Eyes are essential for magnetoreception in a mammal
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32993431
PubMed Central
PMC7536053
DOI
10.1098/rsif.2020.0513
Knihovny.cz E-resources
- Keywords
- animal orientation, magnetic sense, magnetite, mole-rat, sensory biology,
- MeSH
- Locomotion MeSH
- Magnetic Fields MeSH
- Magnetics MeSH
- Mole Rats * MeSH
- Orientation * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Several groups of mammals use the Earth's magnetic field for orientation, but their magnetosensory organ remains unknown. The Ansell's mole-rat (Fukomys anselli, Bathyergidae, Rodentia) is a microphthalmic subterranean rodent with innate magnetic orientation behaviour. Previous studies on this species proposed that its magnetoreceptors are located in the eye. To test this hypothesis, we assessed magnetic orientation in mole-rats after the surgical removal of their eyes compared to untreated controls. Initially, we demonstrate that this enucleation does not lead to changes in routine behaviours, including locomotion, feeding and socializing. We then studied magnetic compass orientation by employing a well-established nest-building assay under four magnetic field alignments. In line with previous studies, control animals exhibited a significant preference to build nests in magnetic southeast. By contrast, enucleated mole-rats built nests in random magnetic orientations, suggesting an impairment of their magnetic sense. The results provide robust support for the hypothesis that mole-rats perceive magnetic fields with their minute eyes, probably relying on magnetite-based receptors in the cornea.
Department of General Zoology University of Duisburg Essen Universitaetsstr 5 45117 Essen Germany
Department of Zoology Faculty of Science Charles University Vinicna 7 12844 Prague Czech Republic
See more in PubMed
Wiltschko R, Wiltschko W. 1995. Magnetic orientation in animals. Berlin, Germany: Springer.
Clites BL, Pierce JT. 2017. Identifying cellular and molecular mechanisms for magnetosensation. Annu. Rev. Neurosci. 40, 231–250. (10.1146/annurev-neuro-072116-031312) PubMed DOI PMC
Nordmann GC, Hochstoeger T, Keays DA. 2017. Magnetoreception—a sense without a receptor. PLoS Biol. 15, e2003234 (10.1371/journal.pbio.2003234) PubMed DOI PMC
Begall S, Burda H, Malkemper EP. 2014. Magnetoreception in mammals. In Advances in the study of behavior, vol. 46 (eds Naguib M, Barrett L, Brockmann HJ, Healy S, Mitani JC, Roper TJ), pp. 45–88. New York, NY: Academic Press.
Semm P, Schneider T, Vollrath L. 1980. Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288, 607–608. (10.1038/288607a0) PubMed DOI
Wegner RE, Begall S, Burda H. 2006. Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal. J. Exp. Biol. 209, 4747–4750. (10.1242/jeb.02573) PubMed DOI
Němec P, Altmann J, Marhold S, Burda H, Oelschläger HHA. 2001. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294, 366–368. (10.1126/science.1063351) PubMed DOI
Burger T, Lucová M, Moritz RE, Oelschläger HHA, Druga R, Burda H, Wiltschko W, Wiltschko R, Němec P. 2010. Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent. J. R Soc. Interface 7, 1275–1292. (10.1098/rsif.2009.0551) PubMed DOI PMC
Wiltschko R, Wiltschko W. 2013. The magnetite-based receptors in the beak of birds and their role in avian navigation. J. Comp. Physiol. A 199, 89–98. (10.1007/s00359-012-0769-3) PubMed DOI PMC
Kishkinev DA, Chernetsov NS. 2015. Magnetoreception systems in birds: a review of current research. Biol. Bullet. Rev. 5, 46–62. (10.1134/S2079086415010041) PubMed DOI
Hore PJ, Mouritsen H. 2016. The radical-pair mechanism of magnetoreception. Ann. Rev. Biophys. 45, 299–344. (10.1146/annurev-biophys-032116-094545) PubMed DOI
Kirschvink JL, Gould JL. 1981. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13, 181–201. (10.1016/0303-2647(81)90060-5) PubMed DOI
Holland RA, Kirschvink JL, Doak TG, Wikelski M. 2008. Bats use magnetite to detect the Earth's magnetic field. PLoS ONE 3, e1676 (10.1371/journal.pone.0001676) PubMed DOI PMC
Wang Y, Pan Y, Parsons S, Walker M, Zhang S. 2007. Bats respond to polarity of a magnetic field. Proc. Biol. Sci. 274, 2901–2905. (10.1098/rspb.2007.0904) PubMed DOI PMC
Burda H, Marhold S, Westenberger T, Wiltschko R, Wiltschko W. 1990. Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae). Experientia 46, 528–530. (10.1007/BF01954256) PubMed DOI
Oliveriusová L, Němec P, Králová Z, Sedláček F. 2012. Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference? J. Exp. Biol. 215, 3649–3654. (10.1242/jeb.069625) PubMed DOI
Marhold S, Wiltschko W, Burda H. 1997. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84, 421–423. (10.1007/s001140050422) DOI
Marhold S, Burda H, Kreilos I, Wiltschko W. 1997. Magnetic orientation in common mole-rats from Zambia. In Orientation and navigation: birds, humans and other animals, pp. 1–9. Oxford, UK: Royal; Institute of Navigation.
Thalau P, Ritz T, Burda H, Wegner RE, Wiltschko R. 2006. The magnetic compass mechanisms of birds and rodents are based on different physical principles. J. R Soc. Interface 3, 583–587. (10.1098/rsif.2006.0130) PubMed DOI PMC
Malkemper EP, Eder SH, Begall S, Phillips JB, Winklhofer M, Hart V, Burda H. 2015. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields. Sci. Rep. 4, 9917 (10.1038/srep09917) PubMed DOI PMC
Bojarinova J, Kavokin K, Pakhomov A, Cherbunin R, Anashina A, Erokhina M, Ershova M, Chernetsov N. 2020. Magnetic compass of garden warblers is not affected by oscillating magnetic fields applied to their eyes. Sci. Rep. 10, 3473 (10.1038/s41598-020-60383-x) PubMed DOI PMC
Kott O, Šumbera R, Němec P. 2010. Light perception in two strictly subterranean rodents: life in the dark or blue? PLoS ONE 5, e11810 (10.1371/journal.pone.0011810) PubMed DOI PMC
Němec P, Cveková P, Benada O, Wielkopolska E, Olkowicz S, Turlejski K, Burda H, Bennett NC, Peichl L. 2008. The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex. Brain Res. Bull. 75, 356–364. (10.1016/j.brainresbull.2007.10.055) PubMed DOI
Schønemann NK, van der Burght M, Arendt-Nielsen L, Bjerring P. 1992. Onset and duration of hypoalgesia of lidocaine spray applied to oral mucosa—a dose response study. Acta Anaesthesiol. Scand. 36, 733–735. (10.1111/j.1399-6576.1992.tb03554.x) PubMed DOI
Pardridge WM, Sakiyama R, Fierer G. 1983. Transport of propranolol and lidocaine through the rat blood-brain barrier. Primary role of globulin-bound drug. J. Clin. Invest. 71, 900–908. (10.1172/JCI110844) PubMed DOI PMC
Engels S, Treiber CD, Salzer MC, Michalik A, Ushakova L, Keays DA, Mouritsen H, Heyers D. 2018. Lidocaine is a nocebo treatment for trigeminally mediated magnetic orientation in birds. J. R. Soc. Interface 15, 20180124 (10.1098/rsif.2018.0124) PubMed DOI PMC
Henning Y, Mladenkova N, Burda H, Szafranski K, Begall S. 2018. Retinal S-opsin dominance in Ansell's mole-rats (Fukomys anselli) is a consequence of naturally low serum thyroxine. Sci. Rep. 8, 4337 (10.1038/s41598-018-22705-y) PubMed DOI PMC
R Core Team. 2019. R: a language and environment for statistical computing, version 3.6.0 ed2019 Vienna, Austria: R Foundation for Statistical Computing; See http://www.R-project.org/.
Gerhardt P, Henning Y, Begall S, Malkemper EP. 2017. Audiograms of three subterranean rodent species (genus Fukomys) determined by auditory brainstem responses reveal extremely poor high-frequency hearing. J. Exp. Biol. 220, 4377–4382. (10.1242/jeb.164426) PubMed DOI
Malewski S, Begall S, Burda H. 2018. Learned and spontaneous magnetosensitive behaviour in the Roborovski hamster (Phodopus roborovskii). Ethology 124, 423–431. (10.1111/eth.12744) DOI
Peichl L, Němec P, Burda H. 2004. Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae). Eur. J. Neurosci. 19, 1545–1558. (10.1111/j.1460-9568.2004.03263.x) PubMed DOI
Muheim R, Edgar NM, Sloan KA, Phillips JB. 2006. Magnetic compass orientation in C57BL/6 J mice. Learn. Behav. 34, 366–373. (10.3758/BF03193201) PubMed DOI
Fitak RR, Johnsen S. 2017. Bringing the analysis of animal orientation data full circle: model-based approaches with maximum likelihood. J. Exp. Biol. 220, 3878 (10.1242/jeb.167056) PubMed DOI PMC
Jirkof P. 2014. Burrowing and nest building behavior as indicators of well-being in mice. J. Neurosci. Methods 234, 139–146. (10.1016/j.jneumeth.2014.02.001) PubMed DOI
Graham BJ, Hildebrand DGC, Kuan AT, Maniates-Selvin JT, Thomas LA, Shanny BL, Lee WC. 2019. High-throughput transmission electron microscopy with automated serial sectioning. bioRxiv. 657346.
Titze B, Genoud C. 2016. Volume scanning electron microscopy for imaging biological ultrastructure. Biol. Cell 108, 307–323. (10.1111/boc.201600024) PubMed DOI
Shaw J, Boyd A, House M, Woodward R, Mathes F, Cowin G, Saunders M, Baer B. 2015. Magnetic particle-mediated magnetoreception. J. R Soc. Interface 12, 0499 (10.1098/rsif.2015.0499) PubMed DOI PMC
Kimchi T, Terkel J. 2001. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. J. Exp. Biol. 204, 751–758. PubMed
Mather JG. 1985. Magnetoreception and the search for magnetic material in rodents. In Magnetite biomineralization and magnetoreception in organisms: a new biomagnetism (eds Jones JL, Kirschvink DS, MacFadden BJ), pp. 509–536. New York, NY: Plenum Press.
Cernuda-Cernuda R, García-Fernández JM, Gordijn MCM, Bovee-Geurts PHM, DeGrip WJ. 2003. The eye of the african mole-rat Cryptomys anselli: to see or not to see? Eur. J. Neurosci. 17, 709–720. (10.1046/j.1460-9568.2003.02485.x) PubMed DOI
Treiber CD, et al. 2012. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484, 367–370. (10.1038/nature11046) PubMed DOI
Maruyama K, et al. 2005. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J. Clin. Invest. 115, 2363–2372. (10.1172/JCI23874) PubMed DOI PMC
Edelman NB, et al. 2015. No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening. Proc. Natl Acad. Sci. USA 112, 262–267. (10.1073/pnas.1407915112) PubMed DOI PMC
Müller LJ, Marfurt CF, Kruse F, Tervo TM. 2003. Corneal nerves: structure, contents and function. Exp. Eye Res. 76, 521–542. (10.1016/S0014-4835(03)00050-2) PubMed DOI
Lefeldt N, Heyers D, Schneider NL, Engels S, Elbers D, Mouritsen H. 2014. Magnetic field-driven induction of ZENK in the trigeminal system of pigeons (Columba livia). J. R Soc. Interface 11, 20140777 (10.1098/rsif.2014.0777) PubMed DOI PMC
Mouritsen H, Hore PJ. 2012. The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds. Curr. Opin Neurobiol. 22, 343–352. (10.1016/j.conb.2012.01.005) PubMed DOI
Kishkinev D, Chernetsov N, Heyers D, Mouritsen H. 2013. Migratory reed warblers need intact trigeminal nerves to correct for a 1,000 km eastward displacement. PLoS ONE 8, e65847 (10.1371/journal.pone.0065847) PubMed DOI PMC
Heyers D, Zapka M, Hoffmeister M, Wild JM, Mouritsen H. 2010. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proc. Natl Acad. Sci. USA 107, 9394 (10.1073/pnas.0907068107) PubMed DOI PMC