Organic Chemistry Krijgslaan 281 S4 B 9000 Ghent Belgium
Zobrazit více v PubMed
Abel S, Theologis A. 1996. Early genes and auxin action. Plant Physiology 111, 9–17. PubMed PMC
Abeles FB, Morgan PW, Saltveit ME. 1992. Ethylene in plant biology. San Diego: Academic Press.
Alonso JM, Stepanova AN, Leisse TJ et al. . 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657. PubMed
An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, Li M, Guo H. 2012. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Research 22, 915–27. PubMed PMC
Beemster GT, Baskin TI. 1998. Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiology 116, 1515–1526. PubMed PMC
Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. 2001. Controlling the false discovery rate in behavior genetics research. Behavioural Brain Research 125, 279–284. PubMed
Blakeslee JJ, Bandyopadhyay A, Lee OR et al. . 2007. Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. The Plant Cell 19, 131–147. PubMed PMC
Bleecker AB, Estelle MA, Somerville C, Kende H. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241, 1086–1089. PubMed
Blilou I, Xu J, Wildwater M et al. . 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44. PubMed
Blomster T, Salojarvi J, Sipari N, Brosche M, Ahlfors R, Keinanen M, Overmyer K, Kangasjarvi J. 2011. Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiology 157, 1866–1883. PubMed PMC
Böger P, Matthes B, Schmalfuß J. 2000. Towards the primary target of chloroacetamides – new findings pave the way. Pest Management Science 56, 497–508.
Büntemeyer K, Lüthen H, Böttger M. 1998. Auxin-induced changes in cell wall extensibility of maize roots. Planta 204, 515–519.
Burg SP, Burg EA. 1966. The interaction between auxin and ethylene and its role in plant growth. Proceedings of the National Academy of Sciences, USA 55, 262–269. PubMed PMC
Calderón Villalobos LI, Lee S, De Oliveira C et al. . 2012. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nature Chemical Biology 8, 477–485. PubMed PMC
Chae HS, Faure F, Kieber JJ. 2003. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. The Plant Cell 15, 545–559. PubMed PMC
Collett CE, Harberd NP, Leyser O. 2000. Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiology 124, 553–562. PubMed PMC
Cosgrove DJ. 2005. Growth of the plant cell wall. Nature Reviews. Molecular Cell Biology 6, 850–861. PubMed
Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR. 2000. Random GFP∷cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proceedings of the National Academy of Sciences, USA 97, 3718–3723. PubMed PMC
Davletova S, Schlauch K, Coutlu J, Mittler R. 2005. The Zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiology 139, 847–856. PubMed PMC
Delbarre A, Muller P, Imhoff V, Guern J. 1996. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198, 532–541. PubMed
De Rybel B, Audenaert D, Vert G et al. . 2009. Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chemistry & Biology 16, 594–604. PubMed PMC
De Vylder J, Vandenbussche F, Hu Y, Philips D, Van Der Straeten D. 2012. Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects. Plant Physiology 160, 1149–1159. PubMed PMC
Dharmasiri N, Dharmasiri S, Estelle M. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445. PubMed
Dobrev PI, Vankova R. 2012. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods in Molecular Biology 913, 251–261. PubMed
Doerner P, Jorgensen JE, You R, Steppuhn J, Lamb C. 1996. Control of root growth and development by cyclin expression. Nature 380, 520–523. PubMed
Dong CH, Jang M, Scharein B, Malach A, Rivarola M, Liesch J, Groth G, Hwang I, Chang C. 2010. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. The Journal of Biological Chemistry 285, 40706–40713. PubMed PMC
Ellison CT, Vandenbussche F, Van Der Straeten D, Harmer SL. 2011. XAP5 CIRCADIAN TIMEKEEPER regulates ethylene responses in aerial tissues of Arabidopsis. Plant Phyiology 155, 988–999. PubMed PMC
Gadjev I, Vanderauwera S, Gechev TS et al. . 2006. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiology 141, 436–445. PubMed PMC
Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230. PubMed
Gendron JM, Haque A, Gendron N, Chang T, Asami T, Wang ZY. 2008. Chemical genetic dissection of brassinosteroid-ethylene interaction. Molecular Plant 1, 368–379. PubMed PMC
Grossmann K. 2003. Mediation of herbicide effects by hormone interactions. Journal of Plant Growth Regulation 22, 109–122.
Grossmann K. 2010. Auxin herbicides: current status of mechanism and mode of action. Pest Management Science 66, 113–120. PubMed
Grossmann K, Kwiatkowski J. 1995. Evidence for a causative role of cyanide, derived from ethylene biosynthesis, in the herbicidal mode of action of quinclorac in barnyard grass. Pesticide Biochemistry and Physiology 51, 150–160.
Grossmann K, Kwiatkowski J, Tresch S. 2001. Auxin herbicides induce H2O2 overproduction and tissue damage in cleavers (Galium aparine L.). Journal of Experimental Botany 52, 1811–1816. PubMed
Grossmann K, Scheltrup F. 1998. Studies on the mechanism of selectivity of the auxin herbicide quinmerac. Pesticide Science 52, 111–118.
Hagen G, Guilfoyle T. 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology 49, 373–385. PubMed
Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E. 2000. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. The Plant Cell 12, 757–770. PubMed PMC
Hayashi K, Tan X, Zheng N, Hatate T, Kimura Y, Kepinski S, Nozaki H. 2008. Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proceedings of the National Academy of Sciences, USA 105, 5632–5637. PubMed PMC
He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, Chen Z, Han L, Qu LJ, Gong Z. 2012. DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. The Plant Cell 24, 1815–1833. PubMed PMC
He WR, Brumos J, Li HJ et al. . 2011. A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. The Plant Cell 23, 3944–3960. PubMed PMC
Hoagland RE, Boyette CD, Vaughn KC. 2011. Interactions of quinclorac with a bioherbicidal strain of Myrothecium verrucaria. Pest Technology 5, 88–96.
Hošek P, Kubeš M, Laňková M et al. . 2012. Auxin transport at cellular level: new insights supported by mathematical modelling. Journal of Experimental Botany 63, 3815–3827. PubMed PMC
Hu Y, Callebert P, Vandemoortel I, Nguyen L, Audenaert D, Verschraegen L, Vandenbussche F, Van Der Straeten D. 2014. TR-DB: an open-access database of compounds affecting the ethylene-induced triple response in Arabidopsis. Plant Physiology and Biochemistry 75, 128–137. PubMed
Isaacs JT, Pili R, Qian DZ, Dalrymple SL, Garrison JB, Kyprianou N, Bjork A, Olsson A, Leanderson T. 2006. Identification of ABR-215050 as lead second generation quinoline-3-carboxamide anti-angiogenic agent for the treatment of prostate cancer. Prostate 66, 1768–1778. PubMed
Ivanchenko MG, den Os D, Monshausen GB, Dubrovsky JG, Bednarova A, Krishnan N. 2013. Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth. Annals of Botany 112, 1107–1116. PubMed PMC
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264. PubMed
Ju C, Yoon GM, Shemansky JM et al. . 2012. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences, USA 109, 19486–19491. PubMed PMC
Kai K, Horita J, Wakasa K, Miyagawa H. 2007. Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry 68, 1651–1663. PubMed
Knight L, Rose R, Crocker W. 1910. Effect of various gases and vapors upon etiolated seedlings of the sweet pea. Science 31, 635–636.
Kowalczyk M, Sandberg G. 2001. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiology 127, 1845–1853. PubMed PMC
Le J, Vandenbussche F, Van Der Straeten D, Verbelen JP. 2001. In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiology 125, 519–522. PubMed PMC
Lee S, Sundaram S, Armitage L, Evans JP, Hawkes T, Kepinski S, Ferro N, Napier RM. 2014. Defining binding efficiency and specificity of auxins for SCFTIR1/AFB-Aux/IAA co-receptor complex formation. ACS Chemical Biology 9, 673–682. PubMed PMC
Lehman A, Black R, Ecker JR. 1996. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85, 183–194. PubMed
Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR. 2004. Convergence of signaling of differential cell growth pathways in the control in Arabidopsis. Developmental Cell 7, 193–204. PubMed
Lin LC, Hsu JH, Wang LC. 2010. Identification of novel inhibitors of 1-aminocyclopropane-1-carboxylic acid synthase by chemical screening in Arabidopsis thaliana. The Journal of Biological Chemistry 285, 33445–33456. PubMed PMC
Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G. 2005. Sites and regulation of auxin biosynthesis in Arabidopsis roots. The Plant Cell 17, 1090–1104. PubMed PMC
Lohse M, Nunes-Nesi A, Kruger P et al. . 2010. Robin: an intuitive wizard application for R-based expression microarray quality assessment and analysis. Plant Physiology 153, 642–651. PubMed PMC
Lovelace ML, Talbert RE, Hoagland RE, Scherder EF. 2007. Quinclorac absorption and translocation characteristics in quinclorac- and propanil-resistant and -susceptible barnyardgrass (Echinochloa crus-galli) biotypes. Weed Technology 21, 683–687.
Lutman PJW, Sweet J, Berry K, Law J, Payne R, Simpson E, Walker K, Wightman P. 2008. Weed control in conventional and herbicide tolerant winter oilseed rape (Brassica napus) grown in rotations with winter cereals in the UK. Weed Research 48, 408–419.
Maere S, Heymans K, Kuiper M. 2005. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448–3449. PubMed
Masucci JD, Schiefelbein JW. 1994. The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene-associated process. Plant Physiology 106, 1335–1346. PubMed PMC
Morreel K, Saeys Y, Dima O, Lu F, Van de Peer Y, Vanholme R, Ralph J, Vanholme B, Boerjan W. 2014. Systematic structural characterization of metabolites in Arabidopsis via candidate substrate-product pair networks. The Plant Cell 26, 929–945. PubMed PMC
Mravec J, Kubes M, Bielach A et al. . 2008. Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135, 3345–3354. PubMed
Muday GK, Brady SR, Argueso C, Deruere J, Kieber JJ, DeLong A. 2006. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling. Plant Physiology 141, 1617–1629. PubMed PMC
Muday GK, Rahman A, Binder BM. 2012. Auxin and ethylene: collaborators or competitors?Trends in Plant Science 17, 181–195. PubMed
Nagashima A, Uehara Y, Sakai T. 2008. The ABC subfamily B auxin transporter AtABCB19 is involved in the inhibitory effects of N-1-naphthyphthalamic acid on the phototropic and gravitropic responses of Arabidopsis hypocotyls. Plant and Cell Physiology 49, 1250–1255. PubMed
Nagata T, Nemoto Y, Hasezawa S. 1992. Tobacco BY-2 cell-line as the “HeLa” cell in the cell biology of higher plants. International Review of Cytology 132, 1–30.
Nakamoto D, Ikeura A, Asami T, Yamamoto KT. 2006. Inhibition of brassinosteroid biosynthesis by either a dwarf4 mutation or a brassinosteroid biosynthesis inhibitor rescues defects in tropic responses of hypocotyls in the Arabidopsis mutant nonphototropic hypocotyl 4. Plant Physiology 141, 456–464. PubMed PMC
Narayan Acharya B, Thavaselvam D, Parshad Kaushik M. 2008. Synthesis and antimalarial evaluation of novel pyridine quinoline hybrids. Medicinal Chemistry Research 17, 487–494.
Neljubov D. 1901. Uber die horizontale Nutation der Stengel von Pisum sativum und einiger anderen Pflanzen. Beihefte zum Botanischen Centralblatt 10, 128–139.
Nemhauser JL, Hong F, Chory J. 2006. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467–475. PubMed
Noh B, Murphy AS, Spalding EP. 2001. Multidrug Resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. The Plant Cell 13, 2441–2454. PubMed PMC
Okushima Y, Mitina I, Quach HL, Theologis A. 2005. a. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. The Plant Journal 43, 29–46. PubMed
Okushima Y, Overvoorde PJ, Arima K et al. . 2005. b. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. The Plant Cell 17, 444–463. PubMed PMC
Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li H, An F, Guzman P, Ecker JR. 2006. ETHYLENE-INSENSITIVE5 encodes a 5′→3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proceedings of the National Academy of Sciences, USA 103, 13286–13293. PubMed PMC
Ostin A, Kowalyczk M, Bhalerao RP, Sandberg G. 1998. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiology 118, 285–296. PubMed PMC
Park SY, Fung P, Nishimura N et al. . 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071. PubMed PMC
Passardi F, Penel C, Dunand C. 2004. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Science 9, 534–540. PubMed
Pasternak T, Potters G, Caubergs R, Jansen MA. 2005. a. Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. Journal of Experimental Botany 56, 1991–2001. PubMed
Pasternak T, Rudas V, Potters G, Jansen M. 2005. b. Morphogenic effects of abiotic stress: reorientation of growth in seedlings. Environmental and Experimental Botany 53, 299–314.
Peer WA, Cheng Y, Murphy AS. 2013. Evidence of oxidative attenuation of auxin signalling. Journal of Experimental Botany 64, 2629–2639. PubMed
Pencik A, Simonovik B, Petersson SV et al. . 2013. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. The Plant Cell 25, 3858–3870. PubMed PMC
Petrášek J, Cerna A, Schwarzerova K, Elckner M, Morris DA, Zazimalova E. 2003. Do phytotropins inhibit auxin efflux by impairing vesicle traffic?Plant Physiology 131, 254–263. PubMed PMC
Petrášek J, Zažímalová E. 2006. The BY-2 cell line as a tool to study auxin transport. In: Nagata T, Matsuoka K, Inzé D, eds. Tobacco BY-2 cells: from cellular dynamics to omics. Berlin, Heidelberg: Springer, 107–117.
Pitts RJ, Cernac A, Estelle M. 1998. Auxin and ethylene promote root hair elongation in Arabidopsis. The Plant Journal 16, 553–560. PubMed
Prigge MJ, Greenham K, Zhang YI et al. . 2016. The Arabidopsis auxin receptor F-box proteins AFB4 and AFB5 are required for response to the synthetic auxin picloram. G3: Genes – Genomes – Genetics 6, 1383–1390. PubMed PMC
Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S. 2002. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiology 130, 1908–1917. PubMed PMC
Rakusova H, Gallego-Bartolome J, Vanstraelen M, Robert HS, Alabadi D, Blazquez MA, Benkova E, Friml J. 2011. Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. The Plant Journal 67, 817–826. PubMed
Raynes K, Foley M, Tilley L, Deady LW. 1996. Novel bisquinoline antimalarials: synthesis, antimalarial activity, and inhibition of haem polymerisation. Biochemical Pharmacology 52, 551–559. PubMed
Raz V, Ecker JR. 1999. Regulation of differential growth in the apical hook of Arabidopsis. Development 126, 3661–3668. PubMed
Raz V, Koornneef M. 2001. Cell division activity during apical hook development. Plant Physiology 125, 219–226. PubMed PMC
Rigas S, Ditengou FA, Ljung K, Daras G, Tietz O, Palme K, Hatzopoulos P. 2013. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. New Phytologist 197, 1130–1141. PubMed
Rojas-Pierce M, Titapiwatanakun B, Sohn EJ et al. . 2007. Arabidopsis P-glycoprotein19 participates in the inhibition of gravitropism by gravacin. Chemistry & Biology 14, 1366–1376. PubMed
Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E. 2007. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. The Plant Cell 19, 2197–2212. PubMed PMC
Savaldi-Goldstein S, Baiga TJ, Pojer F et al. . 2008. New auxin analogs with growth-promoting effects in intact plants reveal a chemical strategy to improve hormone delivery. Proceedings of the National Academy of Sciences, USA 105, 15190–15195. PubMed PMC
Schreiber KJ, Nasmith CG, Allard G, Singh J, Subramaniam R, Desveaux D. 2011. Found in translation: high-throughput chemical screening in Arabidopsis thaliana identifies small molecules that reduce Fusarium head blight disease in wheat. Molecular Plant-Microbe Interactions 24, 640–648. PubMed
Schwark A, Schierle J. 1992. Interaction of ethylene and auxin in the regulation of hook growth I the role of auxin in different growing regions of the hypocotyl hook of Phaseolus vulgaris. Journal of Plant Physiology 140, 562–570.
Shivaraj Y, Naveen MH, Vijayakumar GR, Kumar DBA. 2013. Design, synthesis and antibacterial activity studies of novel quinoline carboxamide derivatives. Journal of the Korean Chemical Society 57, 241–245.
Smet D, Žádníková P, Vandenbussche F, Benková E, Van Der Straeten D. 2014. Dynamic infrared imaging analysis of apical hook development in Arabidopsis: the case of brassinosteroids. New Phytologist 202, 1398–1411. PubMed
Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, DoleZal K, Schlereth A, Jurgens G, Alonso JM. 2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191. PubMed
Stepanova AN, Yun J, Likhacheva AV, Alonso JM. 2007. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19, 2169–2185. PubMed PMC
Surpin M, Rojas-Pierce M, Carter C, Hicks GR, Vasquez J, Raikhel NV. 2005. The power of chemical genomics to study the link between endomembrane system components and the gravitropic response. Proceedings of the National Academy of Sciences, USA 102, 4902–4907. PubMed PMC
Suttle JC. 1988. Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding of N-1-naphthylphthalamic acid in tissues and microsomes isolated from etiolated pea epicotyls. Plant Physiology 88, 795–799. PubMed PMC
Suzumori N, Burns KH, Yan W, Matzuk MM. 2003. RFPL4 interacts with oocyte proteins of the ubiquitin-proteasome degradation pathway. Proceedings of the National Academy of Sciences, USA 100, 550–555. PubMed PMC
Tan X, Calderón Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645. PubMed
Tanimoto M, Roberts K, Dolan L. 1995. Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. The Plant Journal 8, 943–948. PubMed
Tognolli M, Penel C, Greppin H, Simon P. 2002. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288, 129–138. PubMed
Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry 31, 455–461. PubMed PMC
Tsukagoshi H, Busch W, Benfey PN. 2010. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143, 606–616. PubMed
Ulmasov T, Hagen G, Guilfoyle TJ. 1997. ARF1, a transcription factor that binds to auxin response elements. Science 276, 1865–1868. PubMed
Van de Poel B, Van Der Straeten D. 2014. 1-Aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene!Frontiers in Plant Science 5, 640. PubMed PMC
Vandenbussche F, Callebert P, Zadnikova P, Benkova E, Van Der Straeten D. 2013. Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. American Journal of Botany 100, 215–225. PubMed
Vandenbussche F, Petrasek J, Zadnikova P et al. . 2010. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137, 597–606. PubMed
Vandenbussche F, Suslov D, De Grauwe L, Leroux O, Vissenberg K, Van Der Straeten D. 2011. The role of brassinosteroids in shoot gravitropism. Plant Physiology 156, 1331–1336. PubMed PMC
Van Eerd LL, Stephenson GR, Kwiatkowski J, Grossmann K, Hall JC. 2005. Physiological and biochemical characterization of quinclorac resistance in a false cleavers (Galium spurium L.) biotype. Journal of Agricultural and Food Chemistry 53, 1144–1151. PubMed
Verbelen JP, De Cnodder T, Le J, Vissenberg K, Baluska F. 2006. The root apex of Arabidopsis thaliana consists of four distinct zones of growth activities: meristematic zone, transition zone, fast elongation zone and growth terminating zone. Plant Signaling & Behaviour 1, 296–304. PubMed PMC
Woznica Z, Nalewaja JD, Messersmith CG, Milkowski P. 2003. Quinclorac efficacy as affected by adjuvants and spray carrier water. Weed Technology 17, 582–588.
Wu G, Cameron JN, Ljung K, Spalding EP. 2010. A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B. The Plant Journal 62, 179–191. PubMed
Yang H, Murphy AS. 2009. Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. The Plant Journal 59, 179–191. PubMed
Yang SF, Hoffman NE. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 35, 155–189.
Zadnikova P, Petrasek J, Marhavy P et al. . 2010. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137, 607–617. PubMed
Zadnikova P, Smet D, Zhu Q, Van Der Straeten D, Benkova E. 2015. Strategies of seedlings to overcome their sessile nature: auxin in mobility control. Frontiers in Plant Science 6, 218. PubMed PMC
Zhao Y, Dai X, Blackwell HE, Schreiber SL, Chory J. 2003. SIR1, an upstream component in auxin signaling identified by chemical genetics. Science 301, 1107–1110. PubMed