Do subterranean mammals use the Earth's magnetic field as a heading indicator to dig straight tunnels?
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30402349
PubMed Central
PMC6215444
DOI
10.7717/peerj.5819
PII: 5819
Knihovny.cz E-zdroje
- Klíčová slova
- Burrow systems, Magnetoreception, Mole-rats, Orientation, Subterranean rodents,
- Publikační typ
- časopisecké články MeSH
Subterranean rodents are able to dig long straight tunnels. Keeping the course of such "runways" is important in the context of optimal foraging strategies and natal or mating dispersal. These tunnels are built in the course of a long time, and in social species, by several animals. Although the ability to keep the course of digging has already been described in the 1950s, its proximate mechanism could still not be satisfactorily explained. Here, we analyzed the directional orientation of 68 burrow systems in five subterranean rodent species (Fukomys anselli, F. mechowii, Heliophobius argenteocinereus, Spalax galili, and Ctenomys talarum) on the base of detailed maps of burrow systems charted within the framework of other studies and provided to us. The directional orientation of the vast majority of all evaluated burrow systems on the individual level (94%) showed a significant deviation from a random distribution. The second order statistics (averaging mean vectors of all the studied burrow systems of a respective species) revealed significant deviations from random distribution with a prevalence of north-south (H. argenteocinereus), NNW-SSE (C. talarum), and NE-SW (Fukomys mole-rats) oriented tunnels. Burrow systems of S. galili were randomly oriented. We suggest that the Earth's magnetic field acts as a common heading indicator, facilitating to keep the course of digging. This study provides a field test and further evidence for magnetoreception and its biological meaning in subterranean mammals. Furthermore, it lays the foundation for future field experiments.
Zobrazit více v PubMed
Antinuchi CD, Busch C. Burrow structure in the subterranean rodent Ctenomys talarum. Zeitschrift für Säugetierkunde. 1992;57(3):163–168.
Batschelet E. Circular statistics in biology. New York: Academic Press; 1981. p. 371.
Begall S, Burda H, Malkemper EP. Magnetoreception in mammals. Advances in the Study of Behavior. 2014;46:45–88. doi: 10.1016/B978-0-12-800286-5.00002-X. DOI
Begall S, Burda H, Schleich CE, editors. Subterranean Rodents—News from Underground. Berlin, Heidelberg, New York: Springer; 2007. p. 398.
Begall S, Červený J, Neef J, Vojtĕch O, Burda H. Magnetic alignment in grazing and resting cattle and deer. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(44):13451–13455. doi: 10.1073/pnas.0803650105. PubMed DOI PMC
Begall S, Malkemper EP, Červený J, Němec P, Burda H. Magnetic alignment in mammals and other animals. Mammalian Biology—Zeitschrift für Säugetierkunde. 2013;78(1):10–20. doi: 10.1016/j.mambio.2012.05.005. DOI
Brett RA. The ecology of naked mole-rat colonies: burrowing, food, and limiting factors. In: Sherman PW, Jarvis JUM, Alexander RD, editors. The biology of the naked mole-rat. New Jersey: Princeton University Press; 1991. pp. 137–184.
Burda H. Magnetische Navigation bei den Graumullen, Cryptomys hottentotus (Bathyergidae)? Zeitschrift für Säugetierkunde. 1987;61(Suppl.):12.
Burda H, Marhold S, Westenberger T, Wiltschko R, Wiltschko W. Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae) Experientia. 1990;46(5):528–530. doi: 10.1007/bf01954256. PubMed DOI
Červený J, Burda H, Ježek M, Kušta T, Husinec V, Nováková P, Hart V, Hartová V, Begall S, Malkemper EP. Magnetic alignment in warthogs Phacochoerus africanus and wild boars Sus scrofa. Mammal Review. 2017;47(1):1–5. doi: 10.1111/mam.12077. DOI
Dawson WD, Lake CE, Schumpert SS. Inheritance of burrow building in Peromyscus. Behavior Genetics. 1988;18(3):371–382. doi: 10.1007/bf01260937. PubMed DOI
De Graaff G. On the mole-rat (Cryptomys hottentotus damarensis) (Rodentia) in the Kalahari Gemsbok National Park. Koedoe. 1972;15(1):25–35. doi: 10.4102/koedoe.v15i1.665. DOI
Ebensperger LA, Bozinovic F. Energetics and burrowing behaviour in the semifossorial degu Octodon degus (Rodentia: Octodontidae) Journal of Zoology. 2000;252(2):179–186. doi: 10.1111/j.1469-7998.2000.tb00613.x. DOI
Eloff G. Orientation in the mole-rat Cryptomys. British Journal of Psychology. 1951;42(1–2):134–145. doi: 10.1111/j.2044-8295.1951.tb00285.x. DOI
Eloff G. The functional and structural degeneration of the eye of the South African rodent moles, Cryptomys bigalkei and Bathyergus maritimus. South African Journal of Science. 1958;54(11):293–302.
Eppelbaum L, Ben-Avraham Z, Katz Y. Integrated analysis of magnetic, paleomagnetic and K-Ar data in a tectonic complex region: an example from the Sea of Galilee. Geophysical Research Letters. 2004;31(19):L19602. doi: 10.1029/2004gl021298. DOI
Hart V, Kušta T, Němec P, Bláhová V, Ježek M, Nováková P, Begall S, Červený J, Hanzal V, Malkemper EP, Štípek K, Vole C, Burda H. Magnetic alignment in carps: evidence from the Czech christmas fish market. PLOS ONE. 2012;7(12):e51100. doi: 10.1371/journal.pone.0051100. PubMed DOI PMC
Hart V, Malkemper EP, Kušta T, Begall S, Nováková P, Hanzal V, Pleskač L, Ježek M, Policht R, Husinec V, Červený J, Burda H. Directional compass preference for landing in water birds. Frontiers in Zoology. 2013;10(1):38. doi: 10.1186/1742-9994-10-38. PubMed DOI PMC
Heth G, Todrank J, Begall S, Koch R, Zilbiger Y, Nevo E, Braude SH, Burda H. Odours underground: subterranean rodents may not forage “blindly”. Behavioral Ecology and Sociobiology. 2002;52(1):53–58. doi: 10.1007/s00265-002-0476-0. DOI
Hickman GC. Adaptiveness of tunnel systems features in subterranean mammal burrows. In: Nevo E, Reig OA, editors. Evolution of Subterranean Mammals at the Organismal and Molecular Levels. New York: Wiley-Liss; 1990. pp. 185–210. PubMed
Holland RA, Thorup K, Vonhof MJ, Cochran WW, Wikelski M. Navigation—Bat orientation using Earth’s magnetic field. Nature. 2006;444(7120):702. doi: 10.1038/444702a. PubMed DOI
Hu CK, Hoekstra HE. Peromyscus burrowing: a model system for behavioral evolution. Seminars in Cell & Developmental Biology. 2017;61:107–114. doi: 10.1016/j.semcdb.2016.08.001. PubMed DOI
Jarvis JUM, O’riain MJ, Bennett NC, Sherman PW. Mammalian eusociality—a family affair. Trends in Ecology & Evolution. 1994;9(2):47–51. doi: 10.1016/0169-5347(94)90267-4. PubMed DOI
Kimchi T, Etienne AS, Terkel J. A subterranean mammal uses the magnetic compass for path integration. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(4):1105–1109. doi: 10.1073/pnas.0307560100. PubMed DOI PMC
Kimchi T, Reshef M, Terkel J. Evidence for the use of reflected self-generated seismic waves for spatial orientation in a blind subterranean mammal. Journal of Experimental Biology. 2005;208(4):647–659. doi: 10.1242/jeb.01396. PubMed DOI
Kimchi T, Terkel J. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. Journal of Experimental Biology. 2001;204:751–758. PubMed
Kott O, Moritz RE, Šumbera R, Burda H, Němec P. Light propagation in burrows of subterranean rodents: tunnel system architecture but not photoreceptor sensitivity limits light sensation range. Journal of Zoology. 2014;294(1):68–76. doi: 10.1111/jzo.12152. DOI
Lacey EA. Spatial and social systems of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN, editors. Life Underground: The Biology of Subterranean Rodents. Chicago and London: University of Chicago Press; 2000. pp. 257–293.
Lange S, Neumann B, Hagemeyer P, Burda H. Kairomone-guided food location in subterranean Zambian mole-rats (Cryptomys spp., Bathyergidae) Folia Zoologica. 2005;54(3):263–268.
Lovegrove BG, Körtner G, Körtner G. The magnetic compass orientation of the burrows of the Damara mole-rat Cryptomys damarensis (Bathyergidae) Journal of Zoology. 1992;226(4):631–633. doi: 10.1111/j.1469-7998.1992.tb07505.x. DOI
Lövy M, Šklíba J, Hrouzková E, Dvořáková V, Nevo E, Šumbera R. Habitat and burrow system characteristics of the blind mole rat Spalax galili in an area of supposed sympatric speciation. PLOS ONE. 2015;10(7):e0133157. doi: 10.1371/journal.pone.0133157. PubMed DOI PMC
Luna F, Antinuchi CD, Busch C. Digging energetics in the South American rodent Ctenomys talarum (Rodentia, Ctenomyidae) Canadian Journal of Zoology. 2002;80(12):2144–2149. doi: 10.1139/z02-201. DOI
Malewski S, Malkemper EP, Sedláček F, Šumbera R, Caspar KR, Burda H, Begall S. Attracted by a magnet: exploration behaviour of rodents in the presence of magnetic objects. Behavioural Processes. 2018;151:11–15. doi: 10.1016/j.beproc.2018.02.023. PubMed DOI
Malkemper EP, Eder SHK, Begall S, Phillips JB, Winklhofer M, Hart V, Burda H. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields. Scientific Reports. 2015;5(1):9917. doi: 10.1038/srep09917. PubMed DOI PMC
Malkemper EP, Painter MS, Landler L. Shifted magnetic alignment in vertebrates: evidence for neural lateralization? Journal of Theoretical Biology. 2016;399:141–147. doi: 10.1016/j.jtbi.2016.03.040. PubMed DOI
Marhold S. Orientation and Navigation—Birds, Humans and Other Animals. Oxford: Royal Institute of Navigation; 1997. Magnetic orientation in common mole-rats from Zambia; pp. 5.1–5.9.
Marhold S, Beiles A, Burda H, Nevo E. Spontaneous directional preference in a subterranean rodent, the blind mole-rat, Spalax ehrenbergi. Folia Zoologica. 2000;49(1):7–18.
Marhold S, Wiltschko W, Burda H. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften. 1997;84(9):421–423. doi: 10.1007/s001140050422. DOI
Metz HC, Bedford NL, Pan YL, Hoekstra HE. Evolution and genetics of precocious burrowing behavior in Peromyscus mice. Current Biology. 2017;27(24):3837–3845. doi: 10.1016/j.cub.2017.10.061. PubMed DOI
Moritz RE, Burda H, Begall S, Němec P. Magnetic compass: a useful tool underground. In: Begall S, Burda H, Schleich CE, editors. Subterranean Rodents—News from Underground. Berlin, Heidelberg, New York: Springer; 2007. pp. 161–174.
Müller M, Burda H. Restricted hearing range in a subterranean rodent, Cryptomys hottentotus. Naturwissenschaften. 1989;76(3):134–135. doi: 10.1007/bf00366611. PubMed DOI
Nevo E. Mosaic evolution of subterranean mammals: regression, progression, and global convergence. New York: Oxford University Press; 1999. p. 448.
Nevo E, Filippucci MG, Redi C, Simson S, Heth G, Beiles A. Karyotype and genetic evolution in speciation of subterranean mole rats of the genus Spalax in Turkey. Biological Journal of the Linnean Society. 1995;54(3):203–229. doi: 10.1111/j.1095-8312.1995.tb01034.x. DOI
Nováková P, Kořanová D, Begall S, Malkemper EP, Pleskač L, Čapek F, Červený J, Hart V, Hartová V, Husinec V, Burda H. Direction indicator and magnetic compass-aided tracking of the sun by flamingos? Folia Zoologica. 2017;66(2):79–86. doi: 10.25225/fozo.v66.i2.a2.2017. DOI
Obleser P, Hart V, Malkemper EP, Begall S, Holá M, Painter MS, Červený J, Burda H. Compass-controlled escape behavior in roe deer. Behavioral Ecology and Sociobiology. 2016;70(8):1345–1355. doi: 10.1007/s00265-016-2142-y. DOI
Oliveriusová L, Němec P, Králová Z, Sedláček F. Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference? Journal of Experimental Biology. 2012;215(20):3649–3654. doi: 10.1242/jeb.069625. PubMed DOI
Oliveriusová L, Němec P, Pavelková Z, Sedláček F. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus. Naturwissenschaften. 2014;101(7):557–563. doi: 10.1007/s00114-014-1192-0. PubMed DOI
Olson J, Pollard DD. Inferring paleostresses from natural fracture patterns: a new method. Geology. 1989;17(4):345–348. doi: 10.1130/0091-7613(1989)017<0345:ipfnfp>2.3.co;2. DOI
Phillips JB. Magnetic compass orientation in the eastern red-spotted newt (Notophthalmus viridescens) Journal of Comparative Physiology A. 1986;158(1):103–109. doi: 10.1007/bf00614524. PubMed DOI
Pleskač L, Hart V, Nováková P, Painter MS. Spatial orientation of foraging corvids consistent with spontaneous magnetic alignment responses observed in a variety of free-roaming vertebrates. Folia Zoologica. 2017;66(2):87–94. doi: 10.25225/fozo.v66.i2.a3.2017. DOI
Poduschka W. Abwehhrreaktionen der Mullratte, Cryptomys hottentottus (Lesson, 1826) Säugetierkundliche Mitteilungen. 1978;26:260–274.
Rado R, Wollberg Z, Terkel J. Dispersal of young mole rats (Spalax ehrenbergi) from the natal burrow. Journal of Mammalogy. 1992;73(4):885–890. doi: 10.2307/1382211. DOI
Reyes A, Nevo E, Saccone C. DNA sequence variation in the mitochondrial control region of subterranean mole rats, Spalax ehrenbergi superspecies, in Israel. Molecular Biology and Evolution. 2003;20(4):622–632. doi: 10.1093/molbev/msg061. PubMed DOI
Romañach SS, Seabloom EW, Reichman OJ, Rogers WE, Cameron GN. Effects of species, sex, age, and habitat on geometry of pocket gopher foraging tunnels. Journal of Mammalogy. 2005;86(4):750–756. doi: 10.1644/1545-1542(2005)086[0750:eossaa]2.0.co;2. DOI
Rosevear DR. The rodents of West Africa. London: British Museum of Natural History; 1969. p. 604.
Savić IR. Ecology of the species Spalax leucodon Nordm. in Yugoslavia. Natural Science. 1973;44:5–70.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Schleich CE, Antinuchi CD. Testing magnetic orientation in a solitary subterranean rodent Ctenomys talarum (Rodentia: Octodontidae) Ethology. 2004;110(6):485–495. doi: 10.1111/j.1439-0310.2004.00981.x. DOI
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Sichilima AM, Bennett NC, Faulkes CG, Le Comber SC. Evolution of African mole-rat sociality: burrow architecture, rainfall and foraging in colonies of the cooperatively breeding Fukomys mechowii. Journal of Zoology. 2008;275(3):276–282. doi: 10.1111/j.1469-7998.2008.00439.x. DOI
Šklíba J, Mazoch V, Patzenhauerová H, Hrouzková E, Lovy M, Kott O, Šumbera R. A maze-lover’s dream: burrow architecture, natural history and habitat characteristics of Ansell’s mole-rat (Fukomys anselli) Mammalian Biology. 2012;77(6):420–427. doi: 10.1016/j.mambio.2012.06.004. DOI
Šklíba J, Šumbera R, Chitaukali WN. What determines the way of deposition of excavated soil in a subterranean rodent? Acta Theriologica. 2010;55(3):271–277. doi: 10.4098/j.at.0001-7051.099.2009. DOI
Šklíba J, Šumbera R, Chitaukali WN, Burda H. Home-range dynamics in a solitary subterranean rodent. Ethology. 2009;115(3):217–226. doi: 10.1111/j.1439-0310.2008.01604.x. DOI
Šumbera R, Burda H, Chitaukali WN, Kubová J. Silvery mole-rats (Heliophobius argenteocinereus, Bathyergidae) change their burrow architecture seasonally. Naturwissenschaften. 2003;90(8):370–373. doi: 10.1007/s00114-003-0439-y. PubMed DOI
Šumbera R, Mazoch V, Patzenhauerová H, Lövy M, Šklíba J, Bryja J, Burda H. Burrow architecture, family composition and habitat characteristics of the largest social African mole-rat: the giant mole-rat constructs really giant burrow systems. Acta Theriologica. 2012;57(2):121–130. doi: 10.1007/s13364-011-0059-4. DOI
Šumbera R, Šklíba J, Elichová M, Chitaukali WN, Burda H. Natural history and burrow system architecture of the silvery mole-rat from Brachystegia woodland. Journal of Zoology. 2008;274(1):77–84. doi: 10.1111/j.1469-7998.2007.00359.x. DOI
Teroni E, Portenier V, Maurer R, Etienne AS. The control of spatial orientation by self-generated and visual cues in the golden hamster. Sciences et Techniques de L’Animal de Laboratoire. 1988;13:99–102.
Thalau P, Ritz T, Burda H, Wegner RE, Wiltschko R. The magnetic compass mechanisms of birds and rodents are based on different physical principles. Journal of the Royal Society Interface. 2006;3(9):583–587. doi: 10.1098/rsif.2006.0130. PubMed DOI PMC
Thomas HG, Swanepoel D, Bennett NC. Burrow architecture of the Damaraland mole-rat (Fukomys damarensis) from South Africa. African Zoology. 2016;51(1):29–36. doi: 10.1080/15627020.2015.1128355. DOI
Vleck D. The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiological Zoology. 1979;52(2):122–136. doi: 10.1086/physzool.52.2.30152558. DOI
Voigt C. An example of burrow system architecture of dispersing Damaraland mole-rats. African Zoology. 2014;49(1):148–152. doi: 10.3377/004.049.0118. DOI
Weber JN, Peterson BK, Hoekstra HE. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature. 2013;493(7432):402–405. doi: 10.1038/nature11816. PubMed DOI
Wegner RE, Begall S, Burda H. Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal. Journal of Experimental Biology. 2006;209(23):4747–4750. doi: 10.1242/jeb.02573. PubMed DOI
Wiltschko R, Wiltschko W. Magnetic Orientation in Animals. Berlin, Heidelberg: Springer; 1995. p. 297.
Yağci T, Coşkun Y, Aşan N. The tunnel structure of blind mole rats (genus Spalax) in Turkey. Zoology in the Middle East. 2010;50(1):35–40. doi: 10.1080/09397140.2010.10638409. DOI
Zuri I, Terkel J. Summer tunneling activity of mole rats (Spalax ehrenbergi) in a sloping field with moisture gradient. Mammalia. 1997;61(1):47–54. doi: 10.1515/mamm.1997.61.1.47. DOI