Mechanical Regulation of Mitochondrial Dynamics and Function in a 3D-Engineered Liver Tumor Microenvironment

. 2023 May 08 ; 9 (5) : 2408-2425. [epub] 20230331

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37001010

It has become evident that physical stimuli of the cellular microenvironment transmit mechanical cues regulating key cellular functions, such as proliferation, migration, and malignant transformation. Accumulating evidence suggests that tumor cells face variable mechanical stimuli that may induce metabolic rewiring of tumor cells. However, the knowledge of how tumor cells adapt metabolism to external mechanical cues is still limited. We therefore designed soft 3D collagen scaffolds mimicking a pathological mechanical environment to decipher how liver tumor cells would adapt their metabolic activity to physical stimuli of the cellular microenvironment. Here, we report that the soft 3D microenvironment upregulates the glycolysis of HepG2 and Alexander cells. Both cell lines adapt their mitochondrial activity and function under growth in the soft 3D microenvironment. Cells grown in the soft 3D microenvironment exhibit marked mitochondrial depolarization, downregulation of mitochondrially encoded cytochrome c oxidase I, and slow proliferation rate in comparison with stiff monolayer cultures. Our data reveal the coupling of liver tumor glycolysis to mechanical cues. It is proposed here that soft 3D collagen scaffolds can serve as a useful model for future studies of mechanically regulated cellular functions of various liver (potentially other tissues as well) tumor cells.

Zobrazit více v PubMed

Duval K.; Grover H.; Han L. H.; Mou Y.; Pegoraro A. F.; Fredberg J.; Chen Z. Modeling Physiological Events in 2d Vs. 3d Cell Culture. Physiology 2017, 32, 266–277. 10.1152/physiol.00036.2016. PubMed DOI PMC

Rossi G.; Manfrin A.; Lutolf M. P. Progress and Potential in Organoid Research. Nat. Rev. Genet. 2018, 19, 671–687. 10.1038/s41576-018-0051-9. PubMed DOI

Hussey G. S.; Dziki J. L.; Badylak S. F. Extracellular Matrix-Based Materials for Regenerative Medicine. Nat. Rev. Mater. 2018, 3, 159–173. 10.1038/s41578-018-0023-x. DOI

Ma X.; Yu C.; Wang P.; Xu W.; Wan X.; Lai C. S. E.; Liu J.; Koroleva-Maharajh A.; Chen S. Rapid 3d Bioprinting of Decellularized Extracellular Matrix with Regionally Varied Mechanical Properties and Biomimetic Microarchitecture. Biomaterials 2018, 185, 310–321. 10.1016/j.biomaterials.2018.09.026. PubMed DOI PMC

Yao B.; Niu Y.; Li Y.; Chen T.; Wei X.; Liu Q. High-Matrix-Stiffness Induces Promotion of Hepatocellular Carcinoma Proliferation and Suppression of Apoptosis Via Mir-3682-3p-Phlda1-Fas Pathway. J. Cancer 2020, 11, 6188–6203. 10.7150/jca.45998. PubMed DOI PMC

Zhang R.; Ma M.; Dong G.; Yao R. R.; Li J. H.; Zheng Q. D.; Dong Y. Y.; Ma H.; Gao D. M.; Cui J. F.; Ren Z. G.; Chen R. X. Increased Matrix Stiffness Promotes Tumor Progression of Residual Hepatocellular Carcinoma after Insufficient Heat Treatment. Cancer Sci. 2017, 108, 1778–1786. 10.1111/cas.13322. PubMed DOI PMC

Kang N. Mechanotransduction in Liver Diseases. Semin. Liver Dis. 2020, 40, 84–90. 10.1055/s-0039-3399502. PubMed DOI PMC

Arriazu E.; de Galarreta M. R.; Cubero F. J.; Varela-Rey M.; de Obanos M. P. P.; Leung T. M.; Lopategi A.; Benedicto A.; Abraham-Enachescu I.; Nieto N. Extracellular Matrix and Liver Disease. Antioxid. Redox Signaling 2014, 21, 1078–1097. 10.1089/ars.2013.5697. PubMed DOI PMC

Frankova S.; Lunova M.; Gottfriedova H.; Senkerikova R.; Neroldova M.; Kovac J.; Kieslichova E.; Lanska V.; Urbanek P.; Spicak J.; Jirsa M.; Sperl J. Liver Stiffness Measured by Two-Dimensional Shear-Wave Elastography Predicts Hepatic Vein Pressure Gradient at High Values in Liver Transplant Candidates with Advanced Liver Cirrhosis. PLoS One 2021, 16, e024493410.1371/journal.pone.0244934. PubMed DOI PMC

Masuzaki R.; Tateishi R.; Yoshida H.; Sato T.; Ohki T.; Goto T.; Yoshida H.; Sato S.; Sugioka Y.; Ikeda H.; Shiina S.; Kawabe T.; Omata M. Assessing Liver Tumor Stiffness by Transient Elastography. Hepatol. Int. 2007, 1, 394–397. 10.1007/s12072-007-9012-7. PubMed DOI PMC

Masuzaki R.; Tateishi R.; Yoshida H.; Goto E.; Sato T.; Ohki T.; Imamura J.; Goto T.; Kanai F.; Kato N.; Ikeda H.; Shiina S.; Kawabe T.; Omata M. Prospective Risk Assessment for Hepatocellular Carcinoma Development in Patients with Chronic Hepatitis C by Transient Elastography. Hepatology 2009, 49, 1954–1961. 10.1002/hep.22870. PubMed DOI

Castera L.; Forns X.; Alberti A. Non-Invasive Evaluation of Liver Fibrosis Using Transient Elastography. J. Hepatol. 2008, 48, 835–847. 10.1016/j.jhep.2008.02.008. PubMed DOI

Roulot D.; Czernichow S.; Le Clesiau H.; Costes J. L.; Vergnaud A. C.; Beaugrand M. Liver Stiffness Values in Apparently Healthy Subjects: Influence of Gender and Metabolic Syndrome. J. Hepatol. 2008, 48, 606–613. 10.1016/j.jhep.2007.11.020. PubMed DOI

Castera L. Liver Stiffness and Hepatocellular Carcinoma: Liaisons Dangereuses?. Hepatology 2009, 49, 1793–1794. 10.1002/hep.22981. PubMed DOI

Choong K. L.; Wong Y. H.; Yeong C. H.; Gnanasuntharam G. K.; Goh K. L.; Yoong B. K.; Pongnapang N.; Abdullah B. J. J. Elasticity Characterization of Liver Cancers Using Shear Wave Ultrasound Elastography: Comparison between Hepatocellular Carcinoma and Liver Metastasis. J. Diagn. Med. Sonogr. 2017, 33, 481–488. 10.1177/8756479317733713. DOI

Liu Q. P.; Luo Q.; Deng B.; Ju Y.; Song G. B. Stiffer Matrix Accelerates Migration of Hepatocellular Carcinoma Cells through Enhanced Aerobic Glycolysis Via the Mapk-Yap Signaling. Cancers 2020, 12, 490.10.3390/cancers12020490. PubMed DOI PMC

Schrader J.; Gordon-Walker T. T.; Aucott R. L.; van Deemter M.; Quaas A.; Walsh S.; Benten D.; Forbes S. J.; Wells R. G.; Iredale J. P. Matrix Stiffness Modulates Proliferation, Chemotherapeutic Response, and Dormancy in Hepatocellular Carcinoma Cells. Hepatology 2011, 53, 1192–1205. 10.1002/hep.24108. PubMed DOI PMC

Dong Y.; Zheng Q.; Wang Z.; Lin X.; You Y.; Wu S.; Wang Y.; Hu C.; Xie X.; Chen J.; Gao D.; Zhao Y.; Wu W.; Liu Y.; Ren Z.; Chen R.; Cui J. Higher Matrix Stiffness as an Independent Initiator Triggers Epithelial-Mesenchymal Transition and Facilitates Hcc Metastasis. J. Hematol. Oncol. 2019, 12, 112.10.1186/s13045-019-0795-5. PubMed DOI PMC

Deville S. S.; Cordes N. The Extracellular, Cellular, and Nuclear Stiffness, a Trinity in the Cancer Resistome-a Review. Front. Oncol. 2019, 9, 1376.10.3389/fonc.2019.01376. PubMed DOI PMC

Liu X. Q.; Chen X. T.; Liu Z. Z.; Gu S. S.; He L. J.; Wang K. P.; Tang R. Z. Biomimetic Matrix Stiffness Modulates Hepatocellular Carcinoma Malignant Phenotypes and Macrophage Polarization through Multiple Modes of Mechanical Feedbacks. ACS Biomater. Sci. Eng. 2020, 6, 3994–4004. 10.1021/acsbiomaterials.0c00669. PubMed DOI

Craig A. J.; von Felden J.; Garcia-Lezana T.; Sarcognato S.; Villanueva A. Tumour Evolution in Hepatocellular Carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 139–152. 10.1038/s41575-019-0229-4. PubMed DOI

Xu S.-L.; Liu S.; Cui W.; Shi Y.; Liu Q.; Duan J.-J.; Yu S.-C.; Zhang X.; Cui Y.-H.; Kung H.-F.; Bian X.-W. Aldehyde Dehydrogenase 1a1 Circumscribes High Invasive Glioma Cells and Predicts Poor Prognosis. Am. J. Cancer Res. 2015, 5, 1471–1483. PubMed PMC

Plodinec M.; Loparic M.; Monnier C. A.; Obermann E. C.; Zanetti-Dallenbach R.; Oertle P.; Hyotyla J. T.; Aebi U.; Bentires-Alj M.; Lim R. Y. H.; Schoenenberger C. A. The Nanomechanical Signature of Breast Cancer. Nat. Nanotechnol. 2012, 7, 757–765. 10.1038/nnano.2012.167. PubMed DOI

Anlaş A. A.; Nelson C. M. Soft Microenvironments Induce Chemoresistance by Increasing Autophagy Downstream of Integrin-Linked Kinase. Cancer Res. 2020, 80, 4103–4113. 10.1158/0008-5472.CAN-19-4021. PubMed DOI PMC

Sosa M. S.; Bragado P.; Aguirre-Ghiso J. A. Mechanisms of Disseminated Cancer Cell Dormancy: An Awakening Field. Nat. Rev. Cancer 2014, 14, 611–622. 10.1038/nrc3793. PubMed DOI PMC

Giancotti F. G. Mechanisms Governing Metastatic Dormancy and Reactivation. Cell 2013, 155, 750–764. 10.1016/j.cell.2013.10.029. PubMed DOI PMC

Di Martino J. S.; Nobre A. R.; Mondal C.; Taha I.; Farias E. F.; Fertig E. J.; Naba A.; Aguirre-Ghiso J. A.; Bravo-Cordero J. J. A Tumor-Derived Type Iii Collagen-Rich Ecm Niche Regulates Tumor Cell Dormancy. Nat. Cancer 2022, 3, 90–107. 10.1038/s43018-021-00291-9. PubMed DOI PMC

Riedl A.; Schlederer M.; Pudelko K.; Stadler M.; Walter S.; Unterleuthner D.; Unger C.; Kramer N.; Hengstschlager M.; Kenner L.; Pfeiffer D.; Krupitza G.; Dolznig H. Comparison of Cancer Cells in 2d Vs 3d Culture Reveals Differences in Akt-Mtor-S6k Signaling and Drug Responses. J. Cell Sci. 2017, 130, 203–218. 10.1242/jcs.188102. PubMed DOI

Kim M. J.; Chi B. H.; Yoo J. J.; Ju Y. M.; Whang Y. M.; Chang I. H. Structure Establishment of Three-Dimensional (3d) Cell Culture Printing Model for Bladder Cancer. PLoS One 2019, 14, e022368910.1371/journal.pone.0223689. PubMed DOI PMC

Lagies S.; Schlimpert M.; Neumann S.; Wäldin A.; Kammerer B.; Borner C.; Peintner L. Cells Grown in Three-Dimensional Spheroids Mirror in Vivo Metabolic Response of Epithelial Cells. Commun. Biol. 2020, 3, 246.10.1038/s42003-020-0973-6. PubMed DOI PMC

Zhou Y.; Chen H.; Li H.; Wu Y. 3d Culture Increases Pluripotent Gene Expression in Mesenchymal Stem Cells through Relaxation of Cytoskeleton Tension. J. Cell. Mol. Med. 2017, 21, 1073–1084. 10.1111/jcmm.12946. PubMed DOI PMC

Baker B. M.; Chen C. S. Deconstructing the Third Dimension - How 3d Culture Microenvironments Alter Cellular Cues. J. Cell Sci. 2012, 125, 3015–3024. 10.1242/jcs.079509. PubMed DOI PMC

Frtús A.; Smolková B.; Uzhytchak M.; Lunova M.; Jirsa M.; Hof M.; Jurkiewicz P.; Lozinsky V. I.; Wolfová L.; Petrenko Y.; Kubinová S.; Dejneka A.; Lunov O. Hepatic Tumor Cell Morphology Plasticity under Physical Constraints in 3d Cultures Driven by Yap-Mtor Axis. Pharmaceuticals 2020, 13, 430.10.3390/ph13120430. PubMed DOI PMC

Park J. S.; Burckhardt C. J.; Lazcano R.; Solis L. M.; Isogai T.; Li L.; Chen C. S.; Gao B. N.; Minna J. D.; Bachoo R.; DeBerardinis R. J.; Danuser G. Mechanical Regulation of Glycolysis Via Cytoskeleton Architecture. Nature 2020, 578, 621–626. 10.1038/s41586-020-1998-1. PubMed DOI PMC

de Chaumont F.; Dallongeville S.; Chenouard N.; Hervé N.; Pop S.; Provoost T.; Meas-Yedid V.; Pankajakshan P.; Lecomte T.; Le Montagner Y.; Lagache T.; Dufour A.; Olivo-Marin J. C. Icy: An Open Bioimage Informatics Platform for Extended Reproducible Research. Nat. Methods 2012, 9, 690–696. 10.1038/nmeth.2075. PubMed DOI

Koopman T.; Buikema H. J.; Hollema H.; de Bock G. H.; van der Vegt B. Digital Image Analysis of Ki67 Proliferation Index in Breast Cancer Using Virtual Dual Staining on Whole Tissue Sections: Clinical Validation and Inter-Platform Agreement. Breast Cancer Res. Treat. 2018, 169, 33–42. 10.1007/s10549-018-4669-2. PubMed DOI PMC

Uzhytchak M.; Smolková B.; Lunova M.; Jirsa M.; Frtús A.; Kubinová S.; Dejneka A.; Lunov O. Iron Oxide Nanoparticle-Induced Autophagic Flux Is Regulated by Interplay between P53-Mtor Axis and Bcl-2 Signaling in Hepatic Cells. Cells 2020, 9, 1015.10.3390/cells9041015. PubMed DOI PMC

Smolková B.; Lunova M.; Lynnyk A.; Uzhytchak M.; Churpita O.; Jirsa M.; Kubinová Š.; Lunov O.; Dejneka A. Non-Thermal Plasma, as a New Physicochemical Source, to Induce Redox Imbalance and Subsequent Cell Death in Liver Cancer Cell Lines. Cell. Physiol. Biochem. 2019, 52, 119–140. 10.33594/000000009. PubMed DOI

Lunov O.; Zablotskii V.; Churpita O.; Lunova M.; Jirsa M.; Dejneka A.; Kubinova Š. Chemically Different Non-Thermal Plasmas Target Distinct Cell Death Pathways. Sci. Rep. 2017, 7, 600.10.1038/s41598-017-00689-5. PubMed DOI PMC

Lunova M.; Prokhorov A.; Jirsa M.; Hof M.; Ozl̇yńska A.; Jurkiewicz P.; Kubinová Š.; Lunov O.; Dejneka A. Nanoparticle Core Stability and Surface Functionalization Drive the Mtor Signaling Pathway in Hepatocellular Cell Lines. Sci. Rep. 2017, 7, 16049.10.1038/s41598-017-16447-6. PubMed DOI PMC

Lunova M.; Kubovciak J.; Smolkova B.; Uzhytchak M.; Michalova K.; Dejneka A.; Strnad P.; Lunov O.; Jirsa M. Expression of Interferons Lambda 3 and 4 Induces Identical Response in Human Liver Cell Lines Depending Exclusively on Canonical Signaling. Int. J. Mol. Sci. 2021, 22, 2560.10.3390/ijms22052560. PubMed DOI PMC

Schmittgen T. D.; Livak K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. 10.1038/nprot.2008.73. PubMed DOI

Lynnyk A.; Lunova M.; Jirsa M.; Egorova D.; Kulikov A.; Kubinová S.; Lunov O.; Dejneka A. Manipulating the Mitochondria Activity in Human Hepatic Cell Line Huh7 by Low-Power Laser Irradiation. Biomed. Opt. Express 2018, 9, 1283–1300. 10.1364/BOE.9.001283. PubMed DOI PMC

Lunova M.; Smolková B.; Uzhytchak M.; Janosǔková K. Ž.; Jirsa M.; Egorova D.; Kulikov A.; Kubinová Š.; Dejneka A.; Lunov O. Light-Induced Modulation of the Mitochondrial Respiratory Chain Activity: Possibilities and Limitations. Cell. Mol. Life Sci. 2020, 77, 2815–2838. 10.1007/s00018-019-03321-z. PubMed DOI PMC

Levada K.; Pshenichnikov S.; Omelyanchik A.; Rodionova V.; Nikitin A.; Savchenko A.; Schetinin I.; Zhukov D.; Abakumov M.; Majouga A.; Lunova M.; Jirsa M.; Smolková B.; Uzhytchak M.; Dejneka A.; Lunov O. Progressive Lysosomal Membrane Permeabilization Induced by Iron Oxide Nanoparticles Drives Hepatic Cell Autophagy and Apoptosis. Nano Converg. 2020, 7, 17.10.1186/s40580-020-00228-5. PubMed DOI PMC

Smolková B.; MacCulloch T.; Rockwood T. F.; Liu M. H.; Henry S. J. W.; Frtús A.; Uzhytchak M.; Lunova M.; Hof M.; Jurkiewicz P.; Dejneka A.; Stephanopoulos N.; Lunov O. Protein Corona Inhibits Endosomal Escape of Functionalized DNA Nanostructures in Living Cells. ACS Appl. Mater. Inter. 2021, 13, 46375–46390. 10.1021/acsami.1c14401. PubMed DOI PMC

Smiley S. T.; Reers M.; Mottolahartshorn C.; Lin M.; Chen A.; Smith T. W.; Steele G. D. Jr.; Chen L. B. Intracellular Heterogeneity in Mitochondrial-Membrane Potentials Revealed by a J-Aggregate-Forming Lipophilic Cation Jc-1. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 3671–3675. 10.1073/pnas.88.9.3671. PubMed DOI PMC

Zuliani T.; Duval R.; Jayat C.; Schnébert S.; André P.; Dumas M.; Ratinaud M. H. Sensitive and Reliable Jc-1 and Toto-3 Double Staining to Assess Mitochondrial Transmembrane Potential and Plasma Membrane Integrity: Interest for Cell Death Investigations. Cytom. Part A 2003, 54a, 100–108. 10.1002/cyto.a.10059. PubMed DOI

Kuznetsov A. V.; Kehrer I.; Kozlov A. V.; Haller M.; Redl H.; Hermann M.; Grimm M.; Troppmair J. Mitochondrial Ros Production under Cellular Stress: Comparison of Different Detection Methods. Anal. Bioanal. Chem. 2011, 400, 2383–2390. 10.1007/s00216-011-4764-2. PubMed DOI

Esposti M. D.; Hatzinisiriou I.; McLennan H.; Ralph S. Bcl-2 and Mitochondrial Oxygen Radicals - New Approaches with Reactive Oxygen Species-Sensitive Probes. J. Biol. Chem. 1999, 274, 29831–29837. 10.1074/jbc.274.42.29831. PubMed DOI

Reczek C. R.; Chandel N. S. The Two Faces of Reactive Oxygen Species in Cancer. Annu. Rev. Cancer Biol. 2017, 1, 79–98. 10.1146/annurev-cancerbio-041916-065808. DOI

Arganda-Carreras I.; Fernandez-Gonzalez R.; Munoz-Barrutia A.; Ortiz-De-Solorzano C. 3d Reconstruction of Histological Sections: Application to Mammary Gland Tissue. Microsc. Res. Tech. 2010, 73, 1019–1029. 10.1002/jemt.20829. PubMed DOI

Michael M.; Meiring J. C. M.; Acharya B. R.; Matthews D. R.; Verma S.; Han S. P.; Hill M. M.; Parton R. G.; Gomez G. A.; Yap A. S. Coronin 1b Reorganizes the Architecture of F-Actin Networks for Contractility at Steady-State and Apoptotic Adherens Junctions. Dev. Cell 2016, 37, 58–71. 10.1016/j.devcel.2016.03.008. PubMed DOI

Papadopoulos N. G.; Dedoussis G. V. Z.; Spanakos G.; Gritzapis A. D.; Baxevanis C. N.; Papamichail M. An Improved Fluorescence Assay for the Determination of Lymphocyte-Mediated Cytotoxicity Using Flow-Cytometry. J. Immunol. Methods 1994, 177, 101–111. 10.1016/0022-1759(94)90147-3. PubMed DOI

Yamamori T.; Ike S.; Bo T.; Sasagawa T.; Sakai Y.; Suzuki M.; Yamamoto K.; Nagane M.; Yasui H.; Inanami O. Inhibition of the Mitochondrial Fission Protein Dynamin-Related Protein 1 (Drp1) Impairs Mitochondrial Fission and Mitotic Catastrophe after X-Irradiation. Mol. Biol. Cell 2015, 26, 4607–4617. 10.1091/mbc.E15-03-0181. PubMed DOI PMC

Rambold A. S.; Kostelecky B.; Elia N.; Lippincott-Schwartz J. Tubular Network Formation Protects Mitochondria from Autophagosomal Degradation During Nutrient Starvation. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 10190–10195. 10.1073/pnas.1107402108. PubMed DOI PMC

Anand R.; Wai T.; Baker M. J.; Kladt N.; Schauss A. C.; Rugarli E.; Langer T. The I-Aaa Protease Yme1l and Oma1 Cleave Opa1 to Balance Mitochondrial Fusion and Fission. J. Cell Biol. 2014, 204, 919–929. 10.1083/jcb.201308006. PubMed DOI PMC

Stancikova J.; Krausova M.; Kolar M.; Fafilek B.; Svec J.; Sedlacek R.; Neroldova M.; Dobes J.; Horazna M.; Janeckova L.; Vojtechova M.; Oliverius M.; Jirsa M.; Korinek V. Nkd1 Marks Intestinal and Liver Tumors Linked to Aberrant Wnt Signaling. Cell Signal. 2015, 27, 245–256. 10.1016/j.cellsig.2014.11.008. PubMed DOI

Jonkman J.; Brown C. M.; Wright G. D.; Anderson K. I.; North A. J. Tutorial: Guidance for Quantitative Confocal Microscopy. Nat. Protoc. 2020, 15, 1585–1611. 10.1038/s41596-020-0313-9. PubMed DOI

Lee J. Y.; Kitaoka M. A Beginner’s Guide to Rigor and Reproducibility in Fluorescence Imaging Experiments. Mol. Biol. Cell 2018, 29, 1519–1525. 10.1091/mbc.E17-05-0276. PubMed DOI PMC

Dell R. B.; Holleran S.; Ramakrishnan R. Sample Size Determination. ILAR J. 2002, 43, 207–213. 10.1093/ilar.43.4.207. PubMed DOI PMC

Martinez-Hernandez A.; Amenta P. S. The hepatic extracellular matrix. Virchows Arch. A: Pathol. Anat. Histopathol. 1993, 423, 77–84. 10.1007/BF01606580. PubMed DOI

Martinez-Hernandez A.; Amenta P. S. The hepatic extracellular matrix. Virchows Arch. A: Pathol. Anat. Histopathol. 1993, 423, 1–11. 10.1007/BF01606425. PubMed DOI

Lee J. T. Y.; Chow K. L. Sem Sample Preparation for Cells on 3d Scaffolds by Freeze-Drying and Hmds. Scanning 2012, 34, 12–25. 10.1002/sca.20271. PubMed DOI

Barnes C. P.; Sell S. A.; Boland E. D.; Simpson D. G.; Bowlin G. L. Nanofiber Technology: Designing the Next Generation of Tissue Engineering Scaffolds. Adv. Drug Delivery Rev. 2007, 59, 1413–1433. 10.1016/j.addr.2007.04.022. PubMed DOI

Ruoß M.; Rebholz S.; Weimer M.; Grom-Baumgarten C.; Athanasopulu K.; Kemkemer R.; Kass H.; Ehnert S.; Nussler A. K. Development of Scaffolds with Adjusted Stiffness for Mimicking Disease-Related Alterations of Liver Rigidity. J. Funct. Biomater. 2020, 11, 17.10.3390/jfb11010017. PubMed DOI PMC

Arjmand A.; Tsipouras M. G.; Tzallas A. T.; Forlano R.; Manousou P.; Giannakeas N. Quantification of Liver Fibrosis - a Comparative Study. Appl. Sci. 2020, 10, 447.10.3390/app10020447. DOI

Lee J. S.; Shin J.; Park H. M.; Kim Y. G.; Kim B. G.; Oh J. W.; Cho S. W. Liver Extracellular Matrix Providing Dual Functions of Two-Dimensional Substrate Coating and Three-Dimensional Injectable Hydrogel Platform for Liver Tissue Engineering. Biomacromolecules 2014, 15, 206–218. 10.1021/bm4015039. PubMed DOI

Ruoß M.; Vosough M.; Königsrainer A.; Nadalin S.; Wagner S.; Sajadian S.; Huber D.; Heydari Z.; Ehnert S.; Hengstler J. G.; Nussler A. K. Towards Improved Hepatocyte Cultures: Progress and Limitations. Food Chem. Toxicol. 2020, 138, 11118810.1016/j.fct.2020.111188. PubMed DOI

Ladoux B.; Mège R.-M. Mechanobiology of Collective Cell Behaviours. Nat. Rev. Mol. Cell Biol. 2017, 18, 743–757. 10.1038/nrm.2017.98. PubMed DOI

You Y.; Zheng Q.; Dong Y.; Wang Y.; Zhang L.; Xue T.; Xie X.; Hu C.; Wang Z.; Chen R.; Wang Y.; Cui J.; Ren Z. Higher Matrix Stiffness Upregulates Osteopontin Expression in Hepatocellular Carcinoma Cells Mediated by Integrin β1/GSK3β/β-Catenin Signaling Pathway. PLoS One 2015, 10, e013424310.1371/journal.pone.0134243. PubMed DOI PMC

Lunova M.; Zablotskii V.; Dempsey N. M.; Devillers T.; Jirsa M.; Syková E.; Kubinová S.; Lunov O.; Dejneka A. Modulation of Collective Cell Behaviour by Geometrical Constraints. Integr. Biol. 2016, 8, 1099–1110. 10.1039/C6IB00125D. PubMed DOI

Payne K. K.; Keim R. C.; Graham L.; Idowu M. O.; Wan W.; Wang X.-Y.; Toor A. A.; Bear H. D.; Manjili M. H. Tumor-Reactive Immune Cells Protect against Metastatic Tumor and Induce Immunoediting of Indolent but Not Quiescent Tumor Cells. J. Leukocyte Biol. 2016, 100, 625–635. 10.1189/jlb.5A1215-580R. PubMed DOI PMC

Aqbi H. F.; Coleman C.; Zarei M.; Manjili S. H.; Graham L.; Koblinski J.; Guo C.; Xie Y.; Guruli G.; Bear H. D.; Idowu M. O.; Habibi M.; Wang X.-Y.; Manjili M. H. Local and Distant Tumor Dormancy During Early Stage Breast Cancer Are Associated with the Predominance of Infiltrating T Effector Subsets. Breast Cancer Res. 2020, 22, 116.10.1186/s13058-020-01357-9. PubMed DOI PMC

Romani P.; Valcarcel-Jimenez L.; Frezza C.; Dupont S. Crosstalk between Mechanotransduction and Metabolism. Nat. Rev. Mol. Cell Biol. 2021, 22, 22–38. 10.1038/s41580-020-00306-w. PubMed DOI

Ofek G.; Wiltz D. C.; Athanasiou K. A. Contribution of the Cytoskeleton to the Compressive Properties and Recovery Behavior of Single Cells. Biophys. J. 2009, 97, 1873–1882. 10.1016/j.bpj.2009.07.050. PubMed DOI PMC

Doss B. L.; Pan M.; Gupta M.; Grenci G.; Mège R.-M.; Lim C. T.; Sheetz M. P.; Voituriez R.; Ladoux B. Cell Response to Substrate Rigidity Is Regulated by Active and Passive Cytoskeletal Stress. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 12817–12825. 10.1073/pnas.1917555117. PubMed DOI PMC

Kubitschke H.; Schnauss J.; Nnetu K. D.; Warmt E.; Stange R.; Kaes J. Actin and Microtubule Networks Contribute Differently to Cell Response for Small and Large Strains. New J. Phys. 2017, 19, 09300310.1088/1367-2630/aa7658. DOI

Discher D. E.; Janmey P.; Wang Y. L. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science 2005, 310, 1139–1143. 10.1126/science.1116995. PubMed DOI

Burridge K. Focal Adhesions: A Personal Perspective on a Half Century of Progress. FEBS J. 2017, 284, 3355–3361. 10.1111/febs.14195. PubMed DOI PMC

Moore A. S.; Holzbaur E. L. F. Mitochondrial-Cytoskeletal Interactions: Dynamic Associations That Facilitate Network Function and Remodeling. Curr. Opin. Physiol. 2018, 3, 94–100. 10.1016/j.cophys.2018.03.003. PubMed DOI PMC

Moore A. S.; Wong Y. C.; Simpson C. L.; Holzbaur E. L. F. Dynamic Actin Cycling through Mitochondrial Subpopulations Locally Regulates the Fission-Fusion Balance within Mitochondrial Networks. Nat. Commun. 2016, 7, 12886.10.1038/ncomms12886. PubMed DOI PMC

Manor U.; Bartholomew S.; Golani G.; Christenson E.; Kozlov M.; Higgs H.; Spudich J.; Lippincott-Schwartz J. A Mitochondria-Anchored Isoform of the Actin-Nucleating Spire Protein Regulates Mitochondrial Division. eLife 2015, 4, e0882810.7554/eLife.08828. PubMed DOI PMC

Helle S. C. J.; Feng Q.; Aebersold M. J.; Hirt L.; Gruter R. R.; Vahid A.; Sirianni A.; Mostowy S.; Snedeker J. G.; Šarić A.; Idema T.; Zambelli T.; Kornmann B. Mechanical Force Induces Mitochondrial Fission. eLife 2017, 6, e3029210.7554/eLife.30292. PubMed DOI PMC

Zorov D. B.; Juhaszova M.; Sollott S. J. Mitochondrial Reactive Oxygen Species (Ros) and Ros-Induced Ros Release. Physiol. Rev. 2014, 94, 909–950. 10.1152/physrev.00026.2013. PubMed DOI PMC

Chen H.; Chomyn A.; Chan D. C. Disruption of Fusion Results in Mitochondrial Heterogeneity and Dysfunction. J. Biol. Chem. 2005, 280, 26185–26192. 10.1074/jbc.M503062200. PubMed DOI

Frank S. Dysregulation of Mitochondrial Fusion and Fission: An Emerging Concept in Neurodegeneration. Acta. Neuropathol. 2006, 111, 93–100. 10.1007/s00401-005-0002-3. PubMed DOI

Wu S.; Zhou F.; Wei Y.; Chen W. R.; Chen Q.; Xing D. Cancer Phototherapy Via Selective Photoinactivation of Respiratory Chain Oxidase to Trigger a Fatal Superoxide Anion Burst. Antioxid. Redox Signaling 2014, 20, 733–746. 10.1089/ars.2013.5229. PubMed DOI PMC

Hollville E.; Carroll R. G.; Cullen S. P.; Martin S. J. Bcl-2 Family Proteins Participate in Mitochondrial Quality Control by Regulating Parkin/Pink1-Dependent Mitophagy. Mol. Cell 2014, 55, 451–466. 10.1016/j.molcel.2014.06.001. PubMed DOI

Czabotar P. E.; Lessene G.; Strasser A.; Adams J. M. Control of Apoptosis by the Bcl-2 Protein Family: Implications for Physiology and Therapy. Nat. Rev. Mol. Cell Biol. 2014, 15, 49–63. 10.1038/nrm3722. PubMed DOI

Ni Z.; Wang B.; Dai X.; Ding W.; Yang T.; Li X.; Lewin S.; Xu L.; Lian J.; He F. Hcc Cells with High Levels of Bcl-2 Are Resistant to Abt-737 Via Activation of the Ros-Jnk-Autophagy Pathway. Free Radical Biol. Med. 2014, 70, 194–203. 10.1016/j.freeradbiomed.2014.02.012. PubMed DOI

Yang Y.; Zhang G.; Guo F.; Li Q.; Luo H.; Shu Y.; Shen Y.; Gan J.; Xu L.; Yang H. Mitochondrial Uqcc3 Modulates Hypoxia Adaptation by Orchestrating Oxphos and Glycolysis in Hepatocellular Carcinoma. Cell Rep. 2020, 33, 10834010.1016/j.celrep.2020.108340. PubMed DOI

Shen Y. C.; Ou D. L.; Hsu C.; Lin K. L.; Chang C. Y.; Lin C. Y.; Liu S. H.; Cheng A. L. Activating Oxidative Phosphorylation by a Pyruvate Dehydrogenase Kinase Inhibitor Overcomes Sorafenib Resistance of Hepatocellular Carcinoma. Brit. J. Cancer 2013, 108, 72–81. 10.1038/bjc.2012.559. PubMed DOI PMC

Jovel J.; Lin Z.; O’keefe S.; Willows S.; Wang W. W.; Zhang G. Z.; Patterson J.; Moctezuma-Velázquez C.; Kelvin D. J.; Wong G. K.-S.; Mason A. L. A Survey of Molecular Heterogeneity in Hepatocellular Carcinoma. Hepatol. Commun. 2018, 2, 945–959. 10.1002/hep4.1197. PubMed DOI PMC

Kim B.; Lee J. H.; Kim J. K.; Kim H. J.; Kim Y. B.; Lee D. The Capsule Appearance of Hepatocellular Carcinoma in Gadoxetic Acid-Enhanced Mr Imaging Correlation with Pathology and Dynamic Ct. Medicine 2018, 97, e1114210.1097/MD.0000000000011142. PubMed DOI PMC

Park S.; Jung W.-H.; Pittman M.; Chen J.; Chen Y. The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review. J. Biomech. Eng. 2020, 142, 100804.10.1115/1.4048110. PubMed DOI PMC

Yamada K. M.; Doyle A. D.; Lu J. Cell-3d Matrix Interactions: Recent Advances and Opportunities. Trends Cell Biol. 2022, 32, 883–895. 10.1016/j.tcb.2022.03.002. PubMed DOI PMC

Luo J.; Walker M.; Xiao Y.; Donnelly H.; Dalby M. J.; Salmeron-Sanchez M. The Influence of Nanotopography on Cell Behaviour through Interactions with the Extracellular Matrix - a Review. Bioact. Mater. 2022, 15, 145–159. 10.1016/j.bioactmat.2021.11.024. PubMed DOI PMC

Wang K.; Bruce A.; Mezan R.; Kadiyala A.; Wang L.; Dawson J.; Rojanasakul Y.; Yang Y. Nanotopographical Modulation of Cell Function through Nuclear Deformation. ACS Appl. Mater. Interfaces 2016, 8, 5082–5092. 10.1021/acsami.5b10531. PubMed DOI PMC

Park J.; Kim D. H.; Kim H. N.; Wang C. J.; Kwak M. K.; Hur E.; Suh K. Y.; An S. S.; Levchenko A. Directed Migration of Cancer Cells Guided by the Graded Texture of the Underlying Matrix. Nat. Mater. 2016, 15, 792–801. 10.1038/nmat4586. PubMed DOI PMC

Paul C. D.; Mistriotis P.; Konstantopoulos K. Cancer Cell Motility: Lessons from Migration in Confined Spaces. Nat. Rev. Cancer 2017, 17, 131–140. 10.1038/nrc.2016.123. PubMed DOI PMC

Tozluoğlu M.; Tournier A. L.; Jenkins R. P.; Hooper S.; Bates P. A.; Sahai E. Matrix Geometry Determines Optimal Cancer Cell Migration Strategy and Modulates Response to Interventions. Nat. Cell Biol. 2013, 15, 751–762. 10.1038/ncb2775. PubMed DOI

Marshall W. F. Differential Geometry Meets the Cell. Cell 2013, 154, 265–266. 10.1016/j.cell.2013.06.032. PubMed DOI

Charras G.; Sahai E. Physical Influences of the Extracellular Environment on Cell Migration. Nat. Rev. Mol. Cell Biol. 2014, 15, 813–824. 10.1038/nrm3897. PubMed DOI

Versaevel M.; Grevesse T.; Gabriele S. Spatial Coordination between Cell and Nuclear Shape within Micropatterned Endothelial Cells. Nat. Commun. 2012, 3, 671.10.1038/ncomms1668. PubMed DOI

Jain N.; Iyer K. V.; Kumar A.; Shivashankar G. V. Cell Geometric Constraints Induce Modular Gene-Expression Patterns Via Redistribution of Hdac3 Regulated by Actomyosin Contractility. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 11349–11354. 10.1073/pnas.1300801110. PubMed DOI PMC

Bose S.; Zhang C.; Le A. Glucose Metabolism in Cancer: The Warburg Effect and Beyond. Adv. Exp. Med. Biol. 2021, 1311, 3–15. 10.1007/978-3-030-65768-0_1. PubMed DOI PMC

Kim J.; DeBerardinis R. J. Mechanisms and Implications of Metabolic Heterogeneity in Cancer. Cell Metab. 2019, 30, 434–446. 10.1016/j.cmet.2019.08.013. PubMed DOI PMC

Lee J.-H.; Liu R.; Li J.; Zhang C.; Wang Y.; Cai Q.; Qian X.; Xia Y.; Zheng Y.; Piao Y.; Chen Q.; de Groot J. F.; Jiang T.; Lu Z. Stabilization of Phosphofructokinase 1 Platelet Isoform by Akt Promotes Tumorigenesis. Nat. Commun. 2017, 8, 949.10.1038/s41467-017-00906-9. PubMed DOI PMC

Gailhouste L.; Le Grand Y.; Odin C.; Guyader D.; Turlin B.; Ezan F.; Désille Y.; Guilbert T.; Bessard A.; Frémin C.; Theret N.; Baffet G. Fibrillar Collagen Scoring by Second Harmonic Microscopy: A New Tool in the Assessment of Liver Fibrosis. J. Hepatol. 2010, 52, 398–406. 10.1016/j.jhep.2009.12.009. PubMed DOI

Bedossa P.; Paradis V. Liver Extracellular Matrix in Health and Disease. J. Pathol. 2003, 200, 504–515. 10.1002/path.1397. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...