Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields

. 2015 Apr 29 ; 4 () : 9917. [epub] 20150429

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid25923312

The mammalian magnetic sense is predominantly studied in species with reduced vision such as mole-rats and bats. Far less is known about surface-dwelling (epigeic) rodents with well-developed eyes. Here, we tested the wood mouse Apodemus sylvaticus for magnetoreception using a simple behavioural assay in which mice are allowed to build nests overnight in a visually symmetrical, circular arena. The tests were performed in the ambient magnetic field or in a field rotated by 90°. When plotted with respect to magnetic north, the nests were bimodally clustered in the northern and southern sectors, clearly indicating that the animals used magnetic cues. Additionally, mice were tested in the ambient magnetic field with a superimposed radio frequency magnetic field of the order of 100 nT. Wood mice exposed to a 0.9 to 5 MHz frequency sweep changed their preference from north-south to east-west. In contrast to birds, however, a constant frequency field tuned to the Larmor frequency (1.33 MHz) had no effect on mouse orientation. In sum, we demonstrated magnetoreception in wood mice and provide first evidence for a radical-pair mechanism in a mammal.

Zobrazit více v PubMed

Wiltschko R. & Wiltschko W. in Sensing in Nature. (ed López-Larrea C., ed. ) 126–141 (Springer, 2012).

Wiltschko R. & Wiltschko W. Avian magnetic compass: Its functional properties and physical basis. Current Zoology 56, 265–276 (2010).

Phillips J. B. Magnetic compass orientation in the eastern red-spotted newt (Notophthalmus viridescens). J. Comp. Physiol. A. 158, 103–109 (1986). PubMed

Phillips J. B. Two magnetoreception pathways in a migratory salamander. Science 233, 765–767 (1986). PubMed

Lohmann K. J., Lohman C. M. F., Ehrhart L. M., Bagley D. A. & Swing T. Geomagnetic map used in sea–turtle navigation. Nature 428, 909–910 (2004). PubMed

Kirschvink J. L., Walker M. M. & Diebel C. E. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 11, 462–467 (2001). PubMed

Kobayashi A. & Kirschvink J. L. in Electromagnetic Fields: Biological Interactions and Mechanisms. (ed Blank M., ed. ) 367–394 (American Chemical Society Books, 1995).

Begall S., Burda H. & Malkemper E. P. in Adv. Study Behav. Vol. 46 (ed Naguib M., ed. ) 45–88 (Elsevier, 2014).

August P. V., Ayvazian S. G. & Anderson J. G. T. Magnetic orientation in a small mammal, Peromyscus leucopus. J. Mammal. 70, 1–9 (1989).

Mather J. G. & Baker R. R. Magnetic sense of direction in woodmice for route-based navigation. Nature 291, 152–155 (1981).

Madden R. C. & Phillips J. B. An attempt to demonstrate magnetic compass orientation in two species of mammals. Learn. Behav. 15, 130–134 (1987).

Sauvé J. P. Analyse de l’orientation initiale dans une expérience de retour au gîte chez le mulot, Apodemus sylvaticus. Sciences et Techniques de l’Animal de Laboratoire 13, 89–91 (1988).

Burda H., Marhold S., Westenberger T., Wiltschko R. & Wiltschko W. Evidence for magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae). Experientia 46, 528–530 (1990). PubMed

Oliveriusová L., Němec P., Králová Z. & Sedláček F. Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference? J. Exp. Biol. 215, 3649–3654 (2012). PubMed

Oliveriusová L., Němec P., Pavelková Z. & Sedláček F. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus. Naturwissenschaften 101, 557–563 (2014). PubMed

Thalau P., Ritz T., Burda H., Wegner R. E. & Wiltschko R. The magnetic compass mechanisms of birds and rodents are based on different physical principles. J. R. Soc. Interface 3, 583–587 (2006). PubMed PMC

Wegner R. E., Begall S. & Burda H. Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal. J. Exp. Biol. 209, 4747–4750 (2006). PubMed

Muheim R., Edgar N. M., Sloan K. A. & Phillips J. B. Magnetic compass orientation in C57BL/6J mice. Learn. Behav. 34, 366–373 (2006). PubMed

Marhold S., Beiles A., Burda H. & Nevo E. Spontaneous directional preference in a subterranean rodent, the blind mole-rat, Spalax ehrenbergi. Folia Zool. 49, 7–18 (2000).

Burda H. et al. Magnetic orientation in subterranean mole rats of the superspecies Spalax ehrenbergi: Experiments, patterns, and memory. Isr. J. Zool. 37, 182–183 (1991).

Marhold S., Wiltschko W. & Burda H. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84, 421–423 (1997).

Deutschlander M. E. et al. Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus. Anim. Behav. 65, 779–786 (2003).

Kirschvink J. L. & Gould J. L. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13, 181–201 (1981). PubMed

Davila A. F., Fleissner G., Winklhofer M. & Petersen N. A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Phys. Chem. Earth 28, 647–652 (2003).

Shcherbakov V. P. & Winklhofer M. Theoretical analysis of flux amplification by soft magnetic material in a putative biological magnetic-field receptor. Phys. Rev. E. 81, 031921 (2010). PubMed

Winklhofer M. & Kirschvink J. L. A quantitative assessment of torque-transducer models for magnetoreception. J. R. Soc. Interface 7, 273–289, 10.1098/rsif.2009.0435.focus (2010). PubMed DOI PMC

Dodson C. A., Hore P. & Wallace M. I. A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception. Trends Biochem. Sci. 38, 435–446, http://dx.doi.org/10.1016/j.tibs.2013.07.002 (2013). PubMed DOI

Ritz T., Ahmad M., Mouritsen H., Wiltschko R. & Wiltschko W. Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. J. R. Soc. Interface 7, 135–146 (2010). PubMed PMC

Ritz T., Adem S. & Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000). PubMed PMC

Wiltschko W. & Wiltschko R. The magnetic compass of European robins. Science 176, 62–64 (1972). PubMed

Wiltschko R. & Wiltschko W. The magnetite-based receptors in the beak of birds and their role in avian navigation. J. Comp. Physiol. A 199, 89–98 (2012). PubMed PMC

Marhold S., Burda H., Kreilos I. & Wiltschko W. in RIN 97 Orientation & Navigation - Birds, Humans and Other Animals. 1–9 (Royal Institute of Navigation London).

Holland R. A., Kirschvink J. L., Doak T. G. & Wikelski M. Bats use magnetite to detect the Earth's magnetic field. PLoS. ONE 3, e1676 (2008). PubMed PMC

Keary N. et al. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata. Front. Zool. 6, 25 (2009). PubMed PMC

Ritz T., Thalau P., Phillips J. B., Wiltschko R. & Wiltschko W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180 (2004). PubMed

Rodgers C. T. & Hore P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl. Acad. Sci. U.S.A. 106, 353–360 (2009). PubMed PMC

Stapput K., Thalau P., Wiltschko R. & Wiltschko W. Orientation of birds in total darkness. Curr. Biol. 18, 602–606 (2008). PubMed

Thalau P., Ritz T., Stapput K., Wiltschko R. & Wiltschko W. Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaften 92, 86–90 (2005). PubMed

Engels S. et al. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509, 353–356, 10.1038/nature13290 (2014). PubMed DOI

Phillips J. B. et al. Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed ‘plus’ water maze. PLoS. ONE 8, e73112, 10.1371/journal.pone.0073112 (2013). PubMed DOI PMC

Tew T. E. & MacDonald D. W. Dynamics of space use and male vigour amongst wood mice, Apodemus sylvaticus, in the cereal ecosystem. Behav. Ecol. Sociobiol. 34, 337–345 (1994).

Hacker H. P. & Pearson H. S. Distribution of the long-tailed field mouse, Apodemus sylvaticus, on South Haven Peninsula, Dorset, in 1937, with some observations on its wandering and homing powers. J. Proc. Linn. Soc., Zool. 42, 1–17, 10.1111/j.1096-3642.1951.tb01850.x (1951). DOI

Jamon M. & Bovet P. Possible use of environmental gradients in orientation by homing wood mice, Apodemus sylvaticus. Behav. Process. 15, 93–107, http://dx.doi.org/10.1016/0376-6357(87)90035-0 (1987). PubMed DOI

Begall S., Malkemper E. P., Červený J., Němec P. & Burda H. Magnetic alignment in mammals and other animals. Mamm. Biol. 78, 10–20, http://dx.doi.org/10.1016/j.mambio.2012.05.005 (2013). DOI

Begall S., Červený J., Neef J., Vojtěch O. & Burda H. Magnetic alignment in grazing and resting cattle and deer. Proceedings of the National Academy of Sciences 105, 13451–13455 (2008). PubMed PMC

Hart V. et al. Dogs are sensitive to small variations of the Earth's magnetic field. Front. Zool. 10, 80 (2013). PubMed PMC

Ritz T. et al. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys. J. 96, 3451–3457 (2009). PubMed PMC

Schulten K., Swenberg C. & Weller A. A biomagnetic sensory mechanism based on the geminate recombination of radical ion pairs in solvents. J. Phys. Chem. NF101, 371–390 (1978).

Xu B.-M., Zou J., Li H., Li J.-G. & Shao B. Effect of radio frequency fields on the radical pair magnetoreception model. Phys. Rev. E. 90, 042711 (2014). PubMed

Lambert N., De Liberato S., Emary C. & Nori F. Radical-pair model of magnetoreception with spin-orbit coupling. New J. Phys. 15, 083024 (2013).

Nießner C. et al. Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS. ONE 6, e20091 (2011). PubMed PMC

Nießner C. et al. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds. J. R. Soc. Interface 10, 20130638, 10.1098/rsif.2013.0638 (2013). PubMed DOI PMC

Solov'yov I. A. & Schulten K. Magnetoreception through cryptochrome may involve superoxide. Biophys. J. 96, 4804–4813 (2009). PubMed PMC

Lee A. A. et al. Alternative radical pairs for cryptochrome-based magnetoreception. J. R. Soc. Interface 11, 10.1098/rsif.2013.1063 (2014). PubMed DOI PMC

Wiltschko R., Stapput K., Thalau P. & Wiltschko W. Directional orientation of birds by the magnetic field under different light conditions. J. R. Soc. Interface 7, S163–S177 (2010). PubMed PMC

Landler L., Painter M. S., Youmans P. W., Hopkins W. A. & Phillips J. B. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings. PLoS. ONE. in press (2015). PubMed PMC

Gauger E. M., Rieper E., Morton J. J. L., Benjamin S. C. & Vedral V. Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 106, 040503 (2011). PubMed

Phillips J. B., Muheim R. & Jorge P. E. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? J. Exp. Biol. 213, 3247–3255 (2010). PubMed

Červený J., Begall S., Koubek P., Nováková P. & Burda H. Directional preference may enhance hunting accuracy in foraging foxes. Biol. Lett. 7, 355–357, 10.1098/rsbl.2010.1145 (2011). PubMed DOI PMC

Hart V. et al. Directional compass preference for landing in water birds. Front. Zool. 10, 38 (2013). PubMed PMC

Kirschvink J. L. et al. in Sensory Transduction. (eds Corey D. P., & Roper S. D., eds. ) 225–240. (Society of General Physiologists, 45th Annual Symposium, Rockefeller University Press, 1992).

Fleissner G., Stahl B., Thalau P. & Falkenberg G. A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften 94, 631–642 (2007). PubMed

ICNIRP. . in Health Phys Vol. 74 (ed International Commission for Non-Ionizing Radiation Protection.) 494–522 (1998). PubMed

Kirschvink J. L. Uniform magnetic fields and double wrapped coil systems: Improved techniques for the design of bioelectromagnetic experiments. Bioelectromagnetics 13, 401–411 (1992). PubMed

Batschelet E. Circular Statistics in Biology. (Academic Press., 1981).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...