Weak radiofrequency fields affect the insect circadian clock
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31530135
PubMed Central
PMC6769304
DOI
10.1098/rsif.2019.0285
Knihovny.cz E-zdroje
- Klíčová slova
- circadian clock, free-running rhythm, insects, magnetic field, magnetoreception, radiofrequency field,
- MeSH
- cirkadiánní hodiny * MeSH
- Drosophila MeSH
- Ectobiidae * MeSH
- rádiové vlny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
It is known that the circadian clock in Drosophila can be sensitive to static magnetic fields (MFs). Man-made radiofrequency (RF) electromagnetic fields have been shown to have effects on animal orientation responses at remarkably weak intensities in the nanotesla range. Here, we tested if weak broadband RF fields also affect the circadian rhythm of the German cockroach (Blatella germanica). We observed that static MFs slow down the cockroach clock rhythm under dim UV light, consistent with results on the Drosophila circadian clock. Remarkably, 300 times weaker RF fields likewise slowed down the cockroach clock in a near-zero static magnetic field. This demonstrates that the internal clock of organisms can be sensitive to weak RF fields, consequently opening the possibility of an influence of man-made RF fields on many clock-dependent events in living systems.
Zobrazit více v PubMed
Juutilainen J, Herrala M, Luukkonen J, Naarala J, Hore PJ. 2018. Magnetocarcinogenesis: is there a mechanism for carcinogenic effects of weak magnetic fields? Proc. R. Soc. B 285, 20180590. (10.1098/rspb.2018.0590) PubMed DOI PMC
Landler L, Keays DA. 2018. Cryptochrome: the magnetosensor with a sinister side? PLoS Biol. 16, e3000018 (10.1371/journal.pbio.3000018) PubMed DOI PMC
Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W. 2004. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180. (10.1038/nature02534) PubMed DOI
Thalau P, Ritz T, Stapput K, Wiltschko R, Wiltschko W. 2005. Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaften 92, 86–90. (10.1007/s00114-004-0595-8) PubMed DOI
Ritz T, Wiltschko R, Hore PJ, Rodgers CT, Stapput K, Thalau P, Timmel CR, Wiltschko W. 2009. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys. J. 96, 3451–3457. (10.1016/j.bpj.2008.11.072) PubMed DOI PMC
Engels S, et al. 2014. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509, 353–356. (10.1038/nature13290) PubMed DOI
Kavokin K, Chernetsov N, Pakhomov A, Bojarinova J, Kobylkov D, Namozov B. 2014. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field. J. R Soc. Interface 2014, 20140451 (10.1098/rsif.2014.0451) PubMed DOI PMC
Malkemper P, Eder SHK, Begall S, Phillips JB, Winklhofer M, Hart V, Burda H. 2015. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields. Sci. Rep. 5, 9917 (10.1038/srep09917) PubMed DOI PMC
Tomanova K, Vacha M. 2016. Magnetic orientation of Antarctic amphipod Gondogeneia antarctica is cancelled by very weak radiofrequency fields. J. Exp. Biol. 219, 717–724. (10.1242/jeb.132878) PubMed DOI
Vácha M, Puzová T, Kvícalová M. 2009. Radiofrequency magnetic field disrupts magnetoreception in American cockroach. J. Exp. Biol. 212, 3473–3477. (10.1242/jeb.028670) PubMed DOI
Landler L, Painter MS, Youmans PW, Hopkins WA, Phillips JB. 2015. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings. PLoS ONE 10, e0124728 (10.1371/journal.pone.0124728) PubMed DOI PMC
Ritz T, Adem S, Schulten K. 2000. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718. (10.1016/S0006-3495(00)76629-X) PubMed DOI PMC
Schwarze S, Schneider N-L, Reichl T, Dreyer D, Lefeldt N, Engels S, Baker N, Hore PJ, Mouritsen H. 2016. Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night-migratory songbird (Erithacus rubecula) than strong narrow-band fields. Front. Behav. Neurosci. 10, 55 (10.3389/fnbeh.2016.00055) PubMed DOI PMC
Hiscock HG, Mouritsen H, Manolopoulos DE, Hore PJ. 2017. Disruption of magnetic compass orientation in migratory birds by radiofrequency electromagnetic fields. Biophys. J. 113, 1475–1484. (10.1016/j.bpj.2017.07.031) PubMed DOI PMC
Hore PJ, Mouritsen H. 2016. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344. (10.1146/annurev-biophys-032116-094545) PubMed DOI
Bazalova O, et al. 2016. Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc. Natl Acad. Sci. USA 113, 1660–1665. (10.1073/pnas.1518622113) PubMed DOI PMC
Yoshii T, Ahmad M, Helfrich-Foerster C. 2009. Cryptochrome mediates light-dependent magnetosensitivity of drosophila's circadian clock. PLoS Biol. 7, 0813–0819. (10.1371/journal.pbio.1000086) PubMed DOI PMC
Fedele G, et al. 2014. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 10, e1004804 (10.1371/journal.pgen.1004804) PubMed DOI PMC
Baik LS, Fogle KJ, Roberts L, Galschiodt AM, Chevez JA, Recinos Y, Nguy V, Holmes TC. 2017. CRYPTOCHROME mediates behavioral executive choice in response to UV light. Proc. Natl Acad. Sci. USA 114, 776–781. (10.1073/pnas.1607989114) PubMed DOI PMC
Michael AK, Fribourgh JL, Gelder RNV, Partch CL. 2017. Animal cryptochromes: divergent roles in light perception, circadian timekeeping and beyond. Photochem. Photobiol. 93, 128–140. (10.1111/php.12677) PubMed DOI PMC
Cao Q, et al. 2017. Circadian clock cryptochrome proteins regulate autoimmunity. Proc. Natl Acad. Sci. USA 114, 12 548–12 553. (10.1073/pnas.1619119114) PubMed DOI PMC
Lewintre E, Martín C, Ballesteros C, Montaner D, Rivera R, Mayans J, García-Conde J. 2009. Cryptochrome-1 expression: a new prognostic marker in B-cell chronic lymphocytic leukemia. Haematologica 94, 280–284. (10.3324/haematol.13052) PubMed DOI PMC
Phillips JB, Jorge PE, Muheim R. 2010. Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms. J. R Soc. Interface 7, S241–S256. (10.1098/rsif.2009.0459.focus) PubMed DOI PMC