Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus

. 2014 Jul ; 101 (7) : 557-63. [epub] 20140610

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24913128

Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species-the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.

Zobrazit více v PubMed

Front Zool. 2013 Dec 27;10(1):80 PubMed

J R Soc Interface. 2013 Feb 06;10(81):20121047 PubMed

Nature. 2006 Dec 7;444(7120):702 PubMed

J Exp Biol. 2013 Apr 1;216(Pt 7):1307-16 PubMed

Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6941-5 PubMed

J R Soc Interface. 2010 Apr 6;7 Suppl 2:S273-89 PubMed

J R Soc Interface. 2013 Jan 30;10(81):20121046 PubMed

J Exp Biol. 2010 Oct 1;213(Pt 19):3247-55 PubMed

J Exp Biol. 2007 Sep;210(Pt 18):3171-8 PubMed

Proc Biol Sci. 2007 Nov 22;274(1627):2901-5 PubMed

J R Soc Interface. 2010 Apr 6;7 Suppl 2:S163-77 PubMed

J Exp Biol. 2006 Dec;209(Pt 23):4747-50 PubMed

Learn Behav. 2006 Nov;34(4):366-73 PubMed

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Aug;199(8):695-701 PubMed

Biophys J. 2000 Feb;78(2):707-18 PubMed

Curr Opin Neurobiol. 2001 Aug;11(4):462-7 PubMed

Experientia. 1990 May 15;46(5):528-30 PubMed

J Exp Biol. 2009 Nov;212(Pt 21):3473-7 PubMed

J Exp Biol. 2012 Oct 15;215(Pt 20):3649-54 PubMed

J R Soc Interface. 2010 Sep 6;7(50):1275-92 PubMed

Biophys J. 2009 Apr 22;96(8):3451-7 PubMed

Naturwissenschaften. 2005 Apr;92(4):151-7 PubMed

Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13451-5 PubMed

Nature. 2004 May 13;429(6988):177-80 PubMed

Biometrics. 1999 Sep;55(3):782-91 PubMed

Biol Lett. 2011 Jun 23;7(3):355-7 PubMed

PLoS One. 2013 Aug 30;8(8):e73112 PubMed

J R Soc Interface. 2006 Aug 22;3(9):583-7 PubMed

Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5708-13 PubMed

PLoS One. 2008 Feb 27;3(2):e1676 PubMed

J Exp Biol. 2001 Feb;204(Pt 4):751-8 PubMed

J R Soc Interface. 2009 Jan 6;6(30):17-28 PubMed

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Dec;197(12):1127-33; discussion 1135-6 PubMed

Neurosci Lett. 1994 Dec 5;182(2):147-50 PubMed

Science. 2001 Oct 12;294(5541):366-8 PubMed

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Aug;191(8):675-93 PubMed

J Exp Biol. 2002 Oct;205(Pt 19):3031-7 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...