Directional preference may enhance hunting accuracy in foraging foxes
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21227977
PubMed Central
PMC3097881
DOI
10.1098/rsbl.2010.1145
PII: rsbl.2010.1145
Knihovny.cz E-resources
- MeSH
- Ecosystem MeSH
- Foxes psychology MeSH
- Magnetics MeSH
- Predatory Behavior * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Red foxes hunting small animals show a specific behaviour known as 'mousing'. The fox jumps high, so that it surprises its prey from above. Hearing seems to be the primary sense for precise prey location in high vegetation or under snow where it cannot be detected with visual cues. A fox preparing for the jump displays a high degree of auditory attention. Foxes on the prowl tend to direct their jumps in a roughly north-eastern compass direction. When foxes are hunting in high vegetation and under snow cover, successful attacks are tightly clustered to the north, while attacks in other directions are largely unsuccessful. The direction of attacks was independent of time of day, season of the year, cloud cover and wind direction. We suggest that this directional preference represents a case of magnetic alignment and enhances the precision of hunting attacks.
See more in PubMed
Begall S., Cerveny J., Neef J., Vojtech O., Burda H. 2008. Magnetic alignment in grazing and resting cattle and deer. Proc. Natl Acad. Sci. USA 105, 13 451–13 45510.1073/pnas.0803650105 (doi:10.1073/pnas.0803650105) PubMed DOI PMC
Burda H., Begall S., Cerveny J., Neef J., Nemec P. 2009. Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc. Natl Acad. Sci. USA 106, 5708–571310.1073/pnas.0811194106 (doi:10.1073/pnas.0811194106) PubMed DOI PMC
Wiltschko R., Wiltschko W. 1995. Magnetic orientation in animals. Berlin, Germany: Springer
Schlegel P. A. 2008. Magnetic and other non-visual orientation mechanisms in some cave and surface urodeles. J. Ethol. 26, 347–35910.1007/s10164-007-0071-y (doi:10.1007/s10164-007-0071-y) DOI
Phillips J. B. 1996. Magnetic navigation. J. Theor. Biol. 180, 309–31910.1006/jtbi.1996.0105 (doi:10.1006/jtbi.1996.0105) DOI
Phillips J. B., Borland S. C., Freake M. J., Brassart J., Kirschvink J. L. 2002. ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J. Exp. Biol. 205, 3903–3914 PubMed
Phillips J. B., Muheim R., Jorge P. E. 2010. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? J. Exp. Biol. 213, 3247–325510.1242/jeb.020792 (doi:10.1242/jeb.020792) PubMed DOI
Phillips J. B. 1986. Two magnetoreception pathways in a migratory salamander. Science 233, 765–76710.1126/science.3738508 (doi:10.1126/science.3738508) PubMed DOI
Wiltschko W., Wiltschko R. 1972. Magnetic compass of European robins. Science 176, 62–6410.1126/science.176.4030.62 (doi:10.1126/science.176.4030.62) PubMed DOI
Freake M. J., Muheim R., Phillips J. B. 2006. Magnetic maps in animals—a theory comes of age? Quart. Rev. Biol. 81, 327–34710.1086/511528 (doi:10.1086/511528) PubMed DOI
Lohmann K. J. 2010. Magnetic-field perception. Nature 464, 1140–114210.1038/4641140a (doi:10.1038/4641140a) PubMed DOI
Knudsen E. I., Konishi M. 1978. A neural map of auditory space in the owl. Science 200, 795–79710.1126/science.644324 (doi:10.1126/science.644324) PubMed DOI
Thalau P., Ritz T., Burda H., Wegner R. E., Wiltschko R. 2006. The magnetic compass mechanisms of birds and rodents are based on different physical principles. J. R. Soc. Interface 3, 583–58710.1098/rsif.2006.0130 (doi:10.1098/rsif.2006.0130) PubMed DOI PMC
Ritz T., Adem S., Schulten K. 2000. A model for photoreceptor based magnetoreception in birds. Biophys. J. 78, 707–71810.1016/S0006-3495(00)76629-X (doi:10.1016/S0006-3495(00)76629-X) PubMed DOI PMC
Rodgers C. T., Hore P. J. 2009. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–36010.1073/pnas.0711968106 (doi:10.1073/pnas.0711968106) PubMed DOI PMC
Turning preference in dogs: North attracts while south repels
Ectosymbionts alter spontaneous responses to the Earth's magnetic field in a crustacean
Dogs can be trained to find a bar magnet
Dogs are sensitive to small variations of the Earth's magnetic field
Cattle on pastures do align along the North-South axis, but the alignment depends on herd density
Directional compass preference for landing in water birds
Magnetic alignment in carps: evidence from the Czech christmas fish market