• This record comes from PubMed

Eyes are essential for magnetoreception in a mammal

. 2020 Sep ; 17 (170) : 20200513. [epub] 20200930

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Several groups of mammals use the Earth's magnetic field for orientation, but their magnetosensory organ remains unknown. The Ansell's mole-rat (Fukomys anselli, Bathyergidae, Rodentia) is a microphthalmic subterranean rodent with innate magnetic orientation behaviour. Previous studies on this species proposed that its magnetoreceptors are located in the eye. To test this hypothesis, we assessed magnetic orientation in mole-rats after the surgical removal of their eyes compared to untreated controls. Initially, we demonstrate that this enucleation does not lead to changes in routine behaviours, including locomotion, feeding and socializing. We then studied magnetic compass orientation by employing a well-established nest-building assay under four magnetic field alignments. In line with previous studies, control animals exhibited a significant preference to build nests in magnetic southeast. By contrast, enucleated mole-rats built nests in random magnetic orientations, suggesting an impairment of their magnetic sense. The results provide robust support for the hypothesis that mole-rats perceive magnetic fields with their minute eyes, probably relying on magnetite-based receptors in the cornea.

See more in PubMed

Wiltschko R, Wiltschko W. 1995. Magnetic orientation in animals. Berlin, Germany: Springer.

Clites BL, Pierce JT. 2017. Identifying cellular and molecular mechanisms for magnetosensation. Annu. Rev. Neurosci. 40, 231–250. (10.1146/annurev-neuro-072116-031312) PubMed DOI PMC

Nordmann GC, Hochstoeger T, Keays DA. 2017. Magnetoreception—a sense without a receptor. PLoS Biol. 15, e2003234 (10.1371/journal.pbio.2003234) PubMed DOI PMC

Begall S, Burda H, Malkemper EP. 2014. Magnetoreception in mammals. In Advances in the study of behavior, vol. 46 (eds Naguib M, Barrett L, Brockmann HJ, Healy S, Mitani JC, Roper TJ), pp. 45–88. New York, NY: Academic Press.

Semm P, Schneider T, Vollrath L. 1980. Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288, 607–608. (10.1038/288607a0) PubMed DOI

Wegner RE, Begall S, Burda H. 2006. Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal. J. Exp. Biol. 209, 4747–4750. (10.1242/jeb.02573) PubMed DOI

Němec P, Altmann J, Marhold S, Burda H, Oelschläger HHA. 2001. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294, 366–368. (10.1126/science.1063351) PubMed DOI

Burger T, Lucová M, Moritz RE, Oelschläger HHA, Druga R, Burda H, Wiltschko W, Wiltschko R, Němec P. 2010. Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent. J. R Soc. Interface 7, 1275–1292. (10.1098/rsif.2009.0551) PubMed DOI PMC

Wiltschko R, Wiltschko W. 2013. The magnetite-based receptors in the beak of birds and their role in avian navigation. J. Comp. Physiol. A 199, 89–98. (10.1007/s00359-012-0769-3) PubMed DOI PMC

Kishkinev DA, Chernetsov NS. 2015. Magnetoreception systems in birds: a review of current research. Biol. Bullet. Rev. 5, 46–62. (10.1134/S2079086415010041) PubMed DOI

Hore PJ, Mouritsen H. 2016. The radical-pair mechanism of magnetoreception. Ann. Rev. Biophys. 45, 299–344. (10.1146/annurev-biophys-032116-094545) PubMed DOI

Kirschvink JL, Gould JL. 1981. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13, 181–201. (10.1016/0303-2647(81)90060-5) PubMed DOI

Holland RA, Kirschvink JL, Doak TG, Wikelski M. 2008. Bats use magnetite to detect the Earth's magnetic field. PLoS ONE 3, e1676 (10.1371/journal.pone.0001676) PubMed DOI PMC

Wang Y, Pan Y, Parsons S, Walker M, Zhang S. 2007. Bats respond to polarity of a magnetic field. Proc. Biol. Sci. 274, 2901–2905. (10.1098/rspb.2007.0904) PubMed DOI PMC

Burda H, Marhold S, Westenberger T, Wiltschko R, Wiltschko W. 1990. Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae). Experientia 46, 528–530. (10.1007/BF01954256) PubMed DOI

Oliveriusová L, Němec P, Králová Z, Sedláček F. 2012. Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference? J. Exp. Biol. 215, 3649–3654. (10.1242/jeb.069625) PubMed DOI

Marhold S, Wiltschko W, Burda H. 1997. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84, 421–423. (10.1007/s001140050422) DOI

Marhold S, Burda H, Kreilos I, Wiltschko W. 1997. Magnetic orientation in common mole-rats from Zambia. In Orientation and navigation: birds, humans and other animals, pp. 1–9. Oxford, UK: Royal; Institute of Navigation.

Thalau P, Ritz T, Burda H, Wegner RE, Wiltschko R. 2006. The magnetic compass mechanisms of birds and rodents are based on different physical principles. J. R Soc. Interface 3, 583–587. (10.1098/rsif.2006.0130) PubMed DOI PMC

Malkemper EP, Eder SH, Begall S, Phillips JB, Winklhofer M, Hart V, Burda H. 2015. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields. Sci. Rep. 4, 9917 (10.1038/srep09917) PubMed DOI PMC

Bojarinova J, Kavokin K, Pakhomov A, Cherbunin R, Anashina A, Erokhina M, Ershova M, Chernetsov N. 2020. Magnetic compass of garden warblers is not affected by oscillating magnetic fields applied to their eyes. Sci. Rep. 10, 3473 (10.1038/s41598-020-60383-x) PubMed DOI PMC

Kott O, Šumbera R, Němec P. 2010. Light perception in two strictly subterranean rodents: life in the dark or blue? PLoS ONE 5, e11810 (10.1371/journal.pone.0011810) PubMed DOI PMC

Němec P, Cveková P, Benada O, Wielkopolska E, Olkowicz S, Turlejski K, Burda H, Bennett NC, Peichl L. 2008. The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex. Brain Res. Bull. 75, 356–364. (10.1016/j.brainresbull.2007.10.055) PubMed DOI

Schønemann NK, van der Burght M, Arendt-Nielsen L, Bjerring P. 1992. Onset and duration of hypoalgesia of lidocaine spray applied to oral mucosa—a dose response study. Acta Anaesthesiol. Scand. 36, 733–735. (10.1111/j.1399-6576.1992.tb03554.x) PubMed DOI

Pardridge WM, Sakiyama R, Fierer G. 1983. Transport of propranolol and lidocaine through the rat blood-brain barrier. Primary role of globulin-bound drug. J. Clin. Invest. 71, 900–908. (10.1172/JCI110844) PubMed DOI PMC

Engels S, Treiber CD, Salzer MC, Michalik A, Ushakova L, Keays DA, Mouritsen H, Heyers D. 2018. Lidocaine is a nocebo treatment for trigeminally mediated magnetic orientation in birds. J. R. Soc. Interface 15, 20180124 (10.1098/rsif.2018.0124) PubMed DOI PMC

Henning Y, Mladenkova N, Burda H, Szafranski K, Begall S. 2018. Retinal S-opsin dominance in Ansell's mole-rats (Fukomys anselli) is a consequence of naturally low serum thyroxine. Sci. Rep. 8, 4337 (10.1038/s41598-018-22705-y) PubMed DOI PMC

R Core Team. 2019. R: a language and environment for statistical computing, version 3.6.0 ed2019 Vienna, Austria: R Foundation for Statistical Computing; See http://www.R-project.org/.

Gerhardt P, Henning Y, Begall S, Malkemper EP. 2017. Audiograms of three subterranean rodent species (genus Fukomys) determined by auditory brainstem responses reveal extremely poor high-frequency hearing. J. Exp. Biol. 220, 4377–4382. (10.1242/jeb.164426) PubMed DOI

Malewski S, Begall S, Burda H. 2018. Learned and spontaneous magnetosensitive behaviour in the Roborovski hamster (Phodopus roborovskii). Ethology 124, 423–431. (10.1111/eth.12744) DOI

Peichl L, Němec P, Burda H. 2004. Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae). Eur. J. Neurosci. 19, 1545–1558. (10.1111/j.1460-9568.2004.03263.x) PubMed DOI

Muheim R, Edgar NM, Sloan KA, Phillips JB. 2006. Magnetic compass orientation in C57BL/6 J mice. Learn. Behav. 34, 366–373. (10.3758/BF03193201) PubMed DOI

Fitak RR, Johnsen S. 2017. Bringing the analysis of animal orientation data full circle: model-based approaches with maximum likelihood. J. Exp. Biol. 220, 3878 (10.1242/jeb.167056) PubMed DOI PMC

Jirkof P. 2014. Burrowing and nest building behavior as indicators of well-being in mice. J. Neurosci. Methods 234, 139–146. (10.1016/j.jneumeth.2014.02.001) PubMed DOI

Graham BJ, Hildebrand DGC, Kuan AT, Maniates-Selvin JT, Thomas LA, Shanny BL, Lee WC. 2019. High-throughput transmission electron microscopy with automated serial sectioning. bioRxiv. 657346.

Titze B, Genoud C. 2016. Volume scanning electron microscopy for imaging biological ultrastructure. Biol. Cell 108, 307–323. (10.1111/boc.201600024) PubMed DOI

Shaw J, Boyd A, House M, Woodward R, Mathes F, Cowin G, Saunders M, Baer B. 2015. Magnetic particle-mediated magnetoreception. J. R Soc. Interface 12, 0499 (10.1098/rsif.2015.0499) PubMed DOI PMC

Kimchi T, Terkel J. 2001. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. J. Exp. Biol. 204, 751–758. PubMed

Mather JG. 1985. Magnetoreception and the search for magnetic material in rodents. In Magnetite biomineralization and magnetoreception in organisms: a new biomagnetism (eds Jones JL, Kirschvink DS, MacFadden BJ), pp. 509–536. New York, NY: Plenum Press.

Cernuda-Cernuda R, García-Fernández JM, Gordijn MCM, Bovee-Geurts PHM, DeGrip WJ. 2003. The eye of the african mole-rat Cryptomys anselli: to see or not to see? Eur. J. Neurosci. 17, 709–720. (10.1046/j.1460-9568.2003.02485.x) PubMed DOI

Treiber CD, et al. 2012. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484, 367–370. (10.1038/nature11046) PubMed DOI

Maruyama K, et al. 2005. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J. Clin. Invest. 115, 2363–2372. (10.1172/JCI23874) PubMed DOI PMC

Edelman NB, et al. 2015. No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening. Proc. Natl Acad. Sci. USA 112, 262–267. (10.1073/pnas.1407915112) PubMed DOI PMC

Müller LJ, Marfurt CF, Kruse F, Tervo TM. 2003. Corneal nerves: structure, contents and function. Exp. Eye Res. 76, 521–542. (10.1016/S0014-4835(03)00050-2) PubMed DOI

Lefeldt N, Heyers D, Schneider NL, Engels S, Elbers D, Mouritsen H. 2014. Magnetic field-driven induction of ZENK in the trigeminal system of pigeons (Columba livia). J. R Soc. Interface 11, 20140777 (10.1098/rsif.2014.0777) PubMed DOI PMC

Mouritsen H, Hore PJ. 2012. The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds. Curr. Opin Neurobiol. 22, 343–352. (10.1016/j.conb.2012.01.005) PubMed DOI

Kishkinev D, Chernetsov N, Heyers D, Mouritsen H. 2013. Migratory reed warblers need intact trigeminal nerves to correct for a 1,000 km eastward displacement. PLoS ONE 8, e65847 (10.1371/journal.pone.0065847) PubMed DOI PMC

Heyers D, Zapka M, Hoffmeister M, Wild JM, Mouritsen H. 2010. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proc. Natl Acad. Sci. USA 107, 9394 (10.1073/pnas.0907068107) PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...