Habitat and Burrow System Characteristics of the Blind Mole Rat Spalax galili in an Area of Supposed Sympatric Speciation

. 2015 ; 10 (7) : e0133157. [epub] 20150720

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26192762

A costly search for food in subterranean rodents resulted in various adaptations improving their foraging success under given ecological conditions. In Spalax ehrenbergi superspecies, adaptations to local ecological conditions can promote speciation, which was recently supposed to occur even in sympatry at sites where two soil types of contrasting characteristics abut each other. Quantitative description of ecological conditions in such a site has been, nevertheless, missing. We measured characteristics of food supply and soil within 16 home ranges of blind mole rats Spalax galili in an area subdivided into two parts formed by basaltic soil and pale rendzina. We also mapped nine complete mole rat burrow systems to compare burrowing patterns between the soil types. Basaltic soil had a higher food supply and was harder than rendzina even under higher moisture content and lower bulk density. Population density of mole rats was five-times lower in rendzina, possibly due to the lower food supply and higher cover of Sarcopoterium shrubs which seem to be avoided by mole rats. A combination of food supply and soil parameters probably influences burrowing patterns resulting in shorter and more complex burrow systems in basaltic soil.

Zobrazit více v PubMed

Vleck D (1979) The energy costs of burrowing by the pocket gopher Thommomys bottae . Physiol Zool: 122–136.

Luna F, Antinuchi CD (2006) Cost of foraging in the subterranean rodent Ctenomys talarum: effect of soil hardness. Can J Zool 84: 661–667.

Zelová J, Šumbera R, Okrouhlík J, Burda H (2010) Cost of digging is determined by intrinsic factors rather than by substrate quality in two subterranean rodent species. Physiol Behav 99: 54–58. doi: 10.1016/j.physbeh.2009.10.007 PubMed DOI

Šklíba J, Šumbera R, Vítámvás M (2011) Resource characteristics and foraging adaptations in the silvery mole-rat (Heliophobius argenteocinereus), a solitary Afrotropical bathyergid. Ecol Res 26: 1081–1088.

Spinks AC, Branch TA, Croeser S, Bennett NC, Jarvis JUM (1999) Foraging in wild and captive colonies of the common mole-rat Cryptomys hottentotus hottentotus (Rodentia: Bathyergidae). J Zool 249: 143–152.

Spinks AC, Bennett NC, Jarvis JUM (2000) A comparison of the ecology of two populations of common mole rat, Cryptomys hottentotus hottentotus: the effect of aridity on food, foraging and body mass. Oecologia 125: 341–349. PubMed

Romañach SS, Seabloom EW, Reichman OJ, Rogers WE, Cameron GN (2005) Effects of species, sex, age, and habitat on geometry of pocket gopher foraging tunnels. J Mammal 86: 750–756.

Lövy M, Šklíba J, Burda H, Chitaukali WN, Šumbera R (2012) Ecological characteristics in habitats of two African mole-rat species with different social systems in an area of sympatry: implications for the mole-rat social evolution. J Zool 286: 145–153.

Šklíba J, Šumbera R, Chitaukali WN (2010) What determines the way of deposition of excavated soil in a subterranean rodent? Acta Theriol 55: 271–277.

Nevo E (1999) Mosaic Evolution of Subterranean Mammals: Regression, Progression, and Global Convergence. New York: Oxford University Press, Incorporated.

Savic IR, Nevo E (1990) The Spalacidae: Evolutionary History, Speciation and Population Biology In: Nevo E, Reig OA, editors. Evolution of Subterranean Mammals at the Organismal and Molecular levels. New York: Alan R. Liss, Inc., Vol. 335 pp. 129–153. PubMed

Nevo E, Ivanitskaya E, Beiles A (2001) Adaptive radiation of blind subterranean mole rats: Naming and revisiting the four sibling species of the Spalax ehrenbergi superspecies in Israel: Spalax galili (2n = 52), S. golani (2n = 54), S. carmeli (2n = 58), and S. judaei (2n = 60) Leiden Backhuys Publ.

Polyakov A, Beharav A, Avivi A, Nevo E (2004) Mammalian microevolution in action: adaptive edaphic genomic divergence in blind subterranean mole-rats. Proc R Soc B 271: S156–S159. PubMed PMC

Nevo E (1991) Evolutionary theory and processes of active speciation and adaptive radiation in subterranean mole rats, Spalax ehrenbergi superspecies, in Israel. Evol Biol 25: 1–125.

Nevo E, Filippucci MG, Redi C, Korol A, Beiles A (1994) Chromosomal speciation and adaptive radiation of mole rats in Asia Minor correlated with increased ecological stress. Proc Natl Acad Sci USA 91: 8160–8164. PubMed PMC

Hadid Y, Tzur S, Pavlíček T, Šumbera R, Šklíba J, Lövy M, et al. (2013) Possible incipient sympatric ecological speciation in blind mole rats (Spalax). Proc Natl Acad Sci USA 110: 2587–2592. doi: 10.1073/pnas.1222588110 PubMed DOI PMC

Atlas of Israel. Cartography, physical and human geography (1985). 3 rd ed. Tel Aviv: Survey of Israel.

Danin A (2015) Flora of Israel Online. Vegetation of Israel and Neighboring Countries. Available: http://flora.org.il/en/books/vegetation-of-israel-and-neighboring-countries/.

Levitte D (2001) Geological Map of Zefat 1:50,000. Geological Survey of Israel, Jerusalem.

Weinstein Y, Navon O, Altherr R, Stein M (2006) The Role of Lithospheric Mantle Heterogeneity in the Generation of Plio-Pleistocene Alkali Basaltic Suites from NW Harrat Ash Shaam (Israel). J Petrol 47: 1017–1050.

Gradstein FM, Agterberg FP, Ogg GJ, Hardenbol J, van Veen P, Thierry J, et al. (1994) A Mesozoic Time Scale. J Geophys Res 99: 24051–24074.

Grishkan I, Tsatskin A, Nevo E (2008) Diversity of cultured microfungal communities in surface horizons of soils on different lithologies in Upper Galilee, Israel. Eur J Soil Biol 44: 180–190.

Šumbera R, Šklíba J, Elichová M, Chitaukali WN, Burda H (2008) Natural history and burrow system architecture of the silvery mole-rat from Brachystegia woodland. J Zool 274: 77–84.

Rado R, Wollberg Z, Terkel J (1991) The ontogeny of seismic communication during dispersal in the blind mole rat. Anim Behav 42: 15–21.

Smith-Gill JS (1975) Cytophysiological basis of disruptive pigmentary patterns in the leopard frog, Rana pipiens. II. Wild type and mutant cell specific patterns. J Morphol 146: 35–54. PubMed

QGIS Development Team (2015) QGIS Geographic Information System. Available: http://qgis.osgeo.org.

Reichman OJ, Whitham TG, Ruffner GA (1982) Adaptive Geometry of Burrow Spacing in Two Pocket Gopher Populations. Ecology 63: 687–695.

Block A, von Bloh W, Schnellhuber HJ (1990) Efficient box-counting determination of generalized fractal dimensions. Phys Rev A 42: 1869–1874. PubMed

Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11: 36–42.

Karpien A (1999–2013) FracLac for ImageJ. Available: http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm

Šumbera R, Mazoch V, Patzenhauerová H, Lövy M, Šklíba J, Bryja J, et al. (2012) Burrow architecture, family composition and habitat characteristics of the largest social African mole-rat: the giant mole-rat constructs really giant burrow systems. Acta Theriol 57: 121–130.

Le Comber SC, Spinks AC, Bennett NC, Jarvis JUM, Faulkes CG (2002) Fractal dimension of African mole-rat burrows. Can J Zool 80: 436–441.

R Development Core Team (2015) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; Available: http://www.r-project.org.

ter Braak JCF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows User’s guide: Software for canonical community ordination (version 4.5) Ithaca, NY: Microcomputer Power.

Ebdon D (1985) Statistics in Geography. Oxford, UK: Basil Blackwell Ltd.

Verheye W, de la Rosa D (2005) Mediterranean Soils, in Land Use and Land Cover Encyclopedia of Life Support Systems (EOLSS). Oxford, UK: Eolss Publishers; Available: http://www.eolss.net.

Smith CW, Hadas A, Dan J, Koyumdjisky H (1985) Shrinkage and Atterberg limits in relation to other properties of principal soil types in Israel. Geoderma 35: 47–65.

Jarvis JUM, Bennett NC, Spinks AC (1998) Food availability and foraging by wild colonies of Damaraland mole-rats (Cryptomys damarensis): implications for sociality. Oecologia 113: 290–298. PubMed

Hillel D (1998) Environmental Soil Physics. San Diego, USA: Academic Press.

Shams I, Avivi A, Nevo E (2005) Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic-hypercapnic stresses. Comp Biochem Physiol A 142: 376–382. PubMed

Topachevskii VA (1976) Fauna of the USSR: Mammals. Mole rats, Spalacidae. New Delhi, India: Amerind Publishing Company.

Nevo E (1961) Observations on Israeli populations of the mole rat Spalax e. ehrenbergi Nehring 1898. Mammalia 25: 127–144.

Dafni A, Cohen D, Noy-Mier I (1981) Life-Cycle Variation in Geophytes. Ann Missouri Bot Gard 68: 652–660.

Busch C, Antinuchi CD, del Valle JC, Kittlein MJ, Malizia AI, Vassallo AI, et al. (2000) Population Ecology of Subterranean Rodents In: Lacey EA, Patton JL, Cameron GN, editors. Life underground: the biology of subterranean rodents. Chicago, USA: The University of Chicago Press; 2000. pp. 183–226.

Heth G, Golenberg EM, Nevo E (1989) Foraging strategy in a subterranean rodent Spalax ehrenbergi: a test case for optimal foraging theory. Oecologia 79: 496–505. PubMed

Henkin Z, Seligman NG, Noy-Mier I (2007) Successional Transitions and Management of a Phosphorus-Limited Shrubland Ecosystem. Rangel Ecol Manag 60: 453–463.

Mohammad AG, Alseekh SH (2012) The effect of Sarcopoterium spinosum on soil and vegetation characteristics. Catena 100: 10–14.

Šumbera R, Burda H, Chitaukali WN, Kubová J (2003) Silvery mole-rats (Heliophobius argenteocinereus, Bathyergidae) change their burrow architecture seasonally. Naturwissenschaften 90: 370–373. PubMed

Heth G (1989) Burrow patterns of the mole rat Spalax ehrenbergi in two soil types (terra-rossa and rendzina) in Mount Carmel, Israel. J Zool 217: 39–56.

Nevo E, Heth G, Beiles A (1986) Aggression Patterns in Adaptation and Speciation of Subterranean Mole Rats. J Genet 65: 65–78.

Zuri I, Terkel J (1996) Locomotor patterns, territory, and tunnel utilization in the mole-rat Spalax ehrenbergi . J Zool 240: 123–140.

Cameron GN, Spencer SR, Eshelman BD, Williams LR, Gregory MJ (1988) Activity and Burrow Structure of Attwater’s Pocket Gopher (Geomys attwateri). J Mammal 69: 667–677.

Pearson OPN, Binztein N, Boiry L, Busch C, Dipace M, Gallopin G, et al. (1968) Estructura social, distribución espacial y composición por edades de una población de tuco tucos (Ctenomys talarum). Investig Zoológicas Chil 13: 47–80.

Nevo E, Heth G, Beiles A (1982) Population structure and evolution in subterranean mole rats. Evolution 36: 1283–1289. PubMed

Begall S, Burda H, Schleich CE (2007) Subterranean Rodents: News from Underground. Springer-Verlag, Berlin Heidelberg New York.

Shanas U, Heth G, Nevo E, Shalgi R, Terkel J (1995) Reproductive-Behavior in the Female Blind Mole-Rat (Spalax ehrenbergi). J Zool 237: 195–210.

Gazit I, Terkel J (2000) Reproductive behavior of the blind mole-rat (Spalax ehrenbergi) in a seminatural burrow system. Can J Zool 78: 570–577.

Jarvis JUM (1973) Structure of a Population of mole-rats, Tachyoryctes splendens, (Rodentia: Rhizomyidae). J Zool 171: 1–14.

Via S (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol 16: 381–390. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...