Cryptochrome 2 mediates directional magnetoreception in cockroaches
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26811445
PubMed Central
PMC4760799
DOI
10.1073/pnas.1518622113
PII: 1518622113
Knihovny.cz E-zdroje
- Klíčová slova
- circadian genes, cryptochrome, light spectrum, locomotor activity, magnetoreception,
- MeSH
- fenotyp MeSH
- fotoreceptory bezobratlých metabolismus účinky záření MeSH
- kryptochromy metabolismus MeSH
- magnetické pole * MeSH
- složené oko členovců účinky záření MeSH
- švábi metabolismus účinky záření MeSH
- ultrafialové záření MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kryptochromy MeSH
The ability to perceive geomagnetic fields (GMFs) represents a fascinating biological phenomenon. Studies on transgenic flies have provided evidence that photosensitive Cryptochromes (Cry) are involved in the response to magnetic fields (MFs). However, none of the studies tackled the problem of whether the Cry-dependent magnetosensitivity is coupled to the sole MF presence or to the direction of MF vector. In this study, we used gene silencing and a directional MF to show that mammalian-like Cry2 is necessary for a genuine directional response to periodic rotations of the GMF vector in two insect species. Longer wavelengths of light required higher photon fluxes for a detectable behavioral response, and a sharp detection border was present in the cyan/green spectral region. Both observations are consistent with involvement of the FADox, FAD(•-) and FADH(-) redox forms of flavin. The response was lost upon covering the eyes, demonstrating that the signal is perceived in the eye region. Immunohistochemical staining detected Cry2 in the hemispherical layer of laminal glia cells underneath the retina. Together, these findings identified the eye-localized Cry2 as an indispensable component and a likely photoreceptor of the directional GMF response. Our study is thus a clear step forward in deciphering the in vivo effects of GMF and supports the interaction of underlying mechanism with the visual system.
Zobrazit více v PubMed
Wiltschko R, Wiltschko W. Magnetoreception. BioEssays. 2006;28(2):157–168. PubMed
Schulten K, Swenberg CE, Weller A. Biomagnetic Sensory Mechanism Based on Magnetic-Field Modulated Coherent Electron-Spin Motion. Z Phys Chem Neue Fol. 1978;111(1):1–5.
Wiltschko R, Wiltschko W. Sensing magnetic directions in birds: Radical pair processes involving cryptochrome. Biosensors (Basel) 2014;4(3):221–242. PubMed PMC
Phillips JB, Jorge PE, Muheim R. Light-dependent magnetic compass orientation in amphibians and insects: Candidate receptors and candidate molecular mechanisms. J R Soc Interface. 2010;7(Suppl 2):S241–S256. PubMed PMC
Ritz T, Adem S, Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys J. 2000;78(2):707–718. PubMed PMC
Solov’yov IA, Mouritsen H, Schulten K. Acuity of a cryptochrome and vision-based magnetoreception system in birds. Biophys J. 2010;99(1):40–49. PubMed PMC
Solov’yov IA, Schulten K. Reaction kinetics and mechanism of magnetic field effects in cryptochrome. J Phys Chem B. 2012;116(3):1089–1099. PubMed PMC
Neff MM, Chory J. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol. 1998;118(1):27–35. PubMed PMC
Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta. 2007;225(3):615–624. PubMed
Harris SR, et al. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. J R Soc Interface. 2009;6(41):1193–1205. PubMed PMC
Kume K, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98(2):193–205. PubMed
Stanewsky R, et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell. 1998;95(5):681–692. PubMed
Yoshii T, Ahmad M, Helfrich-Förster C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 2009;7(4):e1000086. PubMed PMC
Fedele G, Green EW, Rosato E, Kyriacou CP. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat Commun. 2014;5:4391. PubMed PMC
Fedele G, et al. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 2014;10(12):e1004804. PubMed PMC
Yuan Q, Metterville D, Briscoe AD, Reppert SM. Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol. 2007;24(4):948–955. PubMed
Maeda K, et al. Chemical compass model of avian magnetoreception. Nature. 2008;453(7193):387–390. PubMed
Lee AA, et al. Alternative radical pairs for cryptochrome-based magnetoreception. J R Soc Interface. 2014;11(95):20131063. PubMed PMC
Henbest KB, et al. Magnetic-field effect on the photoactivation reaction of Escherichia coli DNA photolyase. Proc Natl Acad Sci USA. 2008;105(38):14395–14399. PubMed PMC
Maeda K, et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci USA. 2012;109(13):4774–4779. PubMed PMC
Du XL, et al. Observation of magnetic field effects on transient fluorescence spectra of cryptochrome 1 from homing pigeons. Photochem Photobiol. 2014;90(5):989–996. PubMed
Vaidya AT, et al. Flavin reduction activates Drosophila cryptochrome. Proc Natl Acad Sci USA. 2013;110(51):20455–20460. PubMed PMC
Hemsley MJ, et al. Linear motifs in the C-terminus of D. melanogaster cryptochrome. Biochem Biophys Res Commun. 2007;355(2):531–537. PubMed
Fogle KJ, et al. CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor. Proc Natl Acad Sci USA. 2015;112(7):2245–2250. PubMed PMC
Rodgers CT, Hore PJ. Chemical magnetoreception in birds: The radical pair mechanism. Proc Natl Acad Sci USA. 2009;106(2):353–360. PubMed PMC
Gegear RJ, Casselman A, Waddell S, Reppert SM. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature. 2008;454(7207):1014–1018. PubMed PMC
Gegear RJ, Foley LE, Casselman A, Reppert SM. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature. 2010;463(7282):804–807. PubMed PMC
Foley LE, Gegear RJ, Reppert SM. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun. 2011;2:356. PubMed PMC
Ritz T, Yoshii T, Helfrich-Foerster C, Ahmad M. Cryptochrome: A photoreceptor with the properties of a magnetoreceptor? Commun Integr Biol. 2010;3(1):24–27. PubMed PMC
Vácha M. Laboratory behavioural assay of insect magnetoreception: Magnetosensitivity of Periplaneta americana. J Exp Biol. 2006;209(Pt 19):3882–3886. PubMed
Wiltschko R, Stapput K, Bischof HJ, Wiltschko W. Light-dependent magnetoreception in birds: Increasing intensity of monochromatic light changes the nature of the response. Front Zool. 2007;4:5. PubMed PMC
Lebovitz RM, Takeyasu K, Fambrough DM. Molecular characterization and expression of the (Na+ + K+)-ATPase alpha-subunit in Drosophila melanogaster. EMBO J. 1989;8(1):193–202. PubMed PMC
Chaturvedi R, Reddig K, Li HS. Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila. Proc Natl Acad Sci USA. 2014;111(7):2812–2817. PubMed PMC
Górska-Andrzejak J, et al. Cyclical expression of Na+/K+-ATPase in the visual system of Drosophila melanogaster. J Insect Physiol. 2009;55(5):459–468. PubMed PMC
Ribi WA. Fine structure of the first optic ganglion (lamina) of the cockroach, Periplaneta americana. Tissue Cell. 1977;9(1):57–72. PubMed
Johnsen S, Mattern E, Ritz T. Light-dependent magnetoreception: Quantum catches and opponency mechanisms of possible photosensitive molecules. J Exp Biol. 2007;210(Pt 18):3171–3178. PubMed
Muheim R, Bäckman J, Akesson S. Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. J Exp Biol. 2002;205(Pt 24):3845–3856. PubMed
Liu B, Liu H, Zhong D, Lin C. Searching for a photocycle of the cryptochrome photoreceptors. Curr Opin Plant Biol. 2010;13(5):578–586. PubMed PMC
Nießner C, et al. Magnetoreception: Activated cryptochrome 1a concurs with magnetic orientation in birds. J R Soc Interface. 2013;10(88):20130638. PubMed PMC
Zhong D. Electron transfer mechanisms of DNA repair by photolyase. Annu Rev Phys Chem. 2015;66:691–715. PubMed
Chaves I, et al. The cryptochromes: Blue light photoreceptors in plants and animals. Annu Rev Plant Biol. 2011;62:335–364. PubMed
Briscoe AD, Chittka L. The evolution of color vision in insects. Annu Rev Entomol. 2001;46:471–510. PubMed
Koehler PG, Agee HR, Leppla NC, Patterson RS. Spectral Sensitivity and Behavioral-Response to Light Quality in the German Cockroach (Dictyoptera, Blattellidae) Ann Entomol Soc Am. 1987;80(6):820–822.
Wiltschko R, Stapput K, Thalau P, Wiltschko W. Directional orientation of birds by the magnetic field under different light conditions. J R Soc Interface. 2010;7(Suppl 2):S163–S177. PubMed PMC
Wiltschko R, Gehring D, Denzau S, Nießner C, Wiltschko W. Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle. J Exp Biol. 2014;217(Pt 23):4225–4228. PubMed PMC
Guerra PA, Merlin C, Gegear RJ, Reppert SM. Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies. Nat Commun. 2012;3:958. PubMed PMC
Solov’yov IA, Schulten K. Magnetoreception through cryptochrome may involve superoxide. Biophys J. 2009;96(12):4804–4813. PubMed PMC
Schulten K, Windemuth A. Model for a Physiological Magnetic Compass. In: Maret G, Kiepenhauer J, Boccara N, editors. Biophysical Effects of Steady Magnetic Fields. Springer; New York: 1986. pp. 99–105.
Colvin MT, et al. Electron spin polarization transfer from photogenerated spin-correlated radical pairs to a stable radical observer spin. J Phys Chem A. 2013;117(25):5314–5325. PubMed
Ritz T. Quantum effects in biology: Bird navigation. Procedia Chem. 2012;3(1):262–275.
Lau JC, Wagner-Rundell N, Rodgers CT, Green NJ, Hore PJ. Effects of disorder and motion in a radical pair magnetoreceptor. J R Soc Interface. 2010;7(Suppl 2):S257–S264. PubMed PMC
Lau JCS, Rodgers CT, Hore PJ. Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes. J R Soc Interface. 2012;9(77):3329–3337. PubMed PMC
Mazzotta G, et al. Fly cryptochrome and the visual system. Proc Natl Acad Sci USA. 2013;110(15):6163–6168. PubMed PMC
Sauman I, et al. Connecting the navigational clock to sun compass input in monarch butterfly brain. Neuron. 2005;46(3):457–467. PubMed
Loss of Timeless Underlies an Evolutionary Transition within the Circadian Clock
Weak radiofrequency fields affect the insect circadian clock