Magnetic alignment in carps: evidence from the Czech christmas fish market

. 2012 ; 7 (12) : e51100. [epub] 20121205

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23227241

While magnetoreception in birds has been studied intensively, the literature on magnetoreception in bony fish, and particularly in non-migratory fish, is quite scarce. We examined alignment of common carps (Cyprinus carpio) at traditional Christmas sale in the Czech Republic. The sample comprised measurements of the directional bearings in 14,537 individual fish, distributed among 80 large circular plastic tubs, at 25 localities in the Czech Republic, during 817 sampling sessions, on seven subsequent days in December 2011. We found that carps displayed a statistically highly significant spontaneous preference to align their bodies along the North-South axis. In the absence of any other common orientation cues which could explain this directional preference, we attribute the alignment of the fish to the geomagnetic field lines. It is apparent that the display of magnetic alignment is a simple experimental paradigm of great heuristic potential.

Zobrazit více v PubMed

Tesch FW (1974) Influence of geomagnetism and salinity on the directional choice of eels. Helgol Meeresunters 26: 382–395.

Tesch F, Lelek A (1973) Directional behaviour of transplanted stationary and migratory forms of the eel, Anguilla anguilla, in a circular tank. Neth J Sea Res 7: 46–52.

Becker G (1974) Einfluss des Magnetfelds auf das Richtungsverhalten von Goldfischen. Naturwiss 61: 220–221. PubMed

Chew GL, Brown GE (1989) Orientation of rainbow trout (Salmo gairdneri) in normal and null magnetic fields. Can J Zool 67: 641–643.

Van Ginneken V, Muusze B, Klein Bretele J, van den Thillart G (2005) Microelectronic detection of activity level and magnetic orientation of yellow European eel, Anguilla anguilla L., in a pond. Environm Biol Fishes 72: 313–320.

Quinn TP (1980) Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J Comp Physiol A 137: 243–248.

Quinn TP, Brannon EL (1982) The use of celestial and magnetic cues by orienting sockeye salmon smolts. J Comp Physiol A 147: 547–552.

Quinn TP, Merrill RT, Brannon EL (1981) Magnetic field detection in sockeye salmon. J Exp Zool 217: 137–142.

Formicki K, Sadowski M, Tanski A, Korzelecka-Orkisz A, Winnicki A (2004) Behaviour of trout (Salmo trutta L.) larvae and fry in a constant magnetic field. J Appl Ichthyol 20: 290–294.

Yano A, Ogura M, Sato A, Sakaki Y, Shimizu Y, et al. (1997) Effect of modified magnetic field on the ocean migration of maturing chum salmon, Oncorhynchus keta . Marine Biol 129: 523–530.

Takebe A, Furutani T, Wada T, Koinuma M, Kubo Y, et al. (2012) Zebrafish respond to the geomagnetic field by bimodal and group-dependent orientation. Sci Reports 2: 727 DOI: 10.1038/srep00727. PubMed PMC

Walker MM (1984) Learned magnetic discrimination in yellowfin tuna, Thunnus albacares . J Comp Physiol A 155: 673–679.

Walker MM, Diebel CE, Haugh CV, Pankhurst PM, Montgomery JC (1997) Structure and function of the vertebrate magnetic sense. Nature 390: 371–376. PubMed

Haugh CV, Walker MM (1998) Magnetic discrimination learning in rainbow trout (Oncorhynchus mykiss). J Navigation 51: 35–45.

Shcherbakov D, Winklhofer M, Peterson N, Steidle J, Hilbig R, et al. (2005) Magnetosensation in zebrafish. Curr Biol 15: R161–R162. PubMed

Rommel S, McCleave J (1973) Sensitivity of American eels (Anguilla rostrata) and Atlantic salmon (Salmo salar) to weak electric and magnetic fields. J Fish Res Board Can 30: 657–663.

Walker MM, Bittermann ME (1986) Attempts to train goldfish to respond to magnetic field stimuli. Naturwiss 73: 12–16. PubMed

Yano A, Sato A, Miyata T, Mizutani Y, Sakaki Y, et al. (1996) Behavioral tests for magnetic sensitivity of hime salmon (Kokanee: Land-locked sockeye salmon Oncorhynchus nerka . Nippon Suisan Gakkaishi 62: 911–919.

Nishi T, Kawamura G (2005) Anguilla japonica is already magnetosensitive at the glass eel phase. J Fish Biol 67: 1213–1224.

Nishi T, Kawamura G (2006) Magnetosensitivity in the darkbanded rockfish Sebastes inermis . Nippon Suisan Gakkaishi 72: 27–33.

Nishi T, Kawamura G, Matsumoto K (2004) Magnetic sense in the Japanese eel, Anguilla japonica, as determined by conditioning and electrocardiography. J Exp Biol 207: 2965–2970. PubMed

Hellinger J, Hoffmann KP (2009) Magnetic field perception in the rainbow trout, Oncorhynchus mykiss . J Comp Physiol A 195: 873–879. PubMed

Hellinger J, Hoffmann KP (2012) Magnetic field perception in the rainbow trout Oncorynchus mykiss: magnetite mediated, light dependent or both? J Comp Physiol A 198: 593–605. PubMed

Formicki K, Tanski A, Sadowski M, Winnicki A (2004) Effects of magnetic fields on fyke net performance. J Appl Ichthyol 20: 402–406.

Hanson M, Walker M (1987) Magnetic particles in European eel (Anguilla anguilla) and carp (Cyprinus carpio). Magnetic susceptibility and remanence. J Magnet Magnet Materials 66: 1–7.

Hanson M, Westerberg H (1987) Occurrence of magnetic material in teleosts. Comp Biochem Physiol A 86: 169–172. PubMed

Walker MM, Quinn TP, Kirschvink JL, Groot C (1988) Production of single-domain magnetite throughout life by sockeye salmon Oncorhynchus nerka . J Exp Biol 140: 51–63. PubMed

Eder SHK, Cadiou H, Muhamad A, McNaughton PA, Kirschvink JL, et al... (2012) Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. Proc Natl Acad Sci USA Early edition doi/10.1073/pnas.1205653109. PubMed PMC

Stuart IG, Jones MJ (2006) Movement of common carp, Cyprinus carpio, in a regulated lowland Australian river: implications for management. Fish Manag Ecol 13: 213–219.

Jones MJ, Stuart IG (2009) Lateral movement of common carp (Cyprinus carpio L.) in a large lowland river and floodplain. Ecol Freshwater Fish 18: 72–82.

Daniel AJ, Hicks BJ, Ling N, David BO (2011) Movements of radio- and acoustic-tagged adult koi carp in the Waikato River, New Zealand. North Amer J Fish Manag 31: 352–362.

Ritz T, Thalau P, Phillips J, Wiltschko R, Wiltschko W (2004) Resonance effects indicate a radical pair mechanism for avian magnetic compass. Nature 429: 177–180. PubMed

Burda H, Begall S, Červený J, Neef J, Němec P (2009) Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc Natl Acad Sci USA 106: 5708–5713. PubMed PMC

Begall S, Červený J, Neef J, Vojtech O, Burda H (2008) Magnetic alignment in grazing and resting cattle and deer. Proc Natl Acad Sci USA 105: 13451–13455. PubMed PMC

Begall S, Malkemper EP, Červený J, Němec P, Burda H (2012) Magnetic alignment in mammals and other animals. Mammal Biol Epub July 2012; http://dx.doi.org/10.1016/j.mambio.2012.05.005. DOI

Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Berlin: Springer.

Batschelet E (1981) Circular Statistics in Biology. London: Academic Press.

Oca J, Masaló I, Reig L (2004) Comparative analysis of flow patterns in aquaculture rectangular tanks with different water inlet characteristics. Aquacult Eng 31: 221–236.

Becker G (1963) Ruheeinstellung nach der Himmelsrichtung, eine Magnetfeldorientierung bei Termiten. Naturwiss 50: 455.

Becker G, Speck U (1964) Untersuchungen über die Magnetfeldorientierung von Dipteren. Z Vergl Physiol 49: 301–340.

Vácha M, Kvíčalová M, Puzová T (2010) American cockroaches prefer four cardinal geomagnetic positions at rest. Behaviour 147: 425–440.

Phillips JB, Borland SC, Freake MJ, Brassart J, Kirschvink JL (2002) ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J Exp Biol 205: 3903–3914. PubMed

Schlegel PA (2007) Spontaneous preferences for magnetic compass direction in the American red-spotted newt, Notophthalmus viridescens (Salamandridae, Urodela). J Ethol 25: 177–184.

Wiltschko R, Wiltschko W (2009) “Fixed-direction” responses of birds in the geomagnetic field. Commun Integr Biol 2: 100–102. PubMed PMC

Begall S, Burda H, Červený J, Gerter O, Neef-Weisse J, et al. (2011) Further support for the alignment of cattle along magnetic field lines: reply to Hert et al. J Comp Phys A 197: 1127–1133. PubMed PMC

Červený J, Begall S, Koubek P, Nováková P, Burda H (2011) Directional preference may enhance hunting accuracy in foraging foxes. Biol Lett 7: 355–357. PubMed PMC

Thake MA (1981) Nonsense orientation: an adaptation for flocking during predation? Ibis 123: 47–248.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...