Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
DP2 GM132931
NIGMS NIH HHS - United States
PubMed
39372137
PubMed Central
PMC11448966
DOI
10.1016/j.cej.2024.155633
PII: 155633
Knihovny.cz E-zdroje
- Klíčová slova
- DNA nanotechnology, Interferon, Lysosomal rupture, Nanotechnology, bio/nano interactions, lysosome interference,
- Publikační typ
- časopisecké články MeSH
DNA nanotechnology is a rapidly growing field that provides exciting tools for biomedical applications. Targeting lysosomal functions with nanomaterials, such as DNA nanostructures (DNs), represents a rational and systematic way to control cell functionality. Here we present a versatile DNA nanostructure-based platform that can modulate a number of cellular functions depending on the concentration and surface decoration of the nanostructure. Utilizing different peptides for surface functionalization of DNs, we were able to rationally modulate lysosomal activity, which in turn translated into the control of cellular function, ranging from changes in cell morphology to modulation of immune signaling and cell death. Low concentrations of decalysine peptide-coated DNs induced lysosomal acidification, altering the metabolic activity of susceptible cells. In contrast, DNs coated with an aurein-bearing peptide promoted lysosomal alkalization, triggering STING activation. High concentrations of decalysine peptide-coated DNs caused lysosomal swelling, loss of cell-cell contacts, and morphological changes without inducing cell death. Conversely, high concentrations of aurein-coated DNs led to lysosomal rupture and mitochondrial damage, resulting in significant cytotoxicity. Our study holds promise for the rational design of a new generation of versatile DNA-based nanoplatforms that can be used in various biomedical applications, like the development of combinatorial anti-cancer platforms, efficient systems for endolysosomal escape, and nanoplatforms modulating lysosomal pH.
Biodesign Center for Molecular Design and Biomimetics Arizona State University Tempe United States
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 CZ 121 16 Prague 2 Czech Republic
Institute for Clinical and Experimental Medicine Prague 14021 Czech Republic
School of Molecular Sciences Arizona State University Tempe Arizona 85287 United States
Zobrazit více v PubMed
Youden B, Jiang RQ, Carrier AJ, Servos MR, Zhang X, A nanomedicine structure-activity framework for research, development, and regulation of future cancer therapies, ACS Nano 16 (11) (2022) 17497–17551, 10.1021/acsnano.2c06337. PubMed DOI
Bhatia SN, Chen XY, Dobrovolskaia MA, Lammers T, Cancer nanomedicine, Nat. Rev. Cancer 22 (10) (2022) 550–556, 10.1038/s41568-022-00496-9. PubMed DOI PMC
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R, Engineering precision nanoparticles for drug delivery, Nat. Rev. Drug Discov 20 (2) (2021) 101–124, 10.1038/s41573-020-0090-8. PubMed DOI PMC
Sigismund S, Lanzetti L, Scita G, Di Fiore PP, Endocytosis in the context-dependent regulation of individual and collective cell properties, Nat. Rev. Mol. Cell Biol 22 (9) (2021) 625–643, 10.1038/s41580-021-00375-5. PubMed DOI
Saftig P, Klumperman J, Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function, Nat. Rev. Mol. Cell Biol 10 (9) (2009) 623–635, 10.1038/nrm2745. PubMed DOI
Ding CD, Chen CB, Zeng XW, Chen HZ, Zhao YL, Emerging strategies in stimuli-responsive prodrug nanosystems for cancer therapy, ACS Nano 16 (9) (2022) 13513–13553, 10.1021/acsnano.2c05379. PubMed DOI
Xue XL, Qian CG, Fang HB, Liu HK, Yuan H, Guo ZJ, Bai Y, He WJ, Photoactivated lysosomal escape of a monofunctional Pt(II) complex Pt-BDPA for nucleus access, Angew. Chem.-Int. Edit 58 (36) (2019) 12661–12666, 10.1002/anie.201906203. PubMed DOI
Huo D, Xia YA, Quantifying the sub-cellular distributions of gold nanospheres taken up by cells through stepwise, site-selective etching, Chem.-Eur. J 24 (34) (2018) 8513–8518, 10.1002/chem.201800525. PubMed DOI
Wang RN, Yin CF, Liu CR, Sun Y, Xiao PP, Li J, Yang S, Wu W, Jiang XQ, Phenylboronic acid modification augments the lysosome escape and antitumor efficacy of a cylindrical polymer brush-based prodrug, J. Am. Chem. Soc 143 (49) (2021) 20927–20938, 10.1021/jacs.1c09741. PubMed DOI
Rennick JJ, Johnston APR, Parton RG, Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics, Nat. Nanotechnol 16 (3) (2021) 266–276, 10.1038/s41565-021-00858-8. PubMed DOI
Cao MD, Luo XY, Wu KM, He XX, Targeting lysosomes in human disease: from basic research to clinical applications, Signal Transduct. Target. Ther 6 (1) (2021) 379, 10.1038/s41392-021-00778-y. PubMed DOI PMC
Platt FM, Emptying the stores: lysosomal diseases and therapeutic strategies, Nat. Rev. Drug Discov 17 (2) (2018) 133–150, 10.1038/nrd.2017.214. PubMed DOI
Bonam SR, Wang FJ, Muller S, Lysosomes as a therapeutic target, Nat. Rev. Drug Discov 18 (12) (2019) 923–948, 10.1038/s41573-019-0036-1. PubMed DOI PMC
Pei JP, Wang G, Feng L, Zhang JF, Jiang TT, Sun Q, Ouyang L, Targeting lysosomal degradation pathways: New strategies and techniques for drug discovery, J. Med. Chem 64 (7) (2021) 3493–3507, 10.1021/acs.jmedchem.0c01689. PubMed DOI
Nowosad A, Jeannot P, Callot C, Creff J, Perchey RT, Joffre C, Codogno P, Manenti S, Besson A, p27 controls Ragulator and mTOR activity in amino acid-deprived cells to regulate the autophagy-lysosomal pathway and coordinate cell cycle and cell growth, Nat. Cell Biol 22 (9) (2020) 1076–1090, 10.1038/s41556-020-0554-4. PubMed DOI
Mauthe M, Orhon I, Rocchi C, Zhou XD, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, Mari M, Reggiori F, Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion, Autophagy 14 (8) (2018) 1435–1455, 10.1080/15548627.2018.1474314. PubMed DOI PMC
Mauvezin C, Neufeld TP, Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion, Autophagy 11 (8) (2015) 1437–1438, 10.1080/15548627.2015.1066957. PubMed DOI PMC
Mauvezin C, Nagy P, Juhász G, Neufeld TP, Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification, Nat. Commun 6 (2015) 7007, 10.1038/ncomms8007. PubMed DOI PMC
Borkowska M, Siek M, Kolygina DV, Sobolev YI, Lach S, Kumar S, Cho YK, Kandere-Grzybowska K, Grzybowski BA, Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells, Nat. Nanotechnol 15 (4) (2020) 331–341, 10.1038/s41565-020-0643-3. PubMed DOI
Tang MM, Chen BL, Xia HM, Pan MJ, Zhao RY, Zhou JY, Yin QQ, Wan FJ, Yan Y, Fu CX, Zhong LJ, Zhang Q, Wang YG, pH-gated nanoparticles selectively regulate lysosomal function of tumour-associated macrophages for cancer immunotherapy, Nat. Commun 14 (1) (2023) 5888, 10.1038/s41467-023-41592-0. PubMed DOI PMC
Zhao Y, Ye Z, Song D, Wich D, Gao S, Khirallah J, Xu Q, Nanomechanical action opens endo-lysosomal compartments, Nat. Commun 14 (1) (2023) 6645, 10.1038/s41467-023-42280-9. PubMed DOI PMC
Abasolo I, Seras-Franzoso J, Molto-Abad M, Diaz-Riascos V, Corchero JL, Pintos-Morell G, Schwartz S, Nanotechnology-based approaches for treating lysosomal storage disorders, a focus on Fabry disease, Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol 13 (3) (2021) e1684, 10.1002/wnan.1684. PubMed DOI
Solomon M, Muro S, Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives, Adv. Drug Deliv. Rev 118 (2017) 109–134, 10.1016/j.addr.2017.05.004. PubMed DOI PMC
Placci M, Giannotti MI, Muro S, Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders, Adv. Drug Deliv. Rev 197 (2023) 114683, 10.1016/j.addr.2022.114683. PubMed DOI PMC
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O, Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function, Adv. Drug Deliv. Rev 197 (2023) 114828, 10.1016/j.addr.2023.114828. PubMed DOI
Zhan J, Zhong J, Ma SD, Ma W, Wang YL, Yu ZQ, Cai YB, Huang WH, Dual-responsive self-assembly in lysosomes enables cell cycle arrest for locking glioma cell growth, Chem. Commun 56 (51) (2020) 6957–6960, 10.1039/c9cc09983b. PubMed DOI
Keum C, Hong JY, Kim D, Lee SY, Kim H, Lysosome-instructed self-assembly of amino-acid-functionalized perylene diimide for multidrug-resistant cancer cells, ACS Appl. Mater. Interfaces 13 (13) (2021) 14866–14874, 10.1021/acsami.0c20050. PubMed DOI
Ren KW, Liu Y, Wu J, Zhang Y, Zhu J, Yang M, Ju HX, A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery, Nat. Commun 7 (2016) 13580, 10.1038/ncomms13580. PubMed DOI PMC
Gong NQ, Zhang YX, Teng XC, Wang YC, Huo SD, Qing GC, Ni QK, Li XL, Wang JJ, Ye XX, Zhang TB, Chen SZ, Wang YJ, Yu J, Wang PC, Gan YL, Zhang JC, Mitchell MJ, Li JH, Liang XJ, Proton-driven transformable nanovaccine for cancer immunotherapy, Nat. Nanotechnol 15 (12) (2020) 1053–1064, 10.1038/s41565-020-00782-3. PubMed DOI PMC
Guo XC, Li F, Liu CX, Zhu Y, Xiao NN, Gu Z, Luo D, Jiang JH, Yang DY, Construction of organelle-like architecture by dynamic DNA assembly in living cells, Angew. Chem.-Int. Edit 59 (46) (2020) 20651–20658, 10.1002/anie.202009387. PubMed DOI
Dong YH, Li F, Lv ZY, Li S, Yuan MH, Song NC, Liu JQ, Yang DY, Lysosome interference enabled by proton-driven dynamic assembly of DNA nanoframeworks inside cells, Angew. Chem.-Int. Edit 61 (36) (2022) e202207770, 10.1002/anie.202207770. PubMed DOI
Yang S, Cheng Y, Liu MX, Tang JP, Li SQ, Huang Y, Kou XH, Yao C, Yang DY, Sequential assembly of DNA nanoparticles inside cells enables lysosome interference and cell behavior regulation, Nano Today 56 (2024) 102224, 10.1016/j.nantod.2024.102224. DOI
Seeman NC, Gang O, Three-dimensional molecular and nanoparticle crystallization by DNA nanotechnology, MRS Bull. 42 (12) (2017) 904–912, 10.1557/mrs.2017.280. DOI
Chandrasekaran AR, Nuclease resistance of DNA nanostructures, Nat. Rev. Chem 5 (4) (2021) 225–239, 10.1038/s41570-021-00251-y. PubMed DOI PMC
Stephanopoulos N, Hybrid nanostructures from the self-assembly of proteins and DNA, Chem 6 (2) (2020) 364–405, 10.1016/j.chempr.2020.01.012. DOI
Knappe GA, Wamhoff EC, Bathe M, Functionalizing DNA origami to investigate and interact with biological systems, Nat. Rev. Mater 8 (2) (2023) 123–138, 10.1038/s41578-022-00517-x. PubMed DOI PMC
Frtus A, Smolkova B, Uzhytchak M, Lunova M, Jirsa M, Henry SJW, Dejneka A, Stephanopoulos N, Lunov O, The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective, Acta Biomater. 146 (2022) 10–22, 10.1016/j.actbio.2022.04.046. PubMed DOI PMC
Leung K, Chakraborty K, Saminathan A, Krishnan Y, A DNA nanomachine chemically resolves lysosomes in live cells, Nat. Nanotechnol 14 (2) (2019) 176–183, 10.1038/s41565-018-0318-5. PubMed DOI PMC
Cui C, Chakraborty K, Tang XA, Schoenfelt KQ, Hoffman A, Blank A, McBeth B, Pulliam N, Reardon CA, Kulkarni SA, Vaisar T, Ballabio A, Krishnan Y, Becker L, A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours, Nat. Nanotechnol 16 (12) (2021) 1394–1402, 10.1038/s41565-021-00988-z. PubMed DOI
Chakraborty K, Anees P, Surana S, Martin S, Aburas J, Moutel S, Perez F, Koushika SP, Kratsios P, Krishnan Y, Tissue-specific targeting of DNA nanodevices in a multicellular living organism, eLife 10 (2021) e67830, 10.7554/eLife.67830. PubMed DOI PMC
Ponnuswamy N, Bastings MMC, Nathwani B, Ryu JH, Chou LYT, Vinther M, Li WA, Anastassacos FM, Mooney DJ, Shih WM, Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation, Nat. Commun 8 (2017) 15654, 10.1038/ncomms15654. PubMed DOI PMC
Li M, Tao Y, Shu YL, LaRochelle JR, Steinauer A, Thompson D, Schepartz A, Chen ZY, Liu DR, Discovery and characterization of a peptide that enhances endosomal escape of delivered proteins in vitro and in vivo, J. Am. Chem. Soc 137 (44) (2015) 14084–14093, 10.1021/jacs.5b05694. PubMed DOI
Smolková B, MacCulloch T, Rockwood TF, Liu MH, Henry SJW, Frtús A, Uzhytchak M, Lunova M, Hof M, Jurkiewicz P, Dejneka A, Stephanopoulos N, Lunov O, Protein corona inhibits endosomal escape of functionalized DNA nanostructures in living cells, ACS Appl. Mater. Interfaces 13 (39) (2021) 46375–46390, 10.1021/acsami.1c14401. PubMed DOI PMC
Evans BC, Fletcher RB, Kilchrist KV, Dailing EA, Mukalel AJ, Colazo JM, Oliver M, Cheung-Flynn J, Brophy CM, Tierney JW, Isenberg JS, Hankenson KD, Ghimire K, Lander C, Gersbach CA, Duvall CL, An anionic, endosome-escaping polymer to potentiate intracellular delivery of cationic peptides, biomacromolecules, and nanoparticles, Nat. Commun 10 (2019) 5012, 10.1038/s41467-019-12906-y. PubMed DOI PMC
Chatterjee S, Kon E, Sharma P, Peer D, Endosomal escape: A bottleneck for LNP-mediated therapeutics, Proc. Natl. Acad. Sci. U. S. A 121 (11) (2024) e2307800120, 10.1073/pnas.2307800120. PubMed DOI PMC
Qiu C, Xia F, Zhang JZ, Shi QL, Meng YQ, Wang C, Pang HH, Gu LW, Xu CC, Guo QY, Wang JG, Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery, Research 6 (2023) 0148, 10.34133/research.0148. PubMed DOI PMC
Eilenberger C, Kratz SRA, Rothbauer M, Ehmoser E-K, Ertl P, Küpcü S, Optimized alamarBlue assay protocol for drug dose-response determination of 3D tumor spheroids, MethodsX 5 (2018) 781–787, 10.1016/j.mex.2018.07.011. PubMed DOI PMC
Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G, Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009, Cell Death Differ. 16 (1) (2009) 3–11, 10.1038/cdd.2008.150. PubMed DOI PMC
Crowley LC, Scott AP, Marfell BJ, Boughaba JA, Chojnowski G, Waterhouse NJ, Measuring cell death by propidium iodide uptake and flow cytometry, Cold Spring Harb. Protoc 2016 (7) (2016) 647–651, 10.1101/pdb.prot087163. PubMed DOI
Hachet-Haas M, Converset N, Marchal O, Matthes H, Gioria S, Galzi JL, Lecat S, FRET and colocalization analyzer - A method to validate measurements of sensitized emission FRET acquired by confocal microscopy and available as an ImageJ plug-in, Microsc. Res. Tech 69 (12) (2006) 941–956, 10.1002/jemt.20376. PubMed DOI
Albrecht LV, Tejeda-Muñoz N, De Robertis EM, Protocol for probing regulated lysosomal activity and function in living cells, STAR Protoc. 1 (3) (2020) 100132, 10.1016/j.xpro.2020.100132. PubMed DOI PMC
Dolman NJ, Kilgore JA, A review of reagents for fluorescence microscopy of cellular compartments and structures, Part I: BacMam labeling and reagents for vesicular structures, Curr. Protoc 3 (6) (2023) e751, 10.1002/cpz1.751. PubMed DOI
Lunova M, Kubovciak J, Smolkova B, Uzhytchak M, Michalova K, Dejneka A, Strnad P, Lunov O, Jirsa M, Expression of interferons lambda 3 and 4 induces identical response in human liver cell lines depending exclusively on canonical signaling, Int. J. Mol. Sci 22 (5) (2021) 2560, 10.3390/ijms22052560. PubMed DOI PMC
Frtus A, Smolkov B, Uzhytchak M, Lunova M, Jirsa M, Petrenko Y, Dejneka A, Lunov O, Mechanical regulation of mitochondrial dynamics and function in a 3D-engineered liver tumor microenvironment, ACS Biomater. Sci. Eng 9 (5) (2023) 2408–2425, 10.1021/acsbiomaterials.2c01518. PubMed DOI PMC
Schmittgen TD, Livak KJ, Analyzing real-time PCR data by the comparative C-T method, Nat. Protoc 3 (6) (2008) 1101–1108, 10.1038/nprot.2008.73. PubMed DOI
Lunov O, Zablotskii V, Churpita O, Lunova M, Jirsa M, Dejneka A, Kubinová S, Chemically different non-thermal plasmas target distinct cell death pathways, Sci. Rep 7 (2017) 600, 10.1038/s41598-017-00689-5. PubMed DOI PMC
Levada K, Pshenichnikov S, Omelyanchik A, Rodionova V, Nikitin A, Savchenko A, Schetinin I, Zhukov D, Abakumov M, Majouga A, Lunova M, Jirsa M, Smolková B, Uzhytchak M, Dejneka A, Lunov O, Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis, Nano Converg. 7 (1) (2020) 17, 10.1186/s40580-020-00228-5. PubMed DOI PMC
Lunova M, Smolkova B, Uzhytchak M, Janouskova KZ, Jirsa M, Egorova D, Kulikov A, Kubinova S, Dejneka A, Lunov O, Light-induced modulation of the mitochondrial respiratory chain activity: possibilities and limitations, Cell. Mol. Life Sci 77 (14) (2020) 2815–2838, 10.1007/s00018-019-03321-z. PubMed DOI PMC
Wubbolts R, FernandezBorja M, Oomen L, Verwoerd D, Janssen H, Calafat J, Tulp A, Dusseljee S, Neefjes J, Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface, J. Cell Biol 135 (3) (1996) 611–622, 10.1083/jcb.135.3.611. PubMed DOI PMC
Mukhopadhyay P, Rajesh M, Haskó G, Hawkins BJ, Madesh M, Pacher P, Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy, Nat. Protoc 2 (9) (2007) 2295–2301, 10.1038/nprot.2007.327. PubMed DOI PMC
Manders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA, Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy, J. Cell Sci 103 (Pt 3) (1992) 857–862, PubMed
Arena ET, Rueden CT, Hiner MC, Wang S, Yuan M, Eliceiri KW, Quantitating the cell: turning images into numbers with ImageJ, Wiley Interdiscip. Rev.-Dev. Biol 6 (2) (2017) e260, 10.1002/wdev.260. PubMed DOI
Petrenko Y, Syková E, Kubinová S, The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids, Stem Cell Res. Ther 8 (2017) 94, 10.1186/s13287-017-0558-6. PubMed DOI PMC
Hamilton N, Quantification and its applications in fluorescent microscopy imaging, Traffic 10 (8) (2009) 951–961, 10.1111/j.1600-0854.2009.00938.x. PubMed DOI
Jonkman J, Brown CM, Wright GD, Anderson KI, North AJ, Tutorial: guidance for quantitative confocal microscopy, Nat. Protoc 15 (2020) 1585–1611, 10.1038/s41596-020-0313-9. PubMed DOI
Lee JY, Kitaoka M, A beginner's guide to rigor and reproducibility in fluorescence imaging experiments, Mol. Biol. Cell 29 (13) (2018) 1519–1525, 10.1091/mbc.E17-05-0276. PubMed DOI PMC
Dell RB, Holleran S, Ramakrishnan R, Sample size determination, ILAR J. 43 (4) (2002) 207–213, 10.1093/ilar.43.4.207. PubMed DOI PMC
Burns JR, Seifert A, Fertig N, Howorka S, A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane, Nat. Nanotechnol 11 (2) (2016) 152–156, 10.1038/Nnano.2015.279. PubMed DOI
Arulkumaran N, Lanphere C, Gaupp C, Burns JR, Singer M, Howorka S, DNA nanodevices with selective immune cell interaction and function, ACS Nano 15 (3) (2021) 4394–4404, 10.1021/acsnano.0c07915. PubMed DOI
Anastassacos FM, Zhao Z, Zeng Y, Shih WM, Glutaraldehyde cross-linking of oligolysines coating DNA origami greatly reduces susceptibility to nuclease degradation, J. Am. Chem. Soc 142 (7) (2020) 3311–3315, 10.1021/jacs.9b11698. PubMed DOI
Bertosin E, Stoemmer P, Feigl E, Wenig M, Honemann MN, Dietz H, Cryo-electron microscopy and mass analysis of oligolysine-coated DNA nanostructures, ACS Nano 15 (6) (2021) 9391–9403, 10.1021/acsnano.0c10137. PubMed DOI PMC
Wu H, Chen TT, Wang XN, Ke YG, Jiang JH, RNA imaging in living mice enabled by an in vivo hybridization chain reaction circuit with a tripartite DNA probe, Chem. Sci 11 (1) (2020) 62–69, 10.1039/c9sc03469b. PubMed DOI PMC
Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW, Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination, J. Control. Release 240 (1) (2016) 332–348, 10.1016/j.jconrel.2016.01.020. PubMed DOI
Frtus A, Smolkova B, Uzhytchak M, Lunova M, Jirsa M, Kubinova S, Dejneka A, Lunov O, Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications, J. Control. Release 328 (2020) 59–77, 10.1016/j.jconrel.2020.08.036. PubMed DOI
Mendes BB, Conniot J, Avital A, Yao DB, Jiang XY, Zhou X, Sharf-Pauker N, Xiao YL, Adir O, Liang HJ, Shi JJ, Schroeder A, Conde J, Nanodelivery of nucleic acids, Nat. Rev. Method Prime 2 (1) (2022) 24, 10.1038/s43586-022-00104-y. PubMed DOI PMC
Dilliard SA, Siegwart DJ, Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs, Nat. Rev. Mater 8 (4) (2023) 282–300, 10.1038/s41578-022-00529-7. PubMed DOI PMC
Burke RS, Pun SH, Synthesis and characterization of biodegradable HPMA-oligolysine copolymers for improved gene delivery, Bioconjugate Chem. 21 (1) (2010) 140–150, 10.1021/bc9003662. PubMed DOI PMC
Fukuyama K, Asagiri M, Sugimoto M, Tsushima H, Seo S, Taura K, Uemoto S, Iwaisako K, Gene expression profiles of liver cancer cell lines reveal two hepatocyte-like and fibroblast-like clusters, PLoS One 16 (2) (2021) e0245939, 10.1371/journal.pone.0245939. PubMed DOI PMC
Ao L, Guo Y, Song X, Guan Q, Zheng W, Zhang J, Huang H, Zou Y, Guo Z, Wang X, Evaluating hepatocellular carcinoma cell lines for tumour samples using within-sample relative expression orderings of genes, Liver Int. 37 (11) (2017) 1688–1696, 10.1111/liv.13467. PubMed DOI
Cagatay T, Ozturk M, p53 mutation as a source of aberrant β-catenin accumulation in cancer cells, Oncogene 21 (52) (2002) 7971–7980, 10.1038/sj.onc.1205919. PubMed DOI
Dixon SJ, Lee MJ, Quick tips for interpreting cell death experiments, Nat. Cell Biol 25 (2023) 1720–1723, 10.1038/s41556-023-01288-5. PubMed DOI
Chan GKY, Kleinheinz TL, Peterson D, Moffat JG, A simple high-content cell cycle assay reveals frequent discrepancies between cell number and ATP and MTS proliferation assays, PLoS One 8 (5) (2013) e63583, 10.1371/journal.pone.0063583. PubMed DOI PMC
Xu HX, Ren DJ, Lysosomal physiology, Annu. Rev. Physiol 77 (2015) 57–80, 10.1146/annurev-physiol-021014-071649. PubMed DOI PMC
Ballabio A, Bonifacino JS, Lysosomes as dynamic regulators of cell and organismal homeostasis, Nat. Rev. Mol. Cell Biol 21 (2) (2020) 101–118, 10.1038/s41580-019-0185-4. PubMed DOI
Lim CY, Zoncu R, The lysosome as a command-and-control center for cellular metabolism, J. Cell Biol 214 (6) (2016) 653–664, 10.1083/jcb.201607005. PubMed DOI PMC
Mei QA, Wei XX, Su FY, Liu Y, Youngbull C, Johnson R, Lindsay S, Yan H, Meldrum D, Stability of DNA origami nanoarrays in cell lysate, Nano Lett. 11 (4) (2011) 1477–1482, 10.1021/nl1040836. PubMed DOI PMC
Keum JW, Bermudez H, Enhanced resistance of DNA nanostructures to enzymatic digestion, Chem. Commun (45) (2009) 7036–7038, 10.1039/b917661f. PubMed DOI
Massich MD, Giljohann DA, Schmucker AL, Patel PC, Mirkin CA, Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates, ACS Nano 4 (10) (2010) 5641–5646, 10.1021/nn102228s. PubMed DOI PMC
Shen XB, Jiang Q, Wang JY, Dai LR, Zou GZ, Wang ZG, Chen WQ, Jiang W, Ding BQ, Visualization of the intracellular location and stability of DNA origami with a label-free fluorescent probe, Chem. Commun 48 (92) (2012) 11301–11303, 10.1039/c2cc36185j. PubMed DOI
Walsh AS, Yin HF, Erben CM, Wood MJA, Turberfield AJ, DNA cage delivery to mammalian cells, ACS Nano 5 (7) (2011) 5427–5432, 10.1021/nn2005574. PubMed DOI
Hahn J, Wickham SFJ, Shih WM, Perrault SD, Addressing the instability of DNA nanostructures in tissue culture, ACS Nano 8 (9) (2014) 8765–8775, 10.1021/nn503513p. PubMed DOI PMC
Wei XX, Nangreave J, Jiang SX, Yan H, Liu Y, Mapping the thermal behavior of DNA origami nanostructures, J. Am. Chem. Soc 135 (16) (2013) 6165–6176, 10.1021/ja4000728. PubMed DOI
Heidari R, Khosravian P, Mirzaei SA, Elahian F, siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells, Sci. Rep 11 (1) (2021) 20531, 10.1038/s41598-021-00085-0. PubMed DOI PMC
Balfourier A, Luciani N, Wang G, Lelong G, Ersen O, Khelfa A, Alloyeau D, Gazeau F, Carn F, Unexpected intracellular biodegradation and recrystallization of gold nanoparticles, Proc. Natl. Acad. Sci. U. S. A 117 (1) (2020) 103–113, 10.1073/pnas.1911734116. PubMed DOI PMC
Lian XZ, Erazo-Oliveras A, Pellois JP, Zhou HC, High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks, Nat. Commun 8 (2017) 2075, 10.1038/s41467-017-02103-0. PubMed DOI PMC
Del Grosso A, Parlanti G, Mezzena R, Cecchini M, Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders, Adv. Drug Deliv. Rev 188 (2022) 114464, 10.1016/j.addr.2022.114464. PubMed DOI
Zeng JL, Shirihai OS, Grinstaff MW, Degradable nanoparticles restore lysosomal pH and autophagic flux in lipotoxic pancreatic beta cells, Adv. Healthc. Mater 8 (12) (2019) 1801511, 10.1002/adhm.201801511. PubMed DOI
Zeng JL, Martin A, Han X, Shirihai OS, Grinstaff MW, Biodegradable PLGA nanoparticles restore lysosomal acidity and protect neural PC-12 cells against mitochondrial toxicity, Ind. Eng. Chem. Res 58 (31) (2019) 13910–13917, 10.1021/acs.iecr.9b02003. PubMed DOI PMC
Samir A, Ashour FH, Hakim AAA, Bassyouni M, Recent advances in biodegradable polymers for sustainable applications, NPJ Mater. Degrad 6 (1) (2022) 68, 10.1038/s41529-022-00277-7. DOI
Zhang K, Cheng X, Zhao L, Huang M, Tao Y, Zhang H, Rosenholm JM, Zhuang M, Chen Z-Y, Chen B, Shu Y, Direct functional protein delivery with a peptide into neonatal and adult mammalian inner ear in vivo, Mol.Ther.-Methods Clin. Dev 18 (2020) 511–519, 10.1016/j.omtm.2020.06.023. PubMed DOI PMC
Bruce VJ, McNaughton BR, Inside job: Methods for delivering proteins to the interior of mammalian cells, Cell Chem. Biol 24 (8) (2017) 924–934, 10.1016/j.chembiol.2017.06.014. PubMed DOI
Tan Y, Zhu XY, Wu D, Song EQ, Song Y, Compromised autophagic effect of polystyrene nanoplastics mediated by protein corona was recovered after lysosomal degradation of corona, Environ. Sci. Technol 54 (18) (2020) 11485–11493, 10.1021/acs.est.0c04097. PubMed DOI
Wang FJ, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, Dawson KA, The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes, Nanomed.-Nanotechnol. Biol. Med 9 (8) (2013) 1159–1168, 10.1016/j.nano.2013.04.010. PubMed DOI
Bertoli F, Garry D, Monopoli MP, Salvati A, Dawson KA, The intracellular destiny of the protein corona: A study on its cellular internalization and evolution, ACS Nano 10 (11) (2016) 10471–10479, 10.1021/acsnano.6b06411. PubMed DOI
Han S, Marques RD, Simon J, Kaltbeitzel A, Koynov K, Landfester K, Mailänder V, Lieberwirth I, Endosomal sorting results in a selective separation of the protein corona from nanoparticles, Nat. Commun 14 (1) (2023) 295, 10.1038/s41467-023-35902-9. PubMed DOI PMC
Wensley HJ, Johnston DA, Smith WS, Holmes SE, Flavell SU, Flavell DJ, A flow cytometric method to quantify the endosomal escape of a protein toxin to the cytosol of target cells, Pharm. Res 37 (1) (2019) 16, 10.1007/s11095-019-2725-1. PubMed DOI PMC
Pei D, Buyanova M, Overcoming endosomal entrapment in drug delivery, Bioconjugate Chem. 30 (2) (2019) 273–283, 10.1021/acs.bioconjchem.8b00778. PubMed DOI PMC
Martens TF, Remaut K, Demeester J, De Smedt SC, Braeckmans K, Intracellular delivery of nanomaterials: How to catch endosomal escape in the act, Nano Today 9 (3) (2014) 344–364, 10.1016/j.nantod.2014.04.011. DOI
Altan N, Chen Y, Schindler M, Simon SM, Defective acidification in human breast tumor cells and implications for chemotherapy, J. Exp. Med 187 (10) (1998) 1583–1598, 10.1084/jem.187.10.1583. PubMed DOI PMC
Fang MX, Adhikari R, Bi JH, Mazi W, Dorh N, Wang JB, Conner N, Ainsley J, Karabencheva-Christova TG, Luo FT, Tiwari A, Liu HY, Fluorescent probes for sensitive and selective detection of pH changes in live cells in visible and near-infrared channels, J. Mat. Chem. B 5 (48) (2017) 9579–9590, 10.1039/c7tb02583a. PubMed DOI PMC
Hu YB, Dammer EB, Ren RJ, Wang G, The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration, Transl. Neurodegener 4 (2015) 18, 10.1186/s40035-015-0041-1. PubMed DOI PMC
Mindell JA, Lysosomal acidification mechanisms, Annual Review of Physiology 74 (2012) 69–86, 10.1146/annurev-physiol-012110-142317. PubMed DOI
Tracey SR, Smyth P, Barelle CJ, Scott CJ, Development of next generation nanomedicine-based approaches for the treatment of cancer: we've barely scratched the surface, Biochem. Soc. Trans 49 (5) (2021) 2253–2269, 10.1042/Bst20210343. PubMed DOI PMC
Vermeulen LMP, Brans T, Samal SK, Dubruel P, Demeester J, De Smedt SC, Remaut K, Braeckmans K, Endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles, ACS Nano 12 (3) (2018) 2332–2345, 10.1021/acsnano.7b07583. PubMed DOI
Roy S, Zhu DC, Parak WJ, Feliu N, Lysosomal proton buffering of poly(ethylenimine) measured by fluorescent pH-sensor microcapsules, ACS Nano 14 (7) (2020) 8012–8023, 10.1021/acsnano.9b10219. PubMed DOI
Wojnilowicz M, Glab A, Bertucci A, Caruso F, Cavalieri F, Super-resolution imaging of proton sponge-triggered rupture of endosomes and cytosolic release of small interfering RNA, ACS Nano 13 (1) (2019) 187–202, 10.1021/acsnano.8b05151. PubMed DOI
Lee DU, Park JY, Kwon S, Park JY, Kim YH, Khang D, Hong JH, Apoptotic lysosomal proton sponge effect in tumor tissue by cationic gold nanorods, Nanoscale 11 (42) (2019) 19980–19993, 10.1039/c9nr04323c. PubMed DOI
Faizullin B, Gubaidullin A, Gerasimova T, Kashnik I, Brylev K, Kholin K, Nizameev I, Voloshina A, Sibgatullina G, Samigullin D, Petrov K, Musina E, Karasik A, Mustafina A, Proton sponge effect and apoptotic cell death mechanism of Agx-Re6 nanocrystallites derived from the assembly of [{Re6S8}(OH)6-n(H2O)n]n-4 with Ag+ ions, Colloid Surf. A-Physicochem. Eng. Asp 648 (2022) 129312, 10.1016/j.colsurfa.2022.129312. DOI
Wolff JA, Rozema DB, Breaking the bonds: Non-viral vectors become chemically dynamic, Mol. Ther 16 (1) (2008) 8–15, 10.1038/sj.mt.6300326. PubMed DOI
Fernandez DI, Le Brun AP, Whitwell TC, Sani MA, James M, Separovic F, The antimicrobial peptide aurein 1.2 disrupts model membranes the carpet mechanism, Phys. Chem. Chem. Phys 14 (45) (2012) 15739–15751, 10.1039/c2cp43099a. PubMed DOI
Cheraghi N, Hosseini M, Mohammadinejad S, Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study, Biochim. Biophys. Acta-Biomembr 1860 (2) (2018) 347–356, 10.1016/j.bbamem.2017.10.009. PubMed DOI
Balatti GE, Domene C, Martini MF, Pickholz M, Differential stability of aurein 1.2 pores in model membranes of two probiotic strains, J. Chem. Inf. Model 60 (10) (2020) 5142–5152, 10.1021/acs.jcim.0c00855. PubMed DOI
Bourdenx M, Daniel J, Genin E, Soria FN, Blanchard-Desce M, Bezard E, Dehay B, Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases, Autophagy 12 (3) (2016) 472–483, 10.1080/15548627.2015.1136769. PubMed DOI PMC
Trudeau KM, Colby AH, Zeng JL, Las G, Feng JZH, Grinstaff MW, Shirihai OS, Lysosome acidification by photoactivated nanoparticles restores autophagy under lipotoxicity, J. Cell Biol 214 (1) (2016) 25–34, 10.1083/jcb.201511042. PubMed DOI PMC
Zeng JL, Acin-Perez R, Assali EA, Martin A, Brownstein AJ, Petcherski A, Fernández-del-Rio L, Xiao RQ, Lo CH, Shum M, Liesa M, Han X, Shirihai OS, Grinstaff MW, Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease, Nat. Commun 14 (1) (2023) 2573, 10.1038/s41467-023-38165-6. PubMed DOI PMC
Wang SJ, Schianchi F, Neumann D, Wong LY, Sun AM, van Nieuwenhoven FA, Zeegers MP, Strzelecka A, Col U, Glatz JFC, Nabben M, Luiken JJFP, Specific amino acid supplementation rescues the heart from lipid overload-induced insulin resistance and contractile dysfunction by targeting the endosomal mTOR-v-ATPase axis, Mol. Metab 53 (2021) 101293, 10.1016/j.molmet.2021.101293. PubMed DOI PMC
Bandyopadhyay D, Cyphersmith A, Zapata JA, Kim YJ, Payne CK, Lysosome transport as a function of lysosome diameter, PLoS One 9 (1) (2014) e86847, 10.1371/journal.pone.0086847. PubMed DOI PMC
Boya P, Kroemer G, Lysosomal membrane permeabilization in cell death, Oncogene 27 (50) (2008) 6434–6451, 10.1038/onc.2008.310. PubMed DOI
Kost TA, Condreay JP, Jarvis DL, Baculovirus as versatile vectors for protein expression in insect and mammalian cells, Nat. Biotechnol 23 (5) (2005) 567–575, 10.1038/nbt1095. PubMed DOI PMC
Okabe K, Inada N, Gota C, Harada Y, Funatsu T, Uchiyama S, Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy, Nat. Commun 3 (2012) 705, 10.1038/ncomms1714. PubMed DOI PMC
Ge W, Li DX, Gao YP, Cao XT, The roles of lysosomes in inflammation and autoimmune diseases, Int. Rev. Immunol 34 (5) (2015) 415–431, 10.3109/08830185.2014.936587. PubMed DOI
Lan YY, Londoño D, Bouley R, Rooney MS, Hacohen N, Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy, Cell Rep 9 (1) (2014) 180–192, 10.1016/j.celrep.2014.08.074. PubMed DOI PMC
Walkley SU, Vanier MT, Secondary lipid accumulation in lysosomal disease, Biochim. Biophys. Acta-Mol. Cell Res 1793 (4) (2009) 726–736, 10.1016/j.bbamcr.2008.11.014. PubMed DOI PMC
Shang GJ, Zhang CG, Chen ZJJ, Bai XC, Zhang XW, Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP, Nature 567 (7748) (2019) 389–393, 10.1038/s41586-019-0998-5. PubMed DOI PMC
Hopfner KP, Hornung V, Molecular mechanisms and cellular functions of cGAS-STING signalling, Nat. Rev. Mol. Cell Biol 21 (9) (2020) 501–521, 10.1038/s41580-020-0244-x. PubMed DOI
Decout A, Katz JD, Venkatraman S, Ablasser A, The cGAS-STING pathway as a therapeutic target in inflammatory diseases, Nat. Rev. Immunol 21 (9) (2021) 548–569, 10.1038/s41577-021-00524-z. PubMed DOI PMC
Hu XY, Li J, Fu MR, Zhao X, Wang W, The JAK/STAT signaling pathway: from bench to clinic, Signal Transduct. Target. Ther 6 (1) (2021) 402, 10.1038/s41392-021-00791-1. PubMed DOI PMC
Ma F, Li B, Yu YX, Iyer SS, Sun MY, Cheng GH, Positive feedback regulation of type I interferon by the interferon-stimulated gene STING, Embo Rep. 16 (2) (2015) 202–212, 10.15252/embr.201439366. PubMed DOI PMC
Motwani M, Pesiridis S, Fitzgerald KA, DNA sensing by the cGAS-STING pathway in health and disease, Nat. Rev. Genet 20 (11) (2019) 657–674, 10.1038/s41576-019-0151-1. PubMed DOI
Katze MG, He YP, Gale M, Viruses and interferon: A fight for supremacy, Nat. Rev. Immunol 2 (9) (2002) 675–687, 10.1038/nri888. PubMed DOI
Wong MT, Chen SSL, Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection, Cell. Mol. Immunol 13 (1) (2016) 11–35, 10.1038/cmi.2014.127. PubMed DOI PMC
Schoggins JW, Interferon-stimulated genes: What do they all do?, Annu. Rev. Virol 6 (2019) 567–584, 10.1146/annurev-virology-092818-015756. PubMed DOI
Wang FJ, Salvati A, Boya P, Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles, Open Biol. 8 (4) (2018) 170271, 10.1098/rsob.170271. PubMed DOI PMC
Wang FJ, Gómez-Sintes R, Boya P, Lysosomal membrane permeabilization and cell death, Traffic 19 (12) (2018) 918–931, 10.1111/tra.12613. PubMed DOI
Liu XN, Wang S, Yang Q, Wang YJ, Chen DX, Zhu XX, ESC reverses epithelial mesenchymal transition induced by transforming growth factor-β via inhibition of Smad signal pathway in HepG2 liver cancer cells, Cancer Cell Int. 15 (2015) 114, 10.1186/s12935-015-0265-2. PubMed DOI PMC
Grotegut S, von Schweinitz D, Christofori G, Lehembre F, Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail, Embo J. 25 (15) (2006) 3534–3545, 10.1038/sj.emboj.7601213. PubMed DOI PMC
Pan F-Y, Zhang S-Z, Xu N, Meng F-L, Zhang H-X, Xue B, Han X, Li C-J, β-catenin signaling involves HGF-enhanced HepG2 scattering through activating MMP-7 transcription, Histochem. Cell Biol 134 (3) (2010) 285–295, 10.1007/s00418-010-0729-3. PubMed DOI
Palacios F, Tushir JS, Fujita Y, D'Souza-Schorey C, Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transitions, Mol. Biol. Cell 25 (1) (2005) 389–402, 10.1128/Mcb.25.1.389-402.2005. PubMed DOI PMC
Repnik U, Cesen MH, Turk B, Lysosomal membrane permeabilization in cell death: Concepts and challenges, Mitochondrion 19 (2014) 49–57, 10.1016/j.mito.2014.06.006. PubMed DOI
Zhao M, Antunes F, Eaton JW, Brunk UT, Lysosomal enzymes promote mitochondrial oxidant production, cytochrome release and apoptosis, Eur. J. Biochem 270 (18) (2003) 3778–3786, 10.1046/j.1432-1033.2003.03765.x. PubMed DOI
Gulbins E, Kolesnick RN, It takes a CAD to kill a tumor cell with a LMP, Cancer Cell 24 (3) (2013) 279–281, 10.1016/j.ccr.2013.08.025. PubMed DOI
Saftig P, Sandhoff K, CANCER Killing from the inside, Nature 502 (7471) (2013) 312–313, 10.1038/nature12692. PubMed DOI
Kallunki T, Olsen OD, Jäättelä M, Cancer-associated lysosomal changes: friends or foes?, Oncogene 32 (16) (2013) 1995–2004, 10.1038/onc.2012.292. PubMed DOI
Qiu JC, Xia YN, Killing cancer cells by rupturing their lysosomes, Nat. Nanotechnol 15 (4) (2020) 252–253, 10.1038/s41565-020-0639-z. PubMed DOI
Xiang YT, Li NS, Liu M, Chen QH, Long XY, Yang YQ, Xiao ZX, Huang J, Wang XY, Yang YR, Zhang JP, Liu C, Huang Q, Nanodrugs detonate lysosome bombs, Front. Pharmacol 13 (2022) 909504, 10.3389/fphar.2022.909504. PubMed DOI PMC
Liu CG, Han YH, Kankala RK, Wang SB, Chen AZ, Subcellular performance of nanoparticles in cancer therapy, Int. J. Nanomed 15 (2020) 675–704, 10.2147/Ijn.S226186. PubMed DOI PMC
Langhans SA, Three-dimensional cell culture models in drug discovery and drug repositioning, Front. Pharmacol 9 (2018) 6, 10.3389/fphar.2018.00006. PubMed DOI PMC
Xu X, Farach-Carson MC, Jia XQ, Three-dimensional tumor models for cancer research and drug evaluation, Biotechnol. Adv 32 (7) (2014) 1256–1268, 10.1016/j.biotechadv.2014.07.009. PubMed DOI PMC
van Solinge TS, Nieland L, Chiocca EA, Broekman MLD, Advances in local therapy for glioblastoma - taking the fight to the tumour, Nat. Rev. Neurol 18 (4) (2022) 221–236, 10.1038/s41582-022-00621-0. PubMed DOI PMC
Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake