Burrowing below ground: interaction between soil mechanics and evolution of subterranean mammals

. 2020 Jan ; 17 (162) : 20190521. [epub] 20200108

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31910769

The evolution of species is governed by complex phenomena in which biological and environmental features may interact dynamically. Subterranean mammals dig tunnels whose diameter minimizes energetic costs during excavations and display anatomical adaptations in order to burrow structurally stable tunnels according to specific features of the soil. These animals weight from less than 50 g up to 1-2 kg, and dig tunnels with diameters from 3 to 15 cm. The use of allometric laws has enabled these data to be correlated. However, since tunnels need to be stable with respect to the geomechanical characteristics of the resident soils, a mathematical treatment linking the admissible dimensions of tunnels to the environment here suggests a mechanically grounded correlation between the body mass of subterranean mammals and the maximum dimensions of tunnels. Remarkably, such theoretical findings reflect very well the empirical allometric relationship and contribute to explain the wide differences observed in body sizes of subterranean mammals. In this respect, a far from ancillary role of environmental mechanics on the morphological evolution of subterranean mammals can be hypothesized.

Zobrazit více v PubMed

Thompson DW. 1917. On growth and form. Cambridge, UK: University Press.

Huxley JS. 1932. Problems of relative growth. New York, NY: L. MacVeagh, The Dial Press.

White CR. 2005. The allometry of burrow geometry. J. Zool. 265, 395–403. (10.1017/S0952836905006473) DOI

Wu NC, Alton LA, Clemente CJ, Kearney MR, White CR. 2015. Morphology and burrowing energetics of semi-fossorial skinks (Liopholis spp.). J. Exp. Biol. 218, 2416–2426. (10.1242/jeb.113803) PubMed DOI

Fraldi M, Cavuoto R, Cutolo A, Guarracino F. 2019. Stability of tunnels according to depth and variability of rock mass parameters. Int. J. Rock Mech. Min. Sci. 119, 222–229. (10.1016/j.ijrmms.2019.05.001) DOI

Fraldi M, Guarracino F. 2010. Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections. Int. J. Solids Struct. 47, 216–223. (10.1016/j.ijsolstr.2009.09.028) DOI

Fraldi M, Guarracino F. 2009. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek–Brown failure criterion. Int. J. Rock Mech. Min. Sci. 46, 665–673. (10.1016/j.ijrmms.2008.09.014) DOI

Jones KE, Safi K. 2011. Ecology and evolution of mammalian biodiversity. Phil. Trans. R. Soc. B 366, 2451–2461. (10.1098/rstb.2011.0090) PubMed DOI PMC

Nevo E. 1999. Mosaic evolution of subterranean mammals: regression, progression and global convergence. Oxford, UK: Oxford University Press.

Šumbera R. 2019. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia)—a review. J. Therm. Biol 79, 166–189. (10.1016/j.jtherbio.2018.11.003) PubMed DOI

Lacey E, Patton J, Cameron G. 2000. Life underground. The biology of subterranean rodents. Chicago, IL: University of Chicago Press.

Bennett NC, Faulkes CG. 2000. African mole-rats: ecology and eusociality. Cambridge, UK: Cambridge University Press.

Herbst M, Bennett NC. 2006. Burrow architecture and burrowing dynamics of the endangered Namaqua dune mole rat (Bathyergus janetta) (Rodentia: Bathyergidae). J. Zool. 270, 420–428. (10.1111/j.1469-7998.2006.00151.x) DOI

Lovegrove BG. 1989. The cost of burrowing by the social mole rats (Bathyergidae) Cryptomys damarensis and Heterocephalus glaber: the role of soil moisture. Physiol. Zool. 62, 449–469. (10.1086/physzool.62.2.30156179) DOI

Luna F, Antinuchi C, Busch C. 2002. Digging energetics in the South American rodent Ctenomys talarum (Rodentia, Ctenomyidae). Can. J. Zool. 80, 2144–2149. (10.1139/z02-201) DOI

Zelová J, Šumbera R, Okrouhlík J, Burda H. 2010. Cost of digging is determined by intrinsic factors rather than by substrate quality in two subterranean rodent species. Physiol. Behav. 99, 54–58. (10.1016/j.physbeh.2009.10.007) PubMed DOI

Borges L, Maestri R, Kubiak B, Galiano D, Fornel R, Freitas T. 2017. The role of soil features in shaping the bite force and related skull and mandible morphology in the subterranean rodents of genus Ctenomys (Hystricognathi: Ctenomyidae). J. Zool. 301, 108–117. (10.1111/jzo.12398) DOI

Piras P, Sansalone G, Teresi L, Kotsakis T, Colangelo P, Loy A. 2012. Testing convergent and parallel adaptations in talpids humeral mechanical performance by means of geometric morphometrics and finite element analysis. J. Morphol. 273, 696–711. (10.1002/jmor.20015) PubMed DOI

Piras P, Sansalone G, Teresi L, Moscato M, Profico A, Eng R, Cox TC, Loy A, Colangelo P, Kotsakis T. 2015. Digging adaptation in insectivorous subterranean eutherians. the enigma of Mesoscalops montanensis unveiled by geometric morphometrics and finite element analysis. J. Morphol. 276, 1157–1171. (10.1002/jmor.20405) PubMed DOI

Luna F, Antinuchi CD. 2006. Cost of foraging in the subterranean rodent Ctenomys talarum: effect of soil hardness. Can. J. Zool. 84, 661–667. (10.1139/z06-040) DOI

Kubiak BB, Maestri R, de Almeida TS, Borges LR, Galiano D, Fornel R, De Freitas TR. 2018. Evolution in action: soil hardness influences morphology in a subterranean rodent (Rodentia: Ctenomyidae). Biol. J. Linnean Soc. 125, 766–776. (10.1093/biolinnean/bly144) DOI

Davies KC, Jarvis JUM. 1986. The burrow systems and burrowing dynamics of the mole-rats Bathyergus suillus and Cryptomys hottentotus in the fynbos of the south-western Cape, South Africa. J. Zool. 209, 125–147. (10.1111/j.1469-7998.1986.tb03570.x) DOI

Antinuchi C, Busch C. 1992. Burrow structure in the subterranean rodent Ctenomys talarum. Zeitschrift fur Saugertierkunde 57, 163–168.

Heth G. 1989. Burrow patterns of the mole rat Spalax ehrenbergi in two soil types (terra-rossa and rendzina) in Mount Carmel, Israel. J. Zool. 217, 39–56. (10.1111/j.1469-7998.1989.tb02473.x) DOI

Jarvis JU, O’Riain M, Bennett NC, Sherman PW. 1994. Mammalian eusociality: a family affair. Trends Ecol. Evol. 9, 47–51. (10.1016/0169-5347(94)90267-4) PubMed DOI

Faulkes CG, Bennett NC. 2013. Plasticity and constraints on social evolution in African mole-rats: ultimate and proximate factors. Phil. Trans. R. Soc. B 368, 20120347 (10.1098/rstb.2012.0347) PubMed DOI PMC

Lovegrove B. 1991. The evolution of eusociality in molerats (Bathyergidae): a question of risks, numbers, and costs. Behav. Ecol. Sociobiol. 28, 37–45. (10.1007/BF00172137) DOI

Šumbera R, Chitaukali WN, Elichová M, Kubová J, Burda H. 2004. Microclimatic stability in burrows of an afrotropical solitary bathyergid rodent, the silvery mole-rat (Heliophobius argenteocinereus). J. Zool. 263, 409–416. (10.1017/S095283690400545X) DOI

Robb GN, Woodborne S, Bennett NC. 2012. Subterranean sympatry: an investigation into diet using stable isotope analysis. PLoS ONE 7, e48572 (10.1371/journal.pone.0048572) PubMed DOI PMC

Šumbera R, Mazoch V, Patzenhauerová H, Lövy M, Šklíba J, Bryja J, Burda H. 2012. Burrow architecture, family composition and habitat characteristics of the largest social African mole-rat: the giant mole-rat constructs really giant burrow systems. Acta Theriologica 57, 121–130. (10.1007/s13364-011-0059-4) DOI

Saey T, Meirvenne MV, Pue JD, Vijver EVD, Delefortrie S. 2014. Reconstructing mole tunnels using frequency-domain ground penetrating radar. Appl. Soil Ecol. 80, 77–83. (10.1016/j.apsoil.2014.03.019) DOI

Malizia AI, Vassallo AI, Busch C. 1991. Population and habitat characteristics of two sympatric species of Ctenomys (Rodentia: Octodontidae). Acta Theriologica 36, 87–94. (10.4098/AT.arch.91-5) DOI

Comparatore V, Agnusdei M, Busch C. 1992. Habitat relations in sympatric populations of Ctenomys australis and Ctenomys talarum (Rodentia, Octodontidae) in a natural grassland. Z. Säugetierk 57, 47–55. (10.1163/156853993x00047) DOI

Scharff A, Locker-Grütjen O, Kawalika M, Burda H. 2001. Natural history of the giant mole-rat, Cryptomys mechowi (Rodentia: Bathyergidae), from Zambia. J. Mammal. 82, 1003–1015. (10.1644/1545-1542(2001)082<1003:NHOTGM>2.0.CO;2) DOI

Lövy M, Šklíba J, Šumbera R. 2013. Spatial and temporal activity patterns of the free-living giant mole-rat (Fukomys mechowii), the largest social Bathyergid. PLoS ONE 8, e55357 (10.1371/journal.pone.0055357) PubMed DOI PMC

Kawalika M, Burda H. 2007. Giant mole-rats, Fukomys mechowii, 13 years on the stage. In Subterranean rodents: news from underground, pp. 205–219. Berlin, Heidelberg: Springer.

Lövy M, Šklíba J, Burda H, Chitaukali WN, Šumbera R. 2011. Ecological characteristics in habitats of two African mole-rat species with different social systems in an area of sympatry: implications for the mole-rat social evolution. J. Zool. 286, 145–153. (10.1111/j.1469-7998.2011.00860.x) DOI

Burda H, Šumbera R, Chitaukali WN, Dryden GL. 2005. Taxonomic status and remarks on ecology of the Malawian mole-rat Cryptomys whytei (Rodentia, Bathyergidae). Acta Theriol. 50, 529–536. (10.1007/BF03192646) DOI

Šklíba J, Mazoch V, Patzenhauerová H, Hrouzková E, Lövy M, Kott O, Šumbera R. 2012. A maze-lover’s dream: burrow architecture, natural history and habitat characteristics of Ansell’s mole-rat (Fukomys anselli). Mamm. Biol. 77, 420–427. (10.1016/j.mambio.2012.06.004) DOI

Roper TJ, Bennett NC, Conradt L, Molteno AJ. 2001. Environmental conditions in burrows of two species of African mole-rat, Georychus capensis and Cryptomys damarensis. J. Zool. 254, 101–107. (10.1017/S0952836901000590) DOI

Thomas HG, Bateman PW, Comber SCL, Bennett NC, Elwood RW, Scantlebury M. 2009. Burrow architecture and digging activity in the Cape dune mole rat. J. Zool. 279, 277–284. (10.1111/j.1469-7998.2009.00616.x) DOI

Salgado R, Bandini P, Karim A. 2000. Shear strength and stiffness of silty sand. J. Geotech. Geoenviron. Eng. 126, 451–462. (10.1061/(ASCE)1090-0241(2000)126:5(451)) DOI

Šumbera R, Šklíba J, Elichová M, Chitaukali WN, Burda H. 2007. Natural history and burrow system architecture of the silvery mole-rat from Brachystegia woodland. J. Zool. 271, 77–84. (10.1111/j.1469-7998.2007.00359.x) DOI

Šumbera R, Chitaukali WN, Burda H. 2007. Biology of the silvery mole-rat (Heliophobius argenteocinereus). Why study a neglected subterranean rodent species? In Subterranean rodents: news from underground, pp. 221–236. Berlin, Heidelberg: Springer.

Spinks AC, Bennett NC, Jarvis JU. 2000. A comparison of the ecology of two populations of the common mole-rat, Cryptomys hottentotus hottentotus: the effect of aridity on food, foraging and body mass. Oecologia 125, 341–349. (10.1007/s004420000460) PubMed DOI

Kingdon J, Happold DCD, Butynski TM, Hoffmann M, Happold M, Kalina J. 2013. Mammals of Africa, vol. III London, UK: A&C Black, Bloomsbury Publishing Plc.

Luna F, Antenucci CD, Bozinovic F. 2009. Comparative energetics of the subterranean Ctenomys rodents: breaking patterns. Physiol. Biochem. Zool. 82, 226–235. (10.1086/597526) PubMed DOI

Cutrera A, Mora M, Antenucci C, Vassallo A. 2010. Intra-and interspecific variation in home-range size in sympatric tuco-tucos, Ctenomys australis and C. talarum. J. Mammal. 91, 1425–1434. (10.1644/10-MAMM-A-057.1) DOI

Lövy M, Šklíba J, Hrouzková E, Dvořáková V, Nevo E, Šumbera R. 2015. Habitat and burrow system characteristics of the blind mole rat Spalax galili in an area of supposed sympatric speciation. PLoS ONE 10, e0133157 (10.1371/journal.pone.0133157) PubMed DOI PMC

Šklíba J, Lövy M, Koeppen SCW, Pleštilová L, Vitámvás M, Nevo E, Šumbera R. 2015. Activity of free-living subterranean blind mole rats Spalax galili (Rodentia: Spalacidae) in an area of supposed sympatric speciation. Biol. J. Linnean Soc. 118, 280–291. (10.1111/bij.12741) DOI

Rémai Z. 2013. Correlation of undrained shear strength and CPT resistance. Period. Polytech., Civ. Eng. 57, 39–44. (10.3311/PPci.2140) DOI

Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A. 2007. The delayed rise of present-day mammals. Nature 446, 507–512. (10.1038/nature05634) PubMed DOI

Perissinotti PP, Antenucci CD, Zenuto R, Luna F. 2009. Effect of diet quality and soil hardness on metabolic rate in the subterranean rodent Ctenomys talarum. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 154, 298–307. (10.1016/j.cbpa.2009.05.013) PubMed DOI

Hoek E, Brown E. 1980. Underground excavations in rock. Boca Raton, FL: CRC Press.

Hoek E, Carranza-Torres C, Corkum B. 2002. Hoek–Brown failure criterion—2002 edition. In Proc. of the Fifth North American Rock Mechanics Symp. (NARMS-TAC), Toronto, vol. 1, pp. 267–273.

Marinos V, Marinos P, Hoek E. Geological strength index (GSI). A characterization tool for assessing engineering properties for rock masses. In Underground works under special conditions, pp. 13–21, Taylor & Francis, 2007.

Hoek E, Brown E. 1997. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 34, 1165–1186. (10.1016/S1365-1609(97)80069-X) DOI

Terzaghi K. 1943. Theoretical soil mechanics. New York, NY: John Wiley & Sons, Inc.

RocLab v1.0: rock mass strength analysis using the generalized Hoek–Brown failure criterion. 2007.

Lubliner J. 1990. Plasticity theory. New York, NY: Macmillan Publishing Company.

Sansalone G. 2015. Evolution of hypsodonty reveals a long-standing ecological separation in the Japanese shrew-moles. J. Zool. 297, 146–155. (10.1111/jzo.12261) DOI

Loy A, Dupre E, Capanna E. 1994. Territorial behavior in Talpa romana, a fossorial insectivore from Southcentral Italy. J. Mammal. 75, 529–535. (10.2307/1382577) DOI

Klingenberg CP. 2008. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39, 115–132. (10.1146/annurev.ecolsys.37.091305.110054) DOI

Bolstad GH, Cassara JA, Márquez E, Hansen TF, van der Linde K, Houle D, Pélabon C. 2015. Complex constraints on allometry revealed by artificial selection on the wing of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 112, 13 284–13 289. (10.1073/pnas.1505357112) PubMed DOI PMC

Raia P, Passaro F, Fulgione D, Carotenuto F. 2011. Habitat tracking, stasis and survival in Neogene large mammals. Biol. Lett. 8, 64–66. (10.1098/rsbl.2011.0613) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...