DNA Nanostructures for Rational Regulation of Cellular Organelles

. 2025 Apr 28 ; 5 (4) : 1591-1616. [epub] 20250326

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40313805

DNA nanotechnology has revolutionized materials science and biomedicine by enabling precise manipulation of matter at the nanoscale. DNA nanostructures (DNs) in particular represent a promising frontier for targeted therapeutics. Engineered DNs offer unprecedented molecular programmability, biocompatibility, and structural versatility, making them ideal candidates for advanced drug delivery, organelle regulation, and cellular function modulation. This Perspective explores the emerging role of DNs in modulating cellular behavior through organelle-targeted interventions. We highlight current advances in nuclear, mitochondrial, and lysosomal targeting, showcasing applications ranging from gene delivery to cancer therapeutics. For instance, DNs have enabled precision mitochondrial disruption in cancer cells, lysosomal pH modulation to enhance gene silencing, and nuclear delivery of gene-editing templates. While DNs hold immense promise for advancing nanomedicine, outstanding challenges include optimizing biological interactions and addressing safety concerns. This Perspective highlights the current potential of DNs for rational control of targeted organelles, which could lead to novel therapeutic strategies and advancement of precision nanomedicines in the future.

Zobrazit více v PubMed

Almeida H.; Traverso G.; Sarmento B.; das Neves J. Nanoscale anisotropy for biomedical applications. Nat. Rev. Bioeng. 2024, 2 (7), 609–625. 10.1038/s44222-024-00169-2. DOI

Tang K.; Xue J. M.; Zhu Y. F.; Wu C. T. Design and synthesis of bioinspired nanomaterials for biomedical application. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol 2024, 16 (1), e191410.1002/wnan.1914. PubMed DOI

Kim B. Y. S.; Rutka J. T.; Chan W. C. W. Current concepts: Nanomedicine. N. Engl. J. Med. 2010, 363 (25), 2434–2443. 10.1056/NEJMra0912273. PubMed DOI

Mitchell M. J.; Billingsley M. M.; Haley R. M.; Wechsler M. E.; Peppas N. A.; Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discovery 2021, 20 (2), 101–124. 10.1038/s41573-020-0090-8. PubMed DOI PMC

Wang J.; Li Y. Y.; Nie G. J. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater. 2021, 6 (9), 766–783. 10.1038/s41578-021-00315-x. PubMed DOI PMC

Szebeni J.; Storm G.; Ljubimova J. Y.; Castells M.; Phillips E. J.; Turjeman K.; Barenholz Y.; Crommelin D. J. A.; Dobrovolskaia M. A. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat. Nanotechnol. 2022, 17 (4), 337–346. 10.1038/s41565-022-01071-x. PubMed DOI

Anselmo A. C.; Mitragotri S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng. Transl. Med. 2021, 6 (3), e1024610.1002/btm2.10246. PubMed DOI PMC

Uzhytchak M.; Smolková B.; Lunova M.; Frtús A.; Jirsa M.; Dejneka A.; Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv. Drug Delivery Rev. 2023, 197, 11482810.1016/j.addr.2023.114828. PubMed DOI

Joudeh N.; Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnol. 2022, 20 (1), 262.10.1186/s12951-022-01477-8. PubMed DOI PMC

Wu L. B.; Zhang J.; Watanabe W. Physical and chemical stability of drug nanoparticles. Adv. Drug Delivery Rev. 2011, 63 (6), 456–469. 10.1016/j.addr.2011.02.001. PubMed DOI

Huang Y.; Guo X.; Wu Y.; Chen X.; Feng L.; Xie N.; Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduction Targeted Ther. 2024, 9 (1), 34.10.1038/s41392-024-01745-z. PubMed DOI PMC

Wilhelm S.; Tavares A. J.; Dai Q.; Ohta S.; Audet J.; Dvorak H. F.; Chan W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1 (5), 16014.10.1038/natrevmats.2016.14. DOI

Wáng Y. X. J.; Idée J. M. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant. Imaging Med. Surg. 2017, 7 (1), 88–122. 10.21037/qims.2017.02.09. PubMed DOI PMC

Kendall M.; Lynch I. Long-term monitoring for nanomedicine implants and drugs. Nat. Nanotechnol. 2016, 11 (3), 206–210. 10.1038/nnano.2015.341. PubMed DOI

Rubin R. Black box warning for anemia drug. JAMA 2015, 313 (17), 1704.10.1001/jama.2015.4114. DOI

Sun T.; Kang Y. Y.; Liu J.; Zhang Y. L.; Ou L. L.; Liu X. N.; Lai R. F.; Shao L. Q. Nanomaterials and hepatic disease: toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. J. Nanobiotechnol. 2021, 19 (1), 108.10.1186/s12951-021-00843-2. PubMed DOI PMC

Frtús A.; Smolková B.; Uzhytchak M.; Lunova M.; Jirsa M.; Kubinová S.; Dejneka A.; Lunov O. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J. Controlled Release 2020, 328, 59–77. 10.1016/j.jconrel.2020.08.036. PubMed DOI

Bobo D.; Robinson K. J.; Islam J.; Thurecht K. J.; Corrie S. R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33 (10), 2373–2387. 10.1007/s11095-016-1958-5. PubMed DOI

Anselmo A. C.; Mitragotri S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4 (3), e1014310.1002/btm2.10143. PubMed DOI PMC

Islas P.; Platnich C. M.; Gidi Y.; Karimi R.; Ginot L.; Saliba D.; Luo X.; Cosa G.; Sleiman H. F. Automated synthesis of DNA nanostructures. Adv. Mater. 2024, 36 (36), 240347710.1002/adma.202403477. PubMed DOI

Luo X.; Saliba D.; Yang T. X.; Gentile S.; Mori K.; Islas P.; Das T.; Bagheri N.; Porchetta A.; Guarne A.; et al. Minimalist design of wireframe DNA nanotubes: Tunable geometry, size, chirality, and dynamics. Angew. Chem., Int. Ed. 2023, 62 (44), e20230986910.1002/anie.202309869. PubMed DOI

Wang J.; Xie M.; Ouyang L.; Li J.; Wang L.; Fan C.; Chao J. Artificial molecular communication network based on DNA nanostructures recognition. Nat. Commun. 2025, 16 (1), 244.10.1038/s41467-024-55527-w. PubMed DOI PMC

Liu X.; Shi B.; Gao Y.; Zhu S. T.; Yan Q. L.; Liu X. G.; Shi J. Y.; Li Q.; Wang L. H.; Li J.; et al. Ultrabright near-infrared fluorescent DNA frameworks for near-single-cell cancer imaging. Nat. Photonics 2025, 19, 79–88. 10.1038/s41566-024-01543-7. DOI

Knappe G. A.; Wamhoff E. C.; Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. Nat. Rev. Mater. 2023, 8 (2), 123–138. 10.1038/s41578-022-00517-x. PubMed DOI PMC

Stephanopoulos N. Hybrid nanostructures from the self-assembly of proteins and DNA. Chem 2020, 6 (2), 364–405. 10.1016/j.chempr.2020.01.012. DOI

Lacroix A.; Sleiman H. F. DNA nanostructures: Current challenges and opportunities for cellular delivery. ACS Nano 2021, 15 (3), 3631–3645. 10.1021/acsnano.0c06136. PubMed DOI

Jiang S. X.; Ge Z. L.; Mou S.; Yan H.; Fan C. H. Designer DNA nanostructures for therapeutics. Chem 2021, 7 (5), 1156–1179. 10.1016/j.chempr.2020.10.025. DOI

Yan J. Q.; Zhan X. H.; Zhang Z. Z.; Chen K. Q.; Wang M. L.; Sun Y.; He B.; Liang Y. Tetrahedral DNA nanostructures for effective treatment of cancer: advances and prospects. J. Nanobiotechnol. 2021, 19 (1), 412.10.1186/s12951-021-01164-0. PubMed DOI PMC

Ma W. J.; Zhan Y. X.; Zhang Y. X.; Mao C. C.; Xie X. P.; Lin Y. F. The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduction Targeted Ther. 2021, 6 (1), 351.10.1038/s41392-021-00727-9. PubMed DOI PMC

Xiao Y.; Liang Z. H.; Shyngys M.; Baekova A.; Cheung S.; Muljadi M. B.; Bai Q. Q.; Zeng L. L.; Choi C. H. J. In vivo interactions of nucleic acid nanostructures with cells. Adv. Mater. 2025, 37 (2), 231423210.1002/adma.202314232. PubMed DOI PMC

Song N. C.; Li H. J.; Yao C.; Yang D. Y. Dynamic chemistry of DNA-based nanoassemblies in living cells. Acc. Chem. Res. 2024, 57 (19), 2763–2774. 10.1021/acs.accounts.4c00301. PubMed DOI

Wamhoff E. C.; Banal J. L.; Bricker W. P.; Shepherd T. R.; Parsons M. F.; Veneziano R.; Stone M. B.; Jun H. M.; Wang X.; Bathe M. Programming structured DNA assemblies to probe biophysical processes. Annu. Rev. Biophys. 2019, 48, 395–419. 10.1146/annurev-biophys-052118-115259. PubMed DOI PMC

Bujold K. E.; Lacroix A.; Sleiman H. F. DNA nanostructures at the interface with biology. Chem 2018, 4 (3), 495–521. 10.1016/j.chempr.2018.02.005. DOI

Veneziano R.; Moyer T. J.; Stone M. B.; Wamhoff E. C.; Read B. J.; Mukherjee S.; Shepherd T. R.; Das J.; Schief W. R.; Irvine D. J.; et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat. Nanotechnol. 2020, 15 (8), 716–723. 10.1038/s41565-020-0719-0. PubMed DOI PMC

Hellmeier J.; Platzer R.; Eklund A. S.; Schlichthaerle T.; Karner A.; Motsch V.; Schneider M. C.; Kurz E.; Bamieh V.; Brameshuber M.; et al. DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens. Proc. Natl. Acad. Sci. U. S. A. 2021, 118 (4), e201685711810.1073/pnas.2016857118. PubMed DOI PMC

Fang T.; Alvelid J.; Spratt J.; Ambrosetti E.; Testa I.; Teixeira A. Spatial regulation of T-Cell signaling by programmed death-ligand 1 on wireframe DNA origami flat sheets. ACS Nano 2021, 15 (2), 3441–3452. 10.1021/acsnano.0c10632. PubMed DOI PMC

Dong R.; Aksel T.; Chan W.; Germain R. N.; Vale R. D.; Douglas S. M. DNA origami patterning of synthetic T cell receptors reveals spatial control of the sensitivity and kinetics of signal activation. Proc. Natl. Acad. Sci. U. S. A. 2021, 118 (40), e210905711810.1073/pnas.2109057118. PubMed DOI PMC

Rosier B. J. H. M.; Markvoort A. J.; Audenis B. G.; Roodhuizen J. A. L.; den Hamer A.; Brunsveld L.; de Greef T. F. A. Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome. Nat. Catal. 2020, 3 (3), 295–306. 10.1038/s41929-019-0403-7. PubMed DOI PMC

Klein W. P.; Thomsen R. P.; Turner K. B.; Walper S. A.; Vranish J.; Kjems J.; Ancona M. G.; Medintz I. L. Enhanced catalysis from multienzyme cascades assembled on a DNA origami triangle. ACS Nano 2019, 13 (12), 13677–13689. 10.1021/acsnano.9b05746. PubMed DOI

Shaw A.; Hoffecker I. T.; Smyrlaki I.; Rosa J.; Grevys A.; Bratlie D.; Sandlie I.; Michaelsen T. E.; Andersen J. T.; Högberg B. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol. 2019, 14 (2), 184–190. 10.1038/s41565-018-0336-3. PubMed DOI PMC

Zeng Y. C.; Young O. J.; Wintersinger C. M.; Anastassacos F. M.; MacDonald J. I.; Isinelli G.; Dellacherie M. O.; Sobral M.; Bai H. Q.; Graveline A. R.; et al. Fine tuning of CpG spatial distribution with DNA origami for improved cancer vaccination. Nat. Nanotechnol. 2024, 19 (7), 1055–1065. 10.1038/s41565-024-01615-3. PubMed DOI

Kulkarni J. A.; Witzigmann D.; Thomson S. B.; Chen S.; Leavitt B. R.; Cullis P. R.; van der Meel R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 2021, 16 (6), 630–643. 10.1038/s41565-021-00898-0. PubMed DOI

Frtus A.; Smolkova B.; Uzhytchak M.; Lunova M.; Jirsa M.; Henry S. J. W.; Dejneka A.; Stephanopoulos N.; Lunov O. The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomater. 2022, 146, 10–22. 10.1016/j.actbio.2022.04.046. PubMed DOI PMC

Guo X.; Wei X.; Chen Z.; Zhang X. B.; Yang G.; Zhou S. B. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog. Mater. Sci. 2020, 107, 10059910.1016/j.pmatsci.2019.100599. DOI

Sun C.; Wang Z. Y.; Yue L. D.; Huang Q. X.; Cheng Q.; Wang R. B. Supramolecular induction of mitochondrial aggregation and fusion. J. Am. Chem. Soc. 2020, 142 (39), 16523–16527. 10.1021/jacs.0c06783. PubMed DOI

Kang J. Y.; Kim S.; Kim J.; Kang N. G.; Yang C. S.; Min S. J.; Kim J. W. Cell-penetrating peptide-conjugated lipid/polymer hybrid nanovesicles for endoplasmic reticulum-targeting intracellular delivery. J. Mater. Chem. B 2021, 9 (2), 464–470. 10.1039/D0TB01940B. PubMed DOI

Wang Y. B.; Xu S. D.; Shi L. L.; Teh C.; Qi G. B.; Liu B. Cancer-cell-activated in situ synthesis of mitochondria-targeting AIE photosensitizer for precise photodynamic therapy. Angew. Chem., Int. Ed. 2021, 60 (27), 14945–14953. 10.1002/anie.202017350. PubMed DOI

Saminathan A.; Zajac M.; Anees P.; Krishnan Y. Organelle-level precision with next-generation targeting technologies. Nat. Rev. Mater. 2022, 7 (5), 355–371. 10.1038/s41578-021-00396-8. DOI

Rossini M.; Pizzo P.; Filadi R. Better to keep in touch: investigating inter-organelle cross-talk. FEBS J. 2021, 288 (3), 740–755. 10.1111/febs.15451. PubMed DOI

Hao T. S.; Yu J. L.; Wu Z. D.; Jiang J.; Gong L. L.; Wang B. J.; Guo H. Z.; Zhao H. B.; Lu B.; Engelender S.; et al. Hypoxia-reprogramed megamitochondrion contacts and engulfs lysosome to mediate mitochondrial self-digestion. Nat. Commun. 2023, 14 (1), 4105.10.1038/s41467-023-39811-9. PubMed DOI PMC

Guo Y. F.; Li P. R.; Guo X. C.; Yao C.; Yang D. Y. Synthetic nanoassemblies for regulating organelles: From molecular design to precision therapeutics. ACS Nano 2024, 18 (44), 30224–30246. 10.1021/acsnano.4c10194. PubMed DOI

Feng Z. Q. Q.; Wang H. M.; Wang S. Y.; Zhang Q.; Zhang X. X.; Rodal A. A.; Xu B. Enzymatic assemblies disrupt the membrane and target endoplasmic reticulum for selective cancer cell death. J. Am. Chem. Soc. 2018, 140 (30), 9566–9573. 10.1021/jacs.8b04641. PubMed DOI PMC

Qiu K. Q.; Chen Y.; Rees T. W.; Ji L. N.; Chao H. Organelle-targeting metal complexes: From molecular design to bio-applications. Coord. Chem. Rev. 2019, 378, 66–86. 10.1016/j.ccr.2017.10.022. DOI

He L.; Li Y.; Tan C. P.; Ye R. R.; Chen M. H.; Cao J. J.; Ji L. N.; Mao Z. W. Cyclometalated iridium(III) complexes as lysosome-targeted photodynamic anticancer and real-time tracking agents. Chem. Sci. 2015, 6 (10), 5409–5418. 10.1039/C5SC01955A. PubMed DOI PMC

Li F.; Liu Y. J.; Dong Y. H.; Chu Y. W.; Song N. C.; Yang D. Y. Dynamic assembly of DNA nanostructures in living cells for mitochondrial interference. J. Am. Chem. Soc. 2022, 144 (10), 4667–4677. 10.1021/jacs.2c00823. PubMed DOI

Dong Y. H.; Li F.; Lv Z. Y.; Li S.; Yuan M. H.; Song N. C.; Liu J. Q.; Yang D. Y. Lysosome interference enabled by proton-driven dynamic assembly of DNA nanoframeworks inside cells. Angew. Chem., Int. Ed. 2022, 61 (36), e20220777010.1002/anie.202207770. PubMed DOI

Yang S.; Cheng Y.; Liu M. X.; Tang J. P.; Li S. Q.; Huang Y.; Kou X. H.; Yao C.; Yang D. Y. Sequential assembly of DNA nanoparticles inside cells enables lysosome interference and cell behavior regulation. Nano Today 2024, 56, 10222410.1016/j.nantod.2024.102224. DOI

Elblová P.; Lunova M.; Henry S. J. W.; Tu X. Y.; Calé A.; Dejneka A.; Havelková J.; Petrenko Y.; Jirsa M.; Stephanopoulos N.; et al. Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells. Chem. Eng. J. 2024, 498, 15563310.1016/j.cej.2024.155633. PubMed DOI PMC

Yuan M. H.; Dong Y. H.; Lv Z. Y.; Liu J. Q.; Liu M. X.; Xu M. D.; Guo X. C.; Yao C.; Yang D. Y. Controlled sequential assembly of DNA nanoparticles inside cells enabling mitochondrial interference. Adv. Funct. Mater. 2024, 34 (17), 231288010.1002/adfm.202312880. DOI

Pinheiro A. V.; Han D. R.; Shih W. M.; Yan H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 2011, 6 (12), 763–772. 10.1038/nnano.2011.187. PubMed DOI PMC

Zhang F.; Nangreave J.; Liu Y.; Yan H. Structural DNA nanotechnology: State of the art and future perspective. J. Am. Chem. Soc. 2014, 136 (32), 11198–11211. 10.1021/ja505101a. PubMed DOI PMC

Seeman N. C.; Sleiman H. F. DNA nanotechnology. Nat. Rev. Mater. 2018, 3 (1), 17068.10.1038/natrevmats.2017.68. DOI

Nie Q.; Fang X.; Huang J.; Xu T.; Li Y.; Zhang G.; Li Y. The evolution of nucleic acid nanotechnology: From DNA assembly to DNA-encoded library. Small Methods 2025, 10.1002/smtd.202401631. PubMed DOI

Kallenbach N. R.; Ma R. I.; Seeman N. C. An immobile nucleic-acid junction constructed from oligonucleotides. Nature 1983, 305 (5937), 829–831. 10.1038/305829a0. DOI

Dey S.; Fan C.; Gothelf K. V.; Li J.; Lin C.; Liu L.; Liu N.; Nijenhuis M. A. D.; Saccà B.; Simmel F. C.; et al. DNA origami. Nat. Rev. Methods Primers 2021, 1 (1), 13.10.1038/s43586-020-00009-8. DOI

Bush J.; Singh S.; Vargas M.; Oktay E.; Hu C. H.; Veneziano R. Synthesis of DNA origami scaffolds: Current and emerging strategies. Molecules 2020, 25 (15), 3386.10.3390/molecules25153386. PubMed DOI PMC

Dunn K. E.; Dannenberg F.; Ouldridge T. E.; Kwiatkowska M.; Turberfield A. J.; Bath J. Guiding the folding pathway of DNA origami. Nature 2015, 525 (7567), 82–86. 10.1038/nature14860. PubMed DOI

Jiang Q.; Song C.; Nangreave J.; Liu X. W.; Lin L.; Qiu D. L.; Wang Z. G.; Zou G. Z.; Liang X. J.; Yan H.; et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 2012, 134 (32), 13396–13403. 10.1021/ja304263n. PubMed DOI

Elblová P.; Andelová H.; Lunova M.; Anthi J.; Henry S. J. W.; Tu X. Y.; Dejneka A.; Jirsa M.; Stephanopoulos N.; Lunov O. Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake. J. Mater. Chem. B 2025, 13 (7), 2335–2351. 10.1039/D5TB00074B. PubMed DOI PMC

Roszkowski S.; Durczynska Z. Advantages and limitations of nanostructures for biomedical applications. Adv. Clin. Exp. Med. 2025, 34, 0.10.17219/acem/186846. PubMed DOI

Park W.; Na K. Advances in the synthesis and application of nanoparticles for drug delivery. Wiley Interdiscip. Rev.:Nanomed. Nanobiotechnol. 2015, 7 (4), 494–508. 10.1002/wnan.1325. PubMed DOI

Dolai J.; Mandal K.; Jana N. R. Nanoparticle size effects in biomedical applications. ACS Appl. Nano Mater. 2021, 4 (7), 6471–6496. 10.1021/acsanm.1c00987. DOI

Hoshyar N.; Gray S.; Han H. B.; Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11 (6), 673–692. 10.2217/nnm.16.5. PubMed DOI PMC

Altammar K. A. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023, 14, 115562210.3389/fmicb.2023.1155622. PubMed DOI PMC

Barua S.; Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014, 9 (2), 223–243. 10.1016/j.nantod.2014.04.008. PubMed DOI PMC

Wong C.; Stylianopoulos T.; Cui J. A.; Martin J.; Chauhan V. P.; Jiang W.; Popovic Z.; Jain R. K.; Bawendi M. G.; Fukumura D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (6), 2426–2431. 10.1073/pnas.1018382108. PubMed DOI PMC

Tao L.; Hu W.; Liu Y. L.; Huang G.; Sumer B. D.; Gao J. M. Shape-specific polymeric nanomedicine: emerging opportunities and challenges. Exp. Biol. Med. 2011, 236 (1), 20–29. 10.1258/ebm.2010.010243. PubMed DOI

Choi K. W.; Kim D. Y.; Ye S. J.; Park O O. Shape- and size-controlled synthesis of noble metal nanoparticles. Adv. Mater. Res. 2014, 3 (4), 199–216. 10.12989/amr.2014.3.4.199. DOI

An K.; Somorjai G. A. Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 2012, 4 (10), 1512–1524. 10.1002/cctc.201200229. DOI

Morla-Folch J.; Ranzenigo A.; Fayad Z. A.; Teunissen A. J. P. Nanotherapeutic heterogeneity: Sources, effects, and solutions. Small 2024, 20 (17), 230750210.1002/smll.202307502. PubMed DOI PMC

Li D.; Kaner R. B. Shape and aggregation control of nanoparticles: Not shaken, not stirred. J. Am. Chem. Soc. 2006, 128 (3), 968–975. 10.1021/ja056609n. PubMed DOI

Jindal A. B. The effect of particle shape on cellular interaction and drug delivery applications of micro-and nanoparticles. Int. J. Pharm. 2017, 532 (1), 450–465. 10.1016/j.ijpharm.2017.09.028. PubMed DOI

Liu Y.; Tan J.; Thomas A.; Ou-Yang D.; Muzykantov V. R. The shape of things to come: Importance of design in nanotechnology for drug delivery. Ther. Delivery 2012, 3 (2), 181–194. 10.4155/tde.11.156. PubMed DOI PMC

Wang Z. Y.; Sun P. C.; Su J. J.; Zhang N.; Gu H. Z.; Zhao Y. X. DNA nanotechnology-facilitated ligand manipulation for targeted therapeutics and diagnostics. J. Controlled Release 2021, 340, 292–307. 10.1016/j.jconrel.2021.11.004. PubMed DOI

Comberlato A.; Koga M. M.; Nüssing S.; Parish I. A.; Bastings M. M. C. Spatially controlled activation of Toll-like receptor 9 with DNA-based nanomaterials. Nano Lett. 2022, 22 (6), 2506–2513. 10.1021/acs.nanolett.2c00275. PubMed DOI PMC

Kwon P. S.; Ren S.; Kwon S. J.; Kizer M. E.; Kuo L.; Xie M.; Zhu D.; Zhou F.; Zhang F. M.; Kim D.; et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 2020, 12 (1), 26–35. 10.1038/s41557-019-0369-8. PubMed DOI PMC

Deal B. R.; Ma R.; Ma V. P. Y.; Su H. Q.; Kindt J. T.; Salaita K. Engineering DNA-functionalized nanostructures to bind nucleic acid targets heteromultivalently with enhanced avidity. J. Am. Chem. Soc. 2020, 142 (21), 9653–9660. 10.1021/jacs.0c01568. PubMed DOI PMC

Rinker S.; Ke Y. G.; Liu Y.; Chhabra R.; Yan H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat. Nanotechnol. 2008, 3 (7), 418–422. 10.1038/nnano.2008.164. PubMed DOI PMC

Gao M. Q.; Han Z. H.; Zhou L.; Li P.; Xu H. R.; Gu Y. Q.; Ma Y. DNA framework-programmed ligand positioning to modulate the targeting performance. ACS Appl. Mater. Interfaces 2022, 14 (32), 36957–36965. 10.1021/acsami.2c10300. PubMed DOI

Mao M.; Lin Z.; Chen L.; Zou Z. Y.; Zhang J.; Dou Q. H.; Wu J. C.; Chen J. L.; Wu M. H.; Niu L.; et al. Modular DNA-origami-based nanoarrays enhance cell binding affinity through the “lock-and-key” interaction. J. Am. Chem. Soc. 2023, 145 (9), 5447–5455. 10.1021/jacs.2c13825. PubMed DOI

Lee H.; Lytton-Jean A. K. R.; Chen Y.; Love K. T.; Park A. I.; Karagiannis E. D.; Sehgal A.; Querbes W.; Zurenko C. S.; Jayaraman M.; et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 2012, 7 (6), 389–393. 10.1038/nnano.2012.73. PubMed DOI PMC

Xu F.; Xia Q.; Ye J.; Dong L.; Yang D. L.; Xue W.; Wang P. F. Programming DNA aptamer arrays of prescribed spatial features with enhanced bioavailability and cell growth modulation. Nano Lett. 2022, 22 (24), 9935–9942. 10.1021/acs.nanolett.2c03377. PubMed DOI

Tinker J.; Anees P.; Krishnan Y. Quantitative chemical imaging of organelles. Acc. Chem. Res. 2024, 57 (14), 1906–1917. 10.1021/acs.accounts.4c00191. PubMed DOI

Paunesku T.; Vogt S.; Lai B.; Maser J.; Stojićević N.; Thurn K. T.; Osipo C.; Liu H.; Legnini D.; Wang Z.; et al. Intracellular distribution of TiO2–DNA oligonucleotide nanoconjugates directed to nucleolus and mitochondria indicates sequence specificity. Nano Lett. 2007, 7 (3), 596–601. 10.1021/nl0624723. PubMed DOI PMC

Jiang D. W.; England C. G.; Cai W. B. DNA nanomaterials for preclinical imaging and drug delivery. J. Controlled Release 2016, 239, 27–38. 10.1016/j.jconrel.2016.08.013. PubMed DOI PMC

Nasiri M.; Bahadorani M.; Dellinger K.; Aravamudhan S.; Vivero-Escoto J. L.; Zadegan R. Improving DNA nanostructure stability: A review of the biomedical applications and approaches. Int. J. Biol. Macromol. 2024, 260, 12949510.1016/j.ijbiomac.2024.129495. PubMed DOI PMC

Keller A.; Linko V. Challenges and perspectives of DNA nanostructures in biomedicine. Angew. Chem., Int. Ed. 2020, 59 (37), 15818–15833. 10.1002/anie.201916390. PubMed DOI PMC

Wang Y. F.; Wang Y. F.; Li X. L.; Wang Y. Q.; Huang Q. Q.; Ma X. W.; Liang X. J. Nanoparticle-driven controllable mitochondrial regulation through lysosome-mitochondria interactome. ACS Nano 2022, 16 (8), 12553–12568. 10.1021/acsnano.2c04078. PubMed DOI

Qiao D.; Zhang T.; Tang M. Autophagy regulation by inorganic, organic, and organic/inorganic hybrid nanoparticles: Organelle damage, regulation factors, and potential pathways. J. Biochem. Mol. Toxicol. 2023, 37 (10), e2342910.1002/jbt.23429. PubMed DOI

Shao X. T.; Meng C. C.; Song W. J.; Zhang T.; Chen Q. X. Subcellular visualization: Organelle-specific targeted drug delivery and discovery. Adv. Drug Delivery Rev. 2023, 199, 11497710.1016/j.addr.2023.114977. PubMed DOI

Ding Q.; Zhang Z.; Li M.; Zhu J.-H.; Fu W.; He M.; Bai Y.; Zhang Z.; Li S.; Wang L.; et al. Subcellular targeting strategies: Chemical structure-based design concepts for bioimaging and theranostics. Cell Biomater. 2025, 1 (1), 10000110.1016/j.celbio.2024.100001. DOI

Guo X. C.; Li F.; Liu C. X.; Zhu Y.; Xiao N. N.; Gu Z.; Luo D.; Jiang J. H.; Yang D. Y. Construction of organelle-like architecture by dynamic DNA assembly in living cells. Angew. Chem., Int. Ed. 2020, 59 (46), 20651–20658. 10.1002/anie.202009387. PubMed DOI

Chan M. S.; Tam D. Y.; Dai Z. W.; Liu L. S.; Ho J. W. T.; Chan M. L.; Xu D.; Wong M. S.; Tin C.; Lo P. K. Mitochondrial delivery of therapeutic agents by amphiphilic DNA nanocarriers. Small 2016, 12 (6), 770–781. 10.1002/smll.201503051. PubMed DOI

Bu Y. Z.; Xu J. R.; Luo Q.; Chen M.; Mu L. M.; Lu W. L. A precise nanostructure of folate-overhung mitoxantrone DNA tetrahedron for targeted capture leukemia. Nanomaterials 2020, 10 (5), 951.10.3390/nano10050951. PubMed DOI PMC

Liu C. X.; Wang B.; Zhu W. P.; Xu Y. F.; Yang Y. Y.; Qian X. H. An endoplasmic reticulum (ER)-targeting DNA nanodevice for autophagy-dependent degradation of proteins in membrane-bound organelles. Angew. Chem., Int. Ed. 2022, 61 (38), e20220550910.1002/anie.202205509. PubMed DOI

Modi S.; Nizak C.; Surana S.; Halder S.; Krishnan Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 2013, 8 (6), 459–467. 10.1038/nnano.2013.92. PubMed DOI

Guo Y. F.; Liu J. Q.; Huang Y.; Guo X. C.; Yang D. Y. Construction of DNA aggregates in cell milieu for bio-interference. Aggregate 2023, 4 (6), e38910.1002/agt2.389. DOI

Dong Y. H.; Guo Y. H.; Song W. Z.; Nie G. J.; Li F. Functional integration of DNA and peptide-based supramolecular nanoassemblies for cancer therapy. Acc. Mater. Res. 2023, 4 (10), 892–905. 10.1021/accountsmr.3c00112. DOI

Jing R. W.; Wang Q.; Chen L.; Li G. T.; Li R. B.; Zhang L. J.; Zhang H. B.; Zuo B. F.; Seow Y.; Qiao X.; et al. Functional imaging and targeted drug delivery in mice and patient tumors with a cell nucleolus-localizing and tumor-targeting peptide. Biomaterials 2022, 289, 12175810.1016/j.biomaterials.2022.121758. PubMed DOI

Fu X. L.; Shi Y. B.; Qi T. T.; Qiu S. N.; Huang Y.; Zhao X. G.; Sun Q. F.; Lin G. M. Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal Transduction Targeted Ther. 2020, 5 (1), 262.10.1038/s41392-020-00342-0. PubMed DOI PMC

Yang J. J.; Griffin A.; Qiang Z.; Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduction Targeted Ther. 2022, 7 (1), 379.10.1038/s41392-022-01243-0. PubMed DOI PMC

Cheng Y.; Sun C. L.; Liu R.; Yang J. L.; Dai J.; Zhai T. Y.; Lou X. D.; Xia F. A multifunctional peptide-conjugated AIEgen for efficient and sequential targeted gene delivery into the nucleus. Angew. Chem., Int. Ed. 2019, 58 (15), 5049–5053. 10.1002/anie.201901527. PubMed DOI

Ma Z. Y.; Han H. Y.; Zhao Y. L. Mitochondrial dysfunction-targeted nanosystems for precise tumor therapeutics. Biomaterials 2023, 293, 12194710.1016/j.biomaterials.2022.121947. PubMed DOI

Liu J. B.; Song L. L.; Liu S. L.; Jiang Q.; Liu Q.; Li N.; Wang Z. G.; Ding B. Q. A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy. Nano Lett. 2018, 18 (6), 3328–3334. 10.1021/acs.nanolett.7b04812. PubMed DOI

Lin-Shiao E.; Pfeifer W. G.; Shy B. R.; Doost M. S.; Chen E.; Vykunta V. S.; Hamilton J. R.; Stahl E. C.; Lopez D. M.; Espinoza C. R. S.; et al. CRISPR-Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells. Nucleic Acids Res. 2022, 50 (3), 1256–1268. 10.1093/nar/gkac049. PubMed DOI PMC

Liedl A.; Griessing J.; Kretzmann J. A.; Dietz H. Active nuclear import of mammalian cell-expressible DNA origami. J. Am. Chem. Soc. 2023, 145 (9), 4946–4950. 10.1021/jacs.2c12733. PubMed DOI PMC

Kretzmann J. A.; Liedl A.; Monferrer A.; Mykhailiuk V.; Beerkens S.; Dietz H. Gene-encoding DNA origami for mammalian cell expression. Nat. Commun. 2023, 14 (1), 1017.10.1038/s41467-023-36601-1. PubMed DOI PMC

Roozbahani G. M.; Colosi P. L.; Oravecz A.; Sorokina E. M.; Pfeifer W.; Shokri S.; Wei Y.; Didier P.; DeLuca M.; Arya G.; et al. Piggybacking functionalized DNA nanostructures into live-cell nuclei. Sci. Adv. 2024, 10 (27), eadn942310.1126/sciadv.adn9423. PubMed DOI PMC

Sun S. J.; Yang Y.; Niu H. M.; Luo M. X.; Wu Z. S. Design and application of DNA nanostructures for organelle-targeted delivery of anticancer drugs. Expert Opin. Drug Delivery 2022, 19 (6), 707–723. 10.1080/17425247.2022.2083603. PubMed DOI

Chiu Y. T. E.; Li H. Z.; Choi C. H. J. Progress toward understanding the interactions between DNA nanostructures and the cell. Small 2019, 15 (26), 180541610.1002/smll.201805416. PubMed DOI

Kumar M.; Jha A.; Mishra B. DNA-based nanostructured platforms as drug delivery systems. Chem. Bio Eng. 2024, 1 (3), 179–198. 10.1021/cbe.3c00023. PubMed DOI PMC

Liang L.; Li J.; Li Q.; Huang Q.; Shi J. Y.; Yan H.; Fan C. H. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem., Int. Ed. 2014, 53 (30), 7745–7750. 10.1002/anie.201403236. PubMed DOI

Knockenhauer K. E.; Schwartz T. U. The nuclear pore complex as a flexible and dynamic gate. Cell 2016, 164 (6), 1162–1171. 10.1016/j.cell.2016.01.034. PubMed DOI PMC

Yan R.; Cui W. T.; Ma W. J.; Li J. J.; Liu Z. Q.; Lin Y. F. Typhaneoside-tetrahedral framework nucleic acids system: Mitochondrial recovery and antioxidation for acute kidney injury treatment. ACS Nano 2023, 17 (9), 8767–8781. 10.1021/acsnano.3c02102. PubMed DOI

Li Y. A.; Xu R.; Wu Y. H.; Guo J. L.; Quan F. L.; Pei Y. R.; Huang D.; Zhao X.; Gao H.; Liu J. J.; et al. Genotype-specific precision tumor therapy using mitochondrial DNA mutation-induced drug release system. Sci. Adv. 2023, 9 (39), eadi196510.1126/sciadv.adi1965. PubMed DOI PMC

Liu Z. C.; Pei H.; Zhang L. M.; Tian Y. Mitochondria-targeted DNA nanoprobe for real-time imaging and simultaneous quantification of Ca2+ and pH in neurons. ACS Nano 2018, 12 (12), 12357–12368. 10.1021/acsnano.8b06322. PubMed DOI

Du J. Y.; Qiao Y. C.; Meng X. D.; Wei W.; Dai W. H.; Yang L. Z.; Yang C. Y.; Dong H. F. Mitochondria microRNA spatial imaging via pH-responsive exonuclease-assisted AIE nanoreporter. Anal. Chem. 2022, 94 (30), 10669–10675. 10.1021/acs.analchem.2c00941. PubMed DOI

Wang D. Y.; Yi H.; Geng S. Z.; Jiang C. M.; Liu J. W.; Duan J.; Zhang Z. Z.; Shi J. J.; Song H. W.; Guo Z. Z.; et al. Photoactivated DNA nanodrugs damage mitochondria to improve gene therapy for reversing chemoresistance. ACS Nano 2023, 17 (17), 16923–16934. 10.1021/acsnano.3c04002. PubMed DOI

Ma X. W.; Gong N. Q.; Zhong L.; Sun J. D.; Liang X. J. Future of nanotherapeutics: Targeting the cellular sub-organelles. Biomaterials 2016, 97, 10–21. 10.1016/j.biomaterials.2016.04.026. PubMed DOI

Rennick J. J.; Johnston A. P. R.; Parton R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 2021, 16 (3), 266–276. 10.1038/s41565-021-00858-8. PubMed DOI

Xu S.; Olenyuk B. Z.; Okamoto C. T.; Hamm-Alvarez S. F. Targeting receptor-mediated endocytotic pathways with nanoparticles: Rationale and advances. Adv. Drug Delivery Rev. 2013, 65 (1), 121–138. 10.1016/j.addr.2012.09.041. PubMed DOI PMC

Daum S.; Reshetnikov M. S. V.; Sisa M.; Dumych T.; Lootsik M. D.; Bilyy R.; Bila E.; Janko C.; Alexiou C.; Herrmann M.; et al. Lysosome-targeting amplifiers of reactive oxygen species as anticancer prodrugs. Angew. Chem., Int. Ed. 2017, 56 (49), 15545–15549. 10.1002/anie.201706585. PubMed DOI

Zhao S.; Duan F. Y.; Liu S. L.; Wu T. T.; Shang Y. X.; Tian R.; Liu J. B.; Wang Z. G.; Jiang Q.; Ding B. Q. Efficient intracellular delivery of RNase A using DNA origami carriers. ACS Appl. Mater. Interfaces 2019, 11 (12), 11112–11118. 10.1021/acsami.8b21724. PubMed DOI

Cui M. R.; Zhang D.; Zheng X.; Zhai H.; Xie M.; Fan Q.; Wang L. H.; Fan C. H.; Chao J. Intelligent modular DNA lysosome-targeting chimera nanodevice for precision tumor therapy. J. Am. Chem. Soc. 2024, 146 (43), 29609–29620. 10.1021/jacs.4c10010. PubMed DOI

Wu T. T.; Liu J. B.; Liu M. M.; Liu S. L.; Zhao S.; Tian R.; Wei D. S.; Liu Y. Z.; Zhao Y.; Xiao H. H.; et al. A nanobody-conjugated DNA nanoplatform for targeted platinum-drug delivery. Angew. Chem., Int. Ed. 2019, 58 (40), 14224–14228. 10.1002/anie.201909345. PubMed DOI

Liu S. L.; Jiang Q.; Zhao X.; Zhao R. F.; Wang Y. N.; Wang Y. M.; Liu J. B.; Shang Y. X.; Zhao S.; Wu T. T.; et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 2021, 20 (3), 421–430. 10.1038/s41563-020-0793-6. PubMed DOI

Fu M. F.; Dai L. R.; Jiang Q.; Tang Y. Q.; Zhang X. M.; Ding B. Q.; Li J. B. Observation of intracellular interactions between DNA origami and lysosomes by the fluorescence localization method. Chem. Commun. 2016, 52 (59), 9240–9242. 10.1039/C6CC00484A. PubMed DOI

Feng X. Y.; Yi D. Y.; Li L. L.; Li M. Y. Exogenously and endogenously sequential regulation of DNA nanodevices enables organelle-specific signal amplification in subcellular ATP profiling. Angew. Chem., Int. Ed. 2025, 64 (12), e20242265110.1002/anie.202422651. PubMed DOI

Escoll P.; Mondino S.; Rolando M.; Buchrieser C. Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat. Rev. Microbiol. 2016, 14 (1), 5–19. 10.1038/nrmicro.2015.1. PubMed DOI

Kumar V.; Palazzolo S.; Bayda S.; Corona G.; Toffoli G.; Rizzolio F. DNA nanotechnology for cancer therapy. Theranostics 2016, 6 (5), 710–725. 10.7150/thno.14203. PubMed DOI PMC

Yao C.; Xu Y. W.; Tang J. P.; Hu P.; Qi H. D.; Yang D. Y. Dynamic assembly of DNA-ceria nanocomplex in living cells generates artificial peroxisome. Nat. Commun. 2022, 13 (1), 7739.10.1038/s41467-022-35472-2. PubMed DOI PMC

Le Guen Y. T.; Pichon C.; Guegan P.; Pluchon K.; Haute T.; Quemener S.; Ropars J.; Midoux P.; Le Gall T.; Montier T. DNA nuclear targeting sequences for enhanced non-viral gene transfer: An in vitro and in vivo study. Mol. Ther.-Nucl. Acids 2021, 24, 477–486. 10.1016/j.omtn.2021.03.012. PubMed DOI PMC

Dean D. A.; Strong D. D.; Zimmer W. E. Nuclear entry of nonviral vectors. Gene Ther. 2005, 12 (11), 881–890. 10.1038/sj.gt.3302534. PubMed DOI PMC

Durymanov M.; Reineke J. Non-viral delivery of nucleic acids: Insight into mechanisms of overcoming intracellular barriers. Front. Pharmacol. 2018, 9, 971.10.3389/fphar.2018.00971. PubMed DOI PMC

Bastings M. M. C.; Anastassacos F. M.; Ponnuswamy N.; Leifer F. G.; Cuneo G.; Lin C. X.; Ingber D. E.; Ryu J. H.; Shih W. M. Modulation of the cellular uptake of DNA origami through control over mass and shape. Nano Lett. 2018, 18 (6), 3557–3564. 10.1021/acs.nanolett.8b00660. PubMed DOI

Wang P. F.; Rahman M. A.; Zhao Z. X.; Weiss K.; Zhang C.; Chen Z. J.; Hurwitz S. J.; Chen Z. G.; Shin D. M.; Ke Y. G. Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells. J. Am. Chem. Soc. 2018, 140 (7), 2478–2484. 10.1021/jacs.7b09024. PubMed DOI PMC

Pan Q. S.; Nie C. P.; Hu Y. L.; Yi J. T.; Liu C.; Zhang J.; He M. M.; He M. Y.; Chen T. T.; Chu X. Aptamer-functionalized DNA origami for targeted codelivery of antisense oligonucleotides and doxorubicin to enhance therapy in drug-resistant cancer cells. ACS Appl. Mater. Interfaces 2020, 12 (1), 400–409. 10.1021/acsami.9b20707. PubMed DOI

Liu J. B.; Ding B. Q.; Wu X. H.; Yang C. P.; Wang H.; Lu X. H.; Shang Y. X.; Liu Q.; Fan J. Genetically encoded DNA origami for gene therapy in vivo. J. Am. Chem. Soc. 2023, 145 (16), 9343–9353. 10.1021/jacs.3c02756. PubMed DOI

Wu T. T.; Liu Q.; Cao Y. W.; Tian R.; Liu J. B.; Ding B. Q. Multifunctional double-bundle DNA tetrahedron for efficient regulation of gene expression. ACS Appl. Mater. Interfaces 2020, 12 (29), 32461–32467. 10.1021/acsami.0c08886. PubMed DOI

Friedman J. R.; Nunnari J. Mitochondrial form and function. Nature 2014, 505 (7483), 335–343. 10.1038/nature12985. PubMed DOI PMC

Marchi S.; Guilbaud E.; Tait S. W. G.; Yamazaki T.; Galluzzi L. Mitochondrial control of inflammation. Nat. Rev. Immunol. 2023, 23 (3), 159–173. 10.1038/s41577-022-00760-x. PubMed DOI PMC

Zong Y.; Li H.; Liao P.; Chen L.; Pan Y.; Zheng Y. Q.; Zhang C. Q.; Liu D. L.; Zheng M. H.; Gao J. J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduction Targeted Ther. 2024, 9 (1), 124.10.1038/s41392-024-01839-8. PubMed DOI PMC

Lunova M.; Jirsa M.; Dejneka A.; Sullivan G. J.; Lunov O. Mechanical regulation of mitochondrial morphodynamics in cancer cells by extracellular microenvironment. Biomater. Biosyst. 2024, 14, 10009310.1016/j.bbiosy.2024.100093. PubMed DOI PMC

Li L. L.; Cheng F.; Li J.; Zhen S. J.; Lv W. Y.; Shuai X. J.; Li Y. F.; Huang C. Z.; Li C. M. Simultaneous response of mitochondrial microRNAs to identify cell apoptosis with multiple responsive intelligent DNA biocomputing nanodevices. Anal. Chem. 2023, 95 (29), 10992–10998. 10.1021/acs.analchem.3c01117. PubMed DOI

Li Y. N.; Wu Y. H.; Xu R.; Guo J. L.; Quan F. L.; Zhang Y. Y.; Huang D.; Pei Y. R.; Gao H.; Liu W.; et al. In vivo imaging of mitochondrial DNA mutations using an integrated nano Cas12a sensor. Nat. Commun. 2023, 14 (1), 7722.10.1038/s41467-023-43552-0. PubMed DOI PMC

Shao Y. L.; Zhao J.; Yuan J. Y.; Zhao Y. L.; Li L. L. Organelle-specific photoactivation of DNA nanosensors for precise profiling of subcellular enzymatic activity. Angew. Chem., Int. Ed. 2021, 60 (16), 8923–8931. 10.1002/anie.202016738. PubMed DOI

Chai X.; Fan Z. T.; Yu M. M.; Zhao J.; Li L. L. A redox-activatable DNA nanodevice for spatially-selective, AND-gated imaging of ATP and glutathione in mitochondria. Nano Lett. 2021, 21 (23), 10047–10053. 10.1021/acs.nanolett.1c03732. PubMed DOI

Yi D. Y.; Zhao H. Z.; Zhao J.; Li L. L. Modular engineering of DNAzyme-based sensors for spatioselective imaging of metal ions in mitochondria. J. Am. Chem. Soc. 2023, 145 (3), 1678–1685. 10.1021/jacs.2c11081. PubMed DOI

Guo Y. F.; Li S. Q.; Tong Z. B.; Tang J. P.; Zhang R.; Lv Z. Y.; Song N. C.; Yang D. Y.; Yao C. Telomerase-mediated self-assembly of DNA network in cancer cells enabling mitochondrial interference. J. Am. Chem. Soc. 2023, 145 (43), 23859–23873. 10.1021/jacs.3c09529. PubMed DOI

Yan J. Q.; Chen J.; Zhang N.; Yang Y. D.; Zhu W. W.; Li L.; He B. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J. Mater. Chem. B 2020, 8 (3), 492–503. 10.1039/C9TB02266J. PubMed DOI

Zhu L. Y.; Shen Y. T.; Deng S. Y.; Wan Y.; Luo J.; Su Y.; You M. X.; Fan C. H.; Ren K. W. Controllable mitochondrial aggregation and fusion by a programmable DNA binder. Chem. Sci. 2023, 14 (30), 8084–8094. 10.1039/D2SC07095B. PubMed DOI PMC

Bonam S. R.; Wang F. J.; Muller S. Lysosomes as a therapeutic target. Nat. Rev. Drug Discovery 2019, 18 (12), 923–948. 10.1038/s41573-019-0036-1. PubMed DOI PMC

Settembre C.; Perera R. M. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat. Rev. Mol. Cell Biol. 2024, 25 (3), 223–245. 10.1038/s41580-023-00676-x. PubMed DOI

Gros F.; Muller S. The role of lysosomes in metabolic and autoimmune diseases. Nat. Rev. Nephrol. 2023, 19 (6), 366–383. 10.1038/s41581-023-00692-2. PubMed DOI

Cao M. D.; Luo X. Y.; Wu K. M.; He X. X. Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduction Targeted Ther. 2021, 6 (1), 379.10.1038/s41392-021-00778-y. PubMed DOI PMC

Iulianna T.; Kuldeep N.; Eric F. The Achilles’ heel of cancer: targeting tumors via lysosome-induced immunogenic cell death. Cell Death Dis. 2022, 13 (5), 509.10.1038/s41419-022-04912-8. PubMed DOI PMC

Petersen N. H. T.; Olsen O. D.; Groth-Pedersen L.; Ellegaard A. M.; Bilgin M.; Redmer S.; Ostenfeld M. S.; Ulanet D.; Dovmark T. H.; Lonborg A.; et al. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 2013, 24 (3), 379–393. 10.1016/j.ccr.2013.08.003. PubMed DOI

Leung K.; Chakraborty K.; Saminathan A.; Krishnan Y. A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol. 2019, 14 (2), 176–183. 10.1038/s41565-018-0318-5. PubMed DOI PMC

Glab A.; Bertucci A.; Martino F.; Wojnilowicz M.; Amodio A.; Venanzi M.; Ricci F.; Forte G.; Caruso F.; Cavalieri F. Dissecting the intracellular signalling and fate of a DNA nanosensor by super-resolution and quantitative microscopy. Nanoscale 2020, 12 (28), 15402–15413. 10.1039/D0NR03087B. PubMed DOI

Vindigni G.; Raniolo S.; Iacovelli F.; Unida V.; Stolfi C.; Desideri A.; Biocca S. AS1411 aptamer linked to DNA nanostructures diverts its traffic inside cancer cells and improves its therapeutic efficacy. Pharmaceutics 2021, 13 (10), 1671.10.3390/pharmaceutics13101671. PubMed DOI PMC

Zou G.-Y.; Bi F.; Yu Y.-L.; Liu M.-X.; Chen S. Tetrahedral DNA-based ternary recognition ratiometric fluorescent probes for real-time in situ resolving lysosome subpopulations in living cells via Cl–, Ca2+, and pH. Anal. Chem. 2024, 96 (42), 16639–16648. 10.1021/acs.analchem.4c02723. PubMed DOI

Thekkan S.; Jani M. S.; Cui C.; Dan K.; Zhou G. L.; Becker L.; Krishnan Y. A DNA-based fluorescent reporter maps HOCl production in the maturing phagosome. Nat. Chem. Biol. 2019, 15 (12), 1165–1172. 10.1038/s41589-018-0176-3. PubMed DOI PMC

Langecker M.; Arnaut V.; Martin T. G.; List J.; Renner S.; Mayer M.; Dietz H.; Simmel F. C. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 2012, 338 (6109), 932–936. 10.1126/science.1225624. PubMed DOI PMC

Birkholz O.; Burns J. R.; Richter C. P.; Psathaki O. E.; Howorka S.; Piehler J. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nat. Commun. 2018, 9, 1521.10.1038/s41467-018-02905-w. PubMed DOI PMC

Burns J. R.; Howorka S. Defined bilayer interactions of DNA nanopores revealed with a nuclease-based nanoprobe strategy. ACS Nano 2018, 12 (4), 3263–3271. 10.1021/acsnano.7b07835. PubMed DOI

Burns J. R.; Seifert A.; Fertig N.; Howorka S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol. 2016, 11 (2), 152–156. 10.1038/nnano.2015.279. PubMed DOI

Arulkumaran N.; Lanphere C.; Gaupp C.; Burns J. R.; Singer M.; Howorka S. DNA nanodevices with selective immune cell interaction and function. ACS Nano 2021, 15 (3), 4394–4404. 10.1021/acsnano.0c07915. PubMed DOI

Li Y. H.; Zhang X.; Wan X. Y.; Liu X. H.; Pan W.; Li N.; Tang B. Inducing endoplasmic reticulum stress to expose immunogens: A DNA tetrahedron nanoregulator for enhanced immunotherapy. Adv. Funct. Mater. 2020, 30 (48), 200053210.1002/adfm.202000532. DOI

Pavlova N. N.; Zhu J. J.; Thompson C. B. The hallmarks of cancer metabolism: Still emerging. Cell Metab. 2022, 34 (3), 355–377. 10.1016/j.cmet.2022.01.007. PubMed DOI PMC

Zhang L. S.; Sheng R.; Qin Z. H. The lysosome and neurodegenerative diseases. Acta Biochim. Biophys. Sin. 2009, 41 (6), 437–445. 10.1093/abbs/gmp031. PubMed DOI

Yoshida H. ER stress and diseases. FEBS J. 2007, 274 (3), 630–658. 10.1111/j.1742-4658.2007.05639.x. PubMed DOI

Ozcan L.; Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu. Rev. Med. 2012, 63, 317–328. 10.1146/annurev-med-043010-144749. PubMed DOI PMC

Liu J. Y.; Huang Y.; Li T.; Jiang Z.; Zeng L. W.; Hu Z. P. The role of the Golgi apparatus in disease (Review). Int. J. Mol. Med. 2021, 47 (4), 38.10.3892/ijmm.2021.4871. PubMed DOI PMC

Zhang M. Y.; Xu N.; Xu W. X.; Ling G. X.; Zhang P. Potential therapies and diagnosis based on Golgi-targeted nano drug delivery systems. Pharmacol. Res. 2022, 175, 10586110.1016/j.phrs.2021.105861. PubMed DOI

Cho H. N.; Huh K. M.; Shim M. S.; Cho Y. Y.; Lee J. Y.; Lee H. S.; Kwon Y. J.; Kang H. C. Selective delivery of imaging probes and therapeutics to the endoplasmic reticulum or Golgi apparatus: Current strategies and beyond. Adv. Drug Delivery Rev. 2024, 212, 11538610.1016/j.addr.2024.115386. PubMed DOI

Praetorius F.; Kick B.; Behler K. L.; Honemann M. N.; Weuster-Botz D.; Dietz H. Biotechnological mass production of DNA origami. Nature 2017, 552 (7683), 84–87. 10.1038/nature24650. PubMed DOI

Richter M.; Piwocka O.; Musielak M.; Piotrowski I.; Suchorska W. M.; Trzeciak T. From donor to the lab: A fascinating journey of primary cell lines. Front. Cell. Dev. Biol. 2021, 9, 71138110.3389/fcell.2021.711381. PubMed DOI PMC

Geraghty R. J.; Capes-Davis A.; Davis J. M.; Downward J.; Freshney R. I.; Knezevic I.; Lovell-Badge R.; Masters J. R. W.; Meredith J.; Stacey G. N.; et al. Guidelines for the use of cell lines in biomedical research. Br. J. Cancer 2014, 111 (6), 1021–1046. 10.1038/bjc.2014.166. PubMed DOI PMC

Capes-Davis A.; Theodosopoulos G.; Atkin I.; Drexler H. G.; Kohara A.; MacLeod R. A. F.; Masters J. R.; Nakamura Y.; Reid Y. A.; Reddel R. R.; et al. Check your cultures! A list of cross-contaminated or misidentified cell lines. Int. J. Cancer 2010, 127 (1), 1–8. 10.1002/ijc.25242. PubMed DOI

Pan C. P.; Kumar C.; Bohl S.; Klingmueller U.; Mann M. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol. Cell. Proteomics 2009, 8 (3), 443–450. 10.1074/mcp.M800258-MCP200. PubMed DOI PMC

Sakhrani N. M.; Padh H. Organelle targeting: third level of drug targeting. Drug Des., Dev. Ther. 2013, 7, 585–599. 10.2147/DDDT.S45614. PubMed DOI PMC

Murphy M. P.; Smith R. A. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629–656. 10.1146/annurev.pharmtox.47.120505.105110. PubMed DOI

Tang Y.; Han S. L.; Liu H. M.; Chen X.; Huang L.; Li X. H.; Zhang J. X. The role of surface chemistry in determining in vivo biodistribution and toxicity of CdSe/ZnS core-shell quantum dots. Biomaterials 2013, 34 (34), 8741–8755. 10.1016/j.biomaterials.2013.07.087. PubMed DOI

Israel L. L.; Lellouche E.; Ostrovsky S.; Yarmiayev V.; Bechor M.; Michaeli S.; Lellouche J. P. Acute in vivo toxicity mitigation of PEI-coated maghemite nanoparticles using controlled oxidation and surface modifications toward siRNA delivery. ACS Appl. Mater. Interfaces 2015, 7 (28), 15240–15255. 10.1021/acsami.5b02743. PubMed DOI

Tian T. R.; Li Y. J.; Lin Y. F. Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Res. 2022, 10 (1), 40.10.1038/s41413-022-00212-1. PubMed DOI PMC

Harrison S. P.; Siller R.; Tanaka Y.; Chollet M. E.; de la Morena-barrio M. E.; Xiang Y. F.; Patterson B.; Andersen E.; Bravo-Perez C.; Kempf H.; et al. Scalable production of tissue-like vascularized liver organoids from human PSCs. Exp. Mol. Med. 2023, 55 (9), 2005–2024. 10.1038/s12276-023-01074-1. PubMed DOI PMC

Leung C. M.; de Haan P.; Ronaldson-Bouchard K.; Kim G. A.; Ko J.; Rho H. S.; Chen Z.; Habibovic P.; Jeon N. L.; Takayama S.; et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2022, 2 (1), 33.10.1038/s43586-022-00118-6. DOI

Ingber D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 2022, 23 (8), 467–491. 10.1038/s41576-022-00466-9. PubMed DOI PMC

Liu Y. H.; Wu W. T.; Cai C. J.; Zhang H.; Shen H.; Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduction Targeted Ther. 2023, 8 (1), 160.10.1038/s41392-023-01419-2. PubMed DOI PMC

Zhang Y. N.; Poon W.; Tavares A. J.; McGilvray I. D.; Chan W. C. W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Controlled Release 2016, 240, 332–348. 10.1016/j.jconrel.2016.01.020. PubMed DOI

Sindhwani S.; Syed A. M.; Ngai J.; Kingston B. R.; Maiorino L.; Rothschild J.; MacMillan P.; Zhang Y. W.; Rajesh N. U.; Hoang T.; et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020, 19 (5), 566–575. 10.1038/s41563-019-0566-2. PubMed DOI

Ouyang B.; Poon W.; Zhang Y. N.; Lin Z. P.; Kingston B. R.; Tavares A. J.; Zhang Y. W.; Chen J.; Valic M. S.; Syed A. M.; et al. The dose threshold for nanoparticle tumour delivery. Nat. Mater. 2020, 19 (12), 1362–1371. 10.1038/s41563-020-0755-z. PubMed DOI

Andrade R. J.; Chalasani N.; Bjornsson E. S.; Suzuki A.; Kullak-Ublick G. A.; Watkins P. B.; Devarbhavi H.; Merz M.; Lucena M. I.; Kaplowitz N.; et al. Drug-induced liver injury. Nat. Rev. Dis. Primers 2019, 5, 58.10.1038/s41572-019-0105-0. PubMed DOI

Fernandez-Checa J. C.; Bagnaninchi P.; Ye H.; Sancho-Bru P.; Falcon-Perez J. M.; Royo F.; Garcia-Ruiz C.; Konu O.; Miranda J.; Lunov O.; et al. Advanced preclinical models for evaluation of drug-induced liver injury - consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. J. Hepatol. 2021, 75 (4), 935–959. 10.1016/j.jhep.2021.06.021. PubMed DOI

Mehta V.; Karnam G.; Madgula V. Liver-on-chips for drug discovery and development. Mater. Today Bio 2024, 27, 10114310.1016/j.mtbio.2024.101143. PubMed DOI PMC

Dickson I. Multispecies liver-on-a-chip for improved drug toxicity testing. Nat. Rev. Gastroenterol. Hepatol. 2020, 17 (1), 4–4. 10.1038/s41575-019-0244-5. PubMed DOI

Bhushan A.; Martucci N. J.; Usta O. B.; Yarmush M. L. New technologies in drug metabolism and toxicity screening: organ-to-organ interaction. Expert Opin. Drug Metab. Toxicol. 2016, 12 (5), 475–477. 10.1517/17425255.2016.1162292. PubMed DOI PMC

Qian R. C.; Zhou Z. R.; Wu Y. T.; Yang Z. L.; Guo W. J.; Li D. W.; Lu Y. Combination cancer treatment: Using engineered DNAzyme molecular machines for dynamic inter- and intracellular regulation. Angew. Chem., Int. Ed. 2022, 61 (49), e20221093510.1002/anie.202210935. PubMed DOI PMC

Zhao J.; Li Z. X.; Shao Y. L.; Hu W. P.; Li L. L. Spatially selective imaging of mitochondrial microRNAs via optically programmable strand displacement reactions. Angew. Chem., Int. Ed. 2021, 60 (33), 17937–17941. 10.1002/anie.202105696. PubMed DOI

Zhao J.; Gao J. H.; Xue W. T.; Di Z. H.; Xing H.; Lu Y.; Li L. L. Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells. J. Am. Chem. Soc. 2018, 140 (2), 578–581. 10.1021/jacs.7b11161. PubMed DOI

Perrault S. D.; Shih W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve stability. ACS Nano 2014, 8 (5), 5132–5140. 10.1021/nn5011914. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...