Impact of mechanical cues on key cell functions and cell-nanoparticle interactions

. 2024 Jun 22 ; 19 (1) : 106. [epub] 20240622

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38907808
Odkazy

PubMed 38907808
PubMed Central PMC11193707
DOI 10.1186/s11671-024-04052-2
PII: 10.1186/s11671-024-04052-2
Knihovny.cz E-zdroje

In recent years, it has been recognized that mechanical forces play an important regulative role in living organisms and possess a direct impact on crucial cell functions, ranging from cell growth to maintenance of tissue homeostasis. Advancements in mechanobiology have revealed the profound impact of mechanical signals on diverse cellular responses that are cell type specific. Notably, numerous studies have elucidated the pivotal role of different mechanical cues as regulatory factors influencing various cellular processes, including cell spreading, locomotion, differentiation, and proliferation. Given these insights, it is unsurprising that the responses of cells regulated by physical forces are intricately linked to the modulation of nanoparticle uptake kinetics and processing. This complex interplay underscores the significance of understanding the mechanical microenvironment in shaping cellular behaviors and, consequently, influencing how cells interact with and process nanoparticles. Nevertheless, our knowledge on how localized physical forces affect the internalization and processing of nanoparticles by cells remains rather limited. A significant gap exists in the literature concerning a systematic analysis of how mechanical cues might bias the interactions between nanoparticles and cells. Hence, our aim in this review is to provide a comprehensive and critical analysis of the existing knowledge regarding the influence of mechanical cues on the complicated dynamics of cell-nanoparticle interactions. By addressing this gap, we would like to contribute to a detailed understanding of the role that mechanical forces play in shaping the complex interplay between cells and nanoparticles.

Zobrazit více v PubMed

Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC

Poon W, Kingston BR, Ouyang B, Ngo W, Chan WCW. A framework for designing delivery systems. Nat Nanotechnol. 2020;15:819–829. doi: 10.1038/s41565-020-0759-5. PubMed DOI

Shi JJ, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37. doi: 10.1038/nrc.2016.108. PubMed DOI PMC

Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev. 2023;197:114683. doi: 10.1016/j.addr.2022.114683. PubMed DOI PMC

Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–951. doi: 10.1038/nbt.3330. PubMed DOI PMC

Frtus A, Smolkova B, Uzhytchak M, Lunova M, Jirsa M, Henry SJW, et al. The interactions between DNA nanostructures and cells: a critical overview from a cell biology perspective. Acta Biomater. 2022;146:10–22. doi: 10.1016/j.actbio.2022.04.046. PubMed DOI PMC

Stephanopoulos N. Hybrid nanostructures from the self-assembly of proteins and DNA. Chem. 2020;6:364–405. doi: 10.1016/j.chempr.2020.01.012. DOI

Henry SJW, Stephanopoulos N. Functionalizing DNA nanostructures for therapeutic applications. Wiley Interdiscip Rev-Nanomed Nanobiotechnol. 2021;13:e1729. doi: 10.1002/wnan.1729. PubMed DOI PMC

Szebeni J, Storm G, Ljubimova JY, Castells M, Phillips EJ, Turjeman K, et al. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat Nanotechnol. 2022;17:337–346. doi: 10.1038/s41565-022-01071-x. PubMed DOI

Yang W, Wang L, Mettenbrink EM, DeAngelis PL, Wilhelm S. Nanoparticle toxicology. Annu Rev Pharmacol Toxicol. 2021;61:269–289. doi: 10.1146/annurev-pharmtox-032320-110338. PubMed DOI

Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Kubinová S, et al. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: a road from failure to success in clinical applications. J Control Release. 2020;328:59–77. doi: 10.1016/j.jconrel.2020.08.036. PubMed DOI

Sharma S, Parveen R, Chatterji BP. Toxicology of nanoparticles in drug delivery. Curr Pathobiol Rep. 2021;9:133–144. doi: 10.1007/s40139-021-00227-z. PubMed DOI PMC

Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, et al. Lysosomal nanotoxicity: impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev. 2023;197:114828. doi: 10.1016/j.addr.2023.114828. PubMed DOI

Lunova M, Smolková B, Lynnyk A, Uzhytchak M, Jirsa M, Kubinová S, et al. Targeting the mTOR signaling pathway utilizing nanoparticles: A critical overview. Cancers. 2019;11:82. doi: 10.3390/cancers11010082. PubMed DOI PMC

Mitragotri S, Lammers T, Bae YH, Schwendeman S, De Smedt S, Leroux JC, et al. Drug delivery research for the future: expanding the nano horizons and beyond. J Control Release. 2017;246:183–184. doi: 10.1016/j.jconrel.2017.01.011. PubMed DOI

Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790. doi: 10.3389/fphar.2018.00790. PubMed DOI PMC

Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24:495–516. doi: 10.1038/s41580-023-00583-1. PubMed DOI PMC

Uhler C, Shivashankar GV. Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol. 2017;18:717–727. doi: 10.1038/nrm.2017.101. PubMed DOI

Janmey PA, Fletcher DA, Reinhart-King CA. Stiffness sensing by cells. Physiol Rev. 2020;100:695–724. doi: 10.1152/physrev.00013.2019. PubMed DOI PMC

Yamada KM, Doyle AD, Lu JY. Cell-3D matrix interactions: recent advances and opportunities. Trends Cell Biol. 2022;32:883–895. doi: 10.1016/j.tcb.2022.03.002. PubMed DOI PMC

Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol. 2021;22:22–38. doi: 10.1038/s41580-020-00306-w. PubMed DOI

Ladoux B, Mège RM. Mechanobiology of collective cell behaviours. Nat Rev Mol Cell Biol. 2017;18:743–757. doi: 10.1038/nrm.2017.98. PubMed DOI

Du HX, Bartleson JM, Butenko S, Alonso V, Liu WF, Winer DA, et al. Tuning immunity through tissue mechanotransduction. Nat Rev Immunol. 2023;23:174–188. doi: 10.1038/s41577-022-00761-w. PubMed DOI PMC

Di XP, Gao XS, Peng L, Ai JZ, Jin X, Qi SQ, et al. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther. 2023;8:282. doi: 10.1038/s41392-023-01501-9. PubMed DOI PMC

Wang Y, Gong T, Zhang ZR, Fu Y. Matrix stiffness differentially regulates cellular uptake behavior of nanoparticles in two breast cancer cell lines. ACS Appl Mater Interfaces. 2017;9:25915–25928. doi: 10.1021/acsami.7b08751. PubMed DOI

Huang CJ, Butler PJ, Tong S, Muddana HS, Bao G, Zhang SL. Substrate stiffness regulates cellular uptake of nanoparticles. Nano Lett. 2013;13:1611–1615. doi: 10.1021/nl400033h. PubMed DOI

Lee AR, de Almeida MS, Milinkovic D, Septiadi D, Taladriz-Blanco P, Loussert-Fonta C, et al. Substrate stiffness reduces particle uptake by epithelial cells and macrophages in a size-dependent manner through mechanoregulation. Nanoscale. 2022;14:15141–15155. doi: 10.1039/d2nr03792k. PubMed DOI PMC

Cox TR. The matrix in cancer. Nat Rev Cancer. 2021;21:217–238. doi: 10.1038/s41568-020-00329-7. PubMed DOI

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46. doi: 10.1158/2159-8290.Cd-21-1059. PubMed DOI

Nia HDT, Munn LL, Jain RK. Physical traits of cancer. Science. 2020;370:eaaz0868. doi: 10.1126/science.aaz0868. PubMed DOI PMC

Paul CD, Mistriotis P, Konstantopoulos K. Cancer cell motility: lessons from migration in confined spaces. Nat Rev Cancer. 2017;17:131–140. doi: 10.1038/nrc.2016.123. PubMed DOI PMC

Petridou NI, Spiró Z, Heisenberg CP. Multiscale force sensing in development. Nat Cell Biol. 2017;19:581–588. doi: 10.1038/ncb3524. PubMed DOI

Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15:802–812. doi: 10.1038/nrm3896. PubMed DOI PMC

Iskratsch T, Wolfenson H, Sheetz MP. Appreciating force and shape - the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol. 2014;15:825–833. doi: 10.1038/nrm3903. PubMed DOI PMC

Discher DE, Smith L, Cho S, Colasurdo M, García AJ, Safran S. Matrix mechanosensing: from scaling concepts in 'omics data to mechanisms in the nucleus, regeneration, and cancer. Ann Rev Biophys. 2017;46:295–315. doi: 10.1146/annurev-biophys-062215-011206. PubMed DOI PMC

Evers TMJ, Holt LJ, Alberti S, Mashaghi A. Reciprocal regulation of cellular mechanics and metabolism. Nat Metab. 2021;3:456–468. doi: 10.1038/s42255-021-00384-w. PubMed DOI PMC

Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 2017;18:728–742. doi: 10.1038/nrm.2017.108. PubMed DOI PMC

Fernandez-Sanchez ME, Brunet T, Röper JC, Farge E. Mechanotransduction's impact on animal development, evolution, and tumorigenesis. Annu Rev Cell Dev Biol. 2015;31:373–397. doi: 10.1146/annurev-cellbio-102314-112441. PubMed DOI

Mascharak S, Talbott HE, Januszyk M, Griffin M, Chen K, Davitt MF, et al. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing. Cell Stem Cell. 2022;29:315–27.e6. doi: 10.1016/j.stem.2021.12.011. PubMed DOI PMC

Marinval N, Chew SY. Mechanotransduction assays for neural regeneration strategies: a focus on glial cells. APL Bioeng. 2021;5:021505. doi: 10.1063/5.0037814. PubMed DOI PMC

Long Y, Niu YD, Liang KN, Du YN. Mechanical communication in fibrosis progression. Trends Cell Biol. 2022;32:70–90. doi: 10.1016/j.tcb.2021.10.002. PubMed DOI

Cooper J, Giancotti FG. Integrin signaling in cancer: Mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35:347–367. doi: 10.1016/j.ccell.2019.01.007. PubMed DOI PMC

Zhu PF, Lu HR, Wang MX, Chen K, Chen ZL, Yang L. Targeted mechanical forces enhance the effects of tumor immunotherapy by regulating immune cells in the tumor microenvironment. Cancer Biol Med. 2023;20:44–55. doi: 10.20892/j.issn.2095-3941.2022.0491. PubMed DOI PMC

Li N, Zhang XY, Zhou J, Li W, Shu XY, Wu Y, et al. Multiscale biomechanics and mechanotransduction from liver fibrosis to cancer. Adv Drug Deliv Rev. 2022 doi: 10.1016/j.addr.2022.114448. PubMed DOI

Heldin CH, Rubin K, Pietras K, Östman A. High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer. 2004;4:806–813. doi: 10.1038/nrc1456. PubMed DOI

Henstock JR, Rotherham M, Rose JB, El Haj AJ. Cyclic hydrostatic pressure stimulates enhanced bone development in the foetal chick femur. Bone. 2013;53:468–477. doi: 10.1016/j.bone.2013.01.010. PubMed DOI

Nessler KHL, Henstock JR, El Haj AJ, Waters SL, Whiteley JP, Osborne JM. The influence of hydrostatic pressure on tissue engineered bone development. J Theor Biol. 2016;394:149–159. doi: 10.1016/j.jtbi.2015.12.020. PubMed DOI

Fukuchi M, Oyama K, Mizuno H, Miyagawa A, Koumoto K, Fukuhara G. Hydrostatic pressure-regulated cellular calcium responses. Langmuir. 2021;37:820–826. doi: 10.1021/acs.langmuir.0c03141. PubMed DOI

Sugimoto A, Miyazaki A, Kawarabayashi K, Shono M, Akazawa Y, Hasegawa T, et al. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci Rep. 2017;7:17696. doi: 10.1038/s41598-017-18089-0. PubMed DOI PMC

Li X, Xue YM, Guo HM, Deng CY, Peng DW, Yang H, et al. High hydrostatic pressure induces atrial electrical remodeling through upregulation of inflammatory cytokines. Life Sci. 2020;242:117209. doi: 10.1016/j.lfs.2019.117209. PubMed DOI

Huang ZS, Khalifa MO, Gu WL, Li TS. Hydrostatic pressure induces profibrotic properties in hepatic stellate cells via the RhoA/ROCK signaling pathway. FEBS Open Bio. 2022;12:1230–1240. doi: 10.1002/2211-5463.13405. PubMed DOI PMC

Huang ZS, Khalifa MO, Li PL, Huang Y, Gu WL, Li TS. Angiotensin receptor blocker alleviates liver fibrosis by altering the mechanotransduction properties of hepatic stellate cells. Am J Physiol-Gastroint Liver Physiol. 2022;322:G446–G456. doi: 10.1152/ajpgi.00238.2021. PubMed DOI

Salker MS, Steel JH, Hosseinzadeh Z, Nautiyal J, Webster Z, Singh Y, et al. Activation of SGK1 in endometrial epithelial cells in response to PI3K/AKT inhibition impairs embryo implantation. Cell Physiol Biochem. 2016;39:2077–2087. doi: 10.1159/000447903. PubMed DOI

Mihic A, Li J, Miyagi Y, Gagliardi M, Li SH, Zu J, et al. The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials. 2014;35:2798–2808. doi: 10.1016/j.biomaterials.2013.12.052. PubMed DOI

Zhou L, Wei X, Liu Q, Cai X, Liao BH, Yang J, et al. Hydrostatic pressure and muscarinic receptors are involved in the release of inflammatory cytokines in human bladder smooth muscle cells. Neurourol Urodyn. 2017;36:1261–1269. doi: 10.1002/nau.23104. PubMed DOI

Gao XS, Wei TQ, Chen JX, Ai JZ, Jin T, Cheng L, et al. Cyclic hydrostatic pressure promotes uroplakin expression in human urothelial cells through activation of ERK1/2 signaling. Biochem Biophys Res Commun. 2018;503:2499–2503. doi: 10.1016/j.bbrc.2018.07.006. PubMed DOI

Abidin NAZ, Timofeeva M, Szydzik C, Akbaridoust F, Lav C, Marusic I, et al. A microfluidic method to investigate platelet mechanotransduction under extensional strain. Res Pract Thromb Haemost. 2023;7:100037. doi: 10.1016/j.rpth.2023.100037. PubMed DOI PMC

Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res. 2016;118:703–720. doi: 10.1161/Circresaha.115.306300. PubMed DOI PMC

Yamawaki H, Pan S, Lee RT, Berk BC. Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J Clin Invest. 2005;115:733–738. doi: 10.1172/Jci200523001. PubMed DOI PMC

Chiu JJ, Chen CN, Lee PL, Yang CT, Chuang HS, Chien S, et al. Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J Biomech. 2003;36:1883–1895. doi: 10.1016/S0021-9290(03)00210-0. PubMed DOI

Gray KM, Stroka KM. Vascular endothelial cell mechanosensing: New insights gained from biomimetic microfluidic models. Semin Cell Dev Biol. 2017;71:106–117. doi: 10.1016/j.semcdb.2017.06.002. PubMed DOI

Tarbell JM, Shi ZD, Dunn J, Jo H. Fluid mechanics, arterial disease, and gene expression. Annu Rev Fluid Mech. 2014;46:591–614. doi: 10.1146/annurev-fluid-010313-141309. PubMed DOI PMC

Papaioannou TG, Stefanadis C. Vascular wall shear stress: basic principles and methods. Hell J Cardiol. 2005;46:9–15. PubMed

Caro CG. Discovery of the role of wall shear in atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:158–161. doi: 10.1161/Atvbaha.108.166736. PubMed DOI

Fujiwara K. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells. J Intern Med. 2006;259:373–380. doi: 10.1111/j.1365-2796.2006.01623.x. PubMed DOI

Liu ZQ, Ruter DL, Quigley K, Tanke NT, Jiang YC, Bautch VL. Single-cell RNA sequencing reveals endothelial cell transcriptome heterogeneity under homeostatic laminar flow. Arterioscler Thromb Vasc Biol. 2021;41:2575–2584. doi: 10.1161/Atvbaha.121.316797. PubMed DOI PMC

Shinge SAU, Zhang D, Achu Muluh T, Nie Y, Yu F. Mechanosensitive Piezo1 channel evoked-mechanical signals in atherosclerosis. J Inflamm Res. 2021;14:3621–3636. doi: 10.2147/JIR.S319789. PubMed DOI PMC

Paudel R, Fusi L, Schmidt M. The MEK5/ERK5 pathway in health and disease. Int J Mol Sci. 2021;22:7594. doi: 10.3390/ijms22147594. PubMed DOI PMC

Givens C, Tzima E. Endothelial mechanosignaling: Does one sensor fit all? Antioxid Redox Signal. 2016;25:373–388. doi: 10.1089/ars.2015.6493. PubMed DOI PMC

Poelmann RE, Gittenberger-de Groot AC. Hemodynamics in cardiac development. J Cardiovasc Dev Dis. 2018;5:54. doi: 10.3390/jcdd5040054. PubMed DOI PMC

Jetta D, Gottlieb PA, Verma D, Sachs F, Hua SZ. Shear stress-induced nuclear shrinkage through activation of Piezo1 channels in epithelial cells. J Cell Sci. 2019;132:jcs226076. doi: 10.1242/jcs.226076. PubMed DOI

Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005;437:426–431. doi: 10.1038/nature03952. PubMed DOI

Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol. 2013;23:1024–1030. doi: 10.1016/j.cub.2013.04.049. PubMed DOI PMC

Shiu YT, Li S, Marganski WA, Usami S, Schwartz MA, Wang YL, et al. Rho mediates the shear-enhancement of endothelial cell migration and traction force generation. Biophys J. 2004;86:2558–2565. doi: 10.1016/S0006-3495(04)74311-8. PubMed DOI PMC

Tzima E. Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circ Res. 2006;98:176–185. doi: 10.1161/01.RES.0000200162.94463.d7. PubMed DOI

Obi S, Masuda H, Shizuno T, Sato A, Yamamoto K, Ando J, et al. Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells. Am J Physiol-Cell Physiol. 2012;303:C595–C606. doi: 10.1152/ajpcell.00133.2012. PubMed DOI

Tijore A, Yao MX, Wang YH, Hariharan A, Nematbakhsh Y, Doss BL, et al. Selective killing of transformed cells by mechanical stretch. Biomaterials. 2021;275:120866. doi: 10.1016/j.biomaterials.2021.120866. PubMed DOI

Opplert J, Babault N. Acute effects of dynamic stretching on muscle flexibility and performance: An analysis of the current literature. Sports Med. 2018;48:299–325. doi: 10.1007/s40279-017-0797-9. PubMed DOI

Camasao DB, Mantovani D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A Crit Rev Mater Today Bio. 2021;10:100106. doi: 10.1016/j.mtbio.2021.100106. PubMed DOI PMC

Rysä J, Tokola H, Ruskoaho H. Mechanical stretch induced transcriptomic profiles in cardiac myocytes. Sci Rep. 2018;8:4733. doi: 10.1038/s41598-018-23042-w. PubMed DOI PMC

Albinsson S, Bhattachariya A, Hellstrand P. Stretch-dependent smooth muscle differentiation in the portal vein-role of actin polymerization, calcium signaling, and microRNAs. Microcirculation. 2014;21:230–238. doi: 10.1111/micc.12106. PubMed DOI

Gao X, Wei T, Liao B, Ai J, Zhou L, Gong L, et al. Physiological stretch induced proliferation of human urothelial cells via integrin alpha6-FAK signaling pathway. Neurourol Urodyn. 2018;37:2114–2120. doi: 10.1002/nau.23572. PubMed DOI

Loverde JR, Tolentino RE, Soteropoulos P, Pfister BJ. Biomechanical forces regulate gene transcription during stretch-mediated growth of mammalian neurons. Front Neurosci. 2020;14:600136. doi: 10.3389/fnins.2020.600136. PubMed DOI PMC

Purohit PK, Smith DH. A model for stretch growth of neurons. J Biomech. 2016;49:3934–3942. doi: 10.1016/j.jbiomech.2016.11.045. PubMed DOI PMC

Liu B, Qu MJ, Qin KR, Li H, Li ZK, Shen BR, et al. Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophys J. 2008;94:1497–1507. doi: 10.1529/biophysj.106.098574. PubMed DOI PMC

Chen QH, Li W, Quan ZW, Sumpio BE. Modulation of vascular smooth muscle cell alignment by cyclic strain is dependent on reactive oxygen species and P38 mitogen-activated protein kinase. J Vasc Surg. 2003;37:660–668. doi: 10.1067/mva.2003.95. PubMed DOI

Tock J, Van Putten V, Stenmark KR, Nemenoff RA. Induction of SM-α-actin expression by mechanical strain in adult vascular smooth muscle cells is mediated through activation of JNK and p38 MAP kinase. Biochem Biophys Res Commun. 2003;301:1116–1121. doi: 10.1016/S0006-291x(03)00087-1. PubMed DOI

Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T. Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circ Res. 1999;85:5–11. doi: 10.1161/01.RES.85.1.5. PubMed DOI

Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI

Marchioni A, Tonelli R, Cerri S, Castaniere I, Andrisani D, Gozzi F, et al. Pulmonary stretch and lung mechanotransduction: implications for progression in the fibrotic lung. Int J Mol Sci. 2021;22:6443. doi: 10.3390/ijms22126443. PubMed DOI PMC

Karsdal MA, Nielsen SH, Leeming DJ, Langholm LL, Nielsen MJ, Manon-Jensen T, et al. The good and the bad collagens of fibrosis - Their role in signaling and organ function. Adv Drug Deliv Rev. 2017;121:43–56. doi: 10.1016/j.addr.2017.07.014. PubMed DOI

López B, Ravassa S, Moreno MU, San José G, Beaumont J, González A, et al. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol. 2021;18:479–498. doi: 10.1038/s41569-020-00504-1. PubMed DOI

López B, González A, Querejeta R, Larman M, Rábago G, Díez J. Association of cardiotrophin-1 with myocardial fibrosis in hypertensive patients with heart failure. Hypertension. 2014;63:483–489. doi: 10.1161/Hypertensionaha.113.02654. PubMed DOI

Echegaray K, Andreu I, Lazkano A, Villanueva I, Sáenz A, Elizalde MR, et al. Role of myocardial collagen in severe aortic stenosis with preserved ejection fraction and symptoms of heart failure. Rev Esp Cardiol. 2017;70:832–840. doi: 10.1016/j.recesp.2016.12.018. PubMed DOI

Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021;18:151–166. doi: 10.1038/s41575-020-00372-7. PubMed DOI

Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–218. doi: 10.1172/Jci200524282. PubMed DOI PMC

Cubero FJ, Urtasun R, Nieto N. Alcohol and liver fibrosis. Semin Liver Dis. 2009;29:211–221. doi: 10.1055/s-0029-1214376. PubMed DOI

Arriazu E, de Galarreta MR, Cubero FJ, Varela-Rey M, de Obanos MPP, Leung TM, et al. Extracellular matrix and liver disease. Antioxid Redox Signal. 2014;21:1078–1097. doi: 10.1089/ars.2013.5697. PubMed DOI PMC

Cai JY, Hu M, Chen ZY, Ling Z. The roles and mechanisms of hypoxia in liver fibrosis. J Transl Med. 2021;19:186. doi: 10.1186/s12967-021-02854-x. PubMed DOI PMC

Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix metalloproteinases and their inhibitors in pulmonary fibrosis: EMMPRIN/CD147 comes into play. Int J Mol Sci. 2022;23:6894. doi: 10.3390/ijms23136894. PubMed DOI PMC

Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol. 2010;190:693–706. doi: 10.1083/jcb.201004082. PubMed DOI PMC

Masuzaki R, Tateishi R, Yoshida H, Goto E, Sato T, Ohki T, et al. Prospective risk assessment for hepatocellular carcinoma development in patients with chronic hepatitis C by transient elastography. Hepatology. 2009;49:1954–1961. doi: 10.1002/hep.22870. PubMed DOI

Castera L. Liver stiffness and hepatocellular carcinoma: liaisons dangereuses? Hepatology. 2009;49:1793–1794. doi: 10.1002/hep.22981. PubMed DOI

Choong KL, Wong YH, Yeong CH, Gnanasuntharam GK, Goh KL, Yoong BK, et al. Elasticity characterization of liver cancers using shear wave ultrasound elastography: comparison between hepatocellular carcinoma and liver metastasis. J Diagn Med Sonog. 2017;33:481–488. doi: 10.1177/8756479317733713. DOI

Masuzaki R, Tateishi R, Yoshida H, Sato T, Ohki T, Goto T, et al. Assessing liver tumor stiffness by transient elastography. Hepatol Int. 2007;1:394–397. doi: 10.1007/s12072-007-9012-7. PubMed DOI PMC

Xia TT, Zhao RZ, Liu WQ, Huang QP, Chen PX, Waju YN, et al. Effect of substrate stiffness on hepatocyte migration and cellular Young's modulus. J Cell Physiol. 2018;233:6996–7006. doi: 10.1002/jcp.26491. PubMed DOI

Takeda T, Yasuda T, Nakayama Y, Nakaya M, Kimura M, Yamashita M, et al. Usefulness of noninvasive transient elastography for assessment of liver fibrosis stage in chronic hepatitis C. World J Gastroenterol. 2006;12:7768–7773. doi: 10.3748/wjg.v12.i48.7768. PubMed DOI PMC

Robic MA, Procopet B, Métivier S, Péron JM, Selves J, Vinel JP, et al. Liver stiffness accurately predicts portal hypertension related complications in patients with chronic liver disease: a prospective study. J Hepatol. 2011;55:1017–1024. doi: 10.1016/j.jhep.2011.01.051. PubMed DOI

Lunova M, Frankova S, Gottfriedova H, Senkerikova R, Neroldova M, Kovac J, et al. Portal hypertension is the main driver of liver stiffness in advanced liver cirrhosis. Physiol Res. 2021;70:563–577. doi: 10.33549/physiolres.934626. PubMed DOI PMC

Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol. 2019;20:457–473. doi: 10.1038/s41580-019-0134-2. PubMed DOI

Harburger DS, Calderwood DA. Integrin signalling at a glance. J Cell Sci. 2009;122:159–163. doi: 10.1242/jcs.018093. PubMed DOI PMC

Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem. 2022;298:101530. doi: 10.1016/j.jbc.2021.101530. PubMed DOI PMC

Maldonado H, Hagood JS. Cooperative signaling between integrins and growth factor receptors in fibrosis. J Mol Med. 2021;99:213–224. doi: 10.1007/s00109-020-02026-2. PubMed DOI

Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801. doi: 10.1038/nrm3904. PubMed DOI PMC

Onodera T, Sakai T, Hsu JC, Matsumoto K, Chiorini JA, Yamada KM. Btbd7 regulates epithelial cell dynamics and branching morphogenesis. Science. 2010;329:562–565. doi: 10.1126/science.1191880. PubMed DOI PMC

Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, et al. Structural basis of integrin activation by talin. Cell. 2007;128:171–182. doi: 10.1016/j.cell.2006.10.048. PubMed DOI

Kim CH, Ye F, Hu XH, Ginsberg MH. Talin activates integrins by altering the topology of the β transmembrane domain. J Cell Biol. 2012;197:605–611. doi: 10.1083/jcb.201112141. PubMed DOI PMC

Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol. 2006;18:516–523. doi: 10.1016/j.ceb.2006.08.011. PubMed DOI

Clemente CFMZ, Tornatore TF, Theizen TH, Deckmann AC, Pereira TC, Lopes-Cendes I, et al. Targeting focal adhesion kinase with small interfering RNA prevents and reverses load-induced cardiac hypertrophy in mice. Circ Res. 2007;101:1339–1348. doi: 10.1161/Circresaha.107.160978. PubMed DOI

Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res. 2016;343:42–53. doi: 10.1016/j.yexcr.2015.10.034. PubMed DOI

Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–U212. doi: 10.1038/nature10137. PubMed DOI

Mohri Z, Hernandez AD, Krams R. The emerging role of YAP/TAZ in mechanotransduction. J Thorac Dis. 2017;9:E507–E509. doi: 10.21037/jtd.2017.03.179. PubMed DOI PMC

Ritsvall O, Albinsson S. Emerging role of YAP/TAZ in vascular mechanotransduction and disease. Microcirculation. 2023;00:e12838. doi: 10.1111/micc.12838. PubMed DOI

Lampi MC, Reinhart-King CA. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci Transl Med. 2018;10:eaao0475. doi: 10.1126/scitranslmed.aao0475. PubMed DOI

Liu F, Lagares D, Choi KM, Stopfer L, Marinkovic A, Vrbanac V, et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol-Lung Cell Mol Physiol. 2015;308:L344–L357. doi: 10.1152/ajplung.00300.2014. PubMed DOI PMC

Du J, Zu Y, Li J, Du SY, Xu YP, Zhang L, et al. Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci Rep. 2016;6:20395. doi: 10.1038/srep20395. PubMed DOI PMC

Bera K, Kiepas A, Godet I, Li YZ, Mehta P, Ifemembi B, et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination. Nature. 2022;611:365–373. doi: 10.1038/s41586-022-05394-6. PubMed DOI PMC

Xia HT, Zahra A, Jia M, Wang Q, Wang YF, Campbell SL, et al. Na+/H+ exchanger-1, a potential therapeutic drug target for cardiac hypertrophy and heart failure. Pharmaceuticals. 2022;15:875. doi: 10.3390/ph15070875. PubMed DOI PMC

Gonzalez-Molina J, Zhang XL, Borghesan M, da Silva JM, Awan M, Fuller B, et al. Extracellular fluid viscosity enhances liver cancer cell mechanosensing and migration. Biomaterials. 2018;177:113–124. doi: 10.1016/j.biomaterials.2018.05.058. PubMed DOI

Kim DH, Wong PK, Park J, Levchenko A, Sun Y. Microengineered platforms for cell mechanobiology. Annu Rev Biomed Eng. 2009;11:203–233. doi: 10.1146/annurev-bioeng-061008-124915. PubMed DOI

Vernerey FJ, Sridhar SL, Muralidharan A, Bryant SJ. Mechanics of 3D cell-hydrogel interactions: experiments, models, and mechanisms. Chem Rev. 2021;121:11085–11148. doi: 10.1021/acs.chemrev.1c00046. PubMed DOI

Rodriguez ML, McGarry PJ, Sniadecki NJ. Review on cell mechanics: experimental and modeling approaches. Appl Mech Rev. 2013;65:060801. doi: 10.1115/1.4025355. DOI

Baker BM, Chen CS. Deconstructing the third dimension - how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125:3015–3024. doi: 10.1242/jcs.079509. PubMed DOI PMC

Leung CM, de Haan P, Ronaldson-Bouchard K, Kim GA, Ko J, Rho HS, et al. A guide to the organ-on-a-chip. Nat Rev Method Prim. 2022;2:33. doi: 10.1038/s43586-022-00118-6. DOI

Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. Nat Rev Drug Discov. 2021;20:345–361. doi: 10.1038/s41573-020-0079-3. PubMed DOI

Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32:760–772. doi: 10.1038/nbt.2989. PubMed DOI

Zhang B, Radisic M. Organ-on-a-chip devices advance to market. Lab Chip. 2017;17:2395–2420. doi: 10.1039/c6lc01554a. PubMed DOI

Ekert JE, Deakyne J, Pribul-Allen P, Terry R, Schofield C, Jeong CG, et al. Recommended guidelines for developing, qualifying, and implementing complex in vitro models (CIVMs) for drug discovery. SLAS Discov. 2020;25:1174–1190. doi: 10.1177/2472555220923332. PubMed DOI

Kopec AK, Yokokawa R, Khan N, Horii I, Finley JE, Bono CP, et al. Microphysiological systems in early stage drug development: Perspectives on current applications and future impact. J Toxicol Sci. 2021;46:99–114. doi: 10.2131/jts.46.99. PubMed DOI

Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8:543–557. doi: 10.1038/Nmat2442. PubMed DOI

Zhu MT, Nie GJ, Meng H, Xia T, Nel A, Zhao YL. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Accounts Chem Res. 2013;46:622–631. doi: 10.1021/ar300031y. PubMed DOI PMC

Villanueva-Flores F, Castro-Lugo A, Ramírez OT, Palomares LA. Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices. Nanotechnology. 2020;31:132002. doi: 10.1088/1361-6528/ab5bc8. PubMed DOI PMC

Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018;13:339. doi: 10.1186/s11671-018-2728-6. PubMed DOI PMC

Byakodi M, Shrikrishna NS, Sharma R, Bhansali S, Mishra Y, Kaushik A, et al. Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. Biosens Bioelectron: X. 2022;12:100284. doi: 10.1016/j.biosx.2022.100284. PubMed DOI PMC

Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci USA. 2013;110:17247–17252. doi: 10.1073/pnas.1305000110. PubMed DOI PMC

Decuzzi P, Pasqualini R, Arap W, Ferrari M. Intravascular delivery of particulate systems: does geometry really matter? Pharm Res. 2009;26:235–243. doi: 10.1007/s11095-008-9697-x. PubMed DOI

Decuzzi P, Ferrari M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials. 2006;27:5307–5314. doi: 10.1016/j.biomaterials.2006.05.024. PubMed DOI

Vácha R, Martinez-Veracoechea FJ, Frenkel D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett. 2011;11:5391–5395. doi: 10.1021/nl2030213. PubMed DOI

Li Y, Kröger M, Liu WK. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale. 2015;7:16631–16646. doi: 10.1039/c5nr02970h. PubMed DOI

Zhang X, Ma GH, Wei W. Simulation of nanoparticles interacting with a cell membrane: probing the structural basis and potential biomedical application. Npg Asia Materials. 2021;13:52. doi: 10.1038/s41427-021-00320-0. DOI

Yang K, Ma YQ. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol. 2010;5:579–583. doi: 10.1038/Nnano.2010.141. PubMed DOI

Gupta R, Badhe Y, Mitragotri S, Rai B. Permeation of nanoparticles across the intestinal lipid membrane: dependence on shape and surface chemistry studied through molecular simulations. Nanoscale. 2020;12:6318–6333. doi: 10.1039/c9nr09947f. PubMed DOI

Shen ZQ, Ye HL, Yi X, Li Y. Membrane wrapping efficiency of elastic nanoparticles during endocytosis: size and shape matter. ACS Nano. 2019;13:215–228. doi: 10.1021/acsnano.8b05340. PubMed DOI

Li Y, Yue TT, Yang K, Zhang XR. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Biomaterials. 2012;33:4965–4973. doi: 10.1016/j.biomaterials.2012.03.044. PubMed DOI

Anselmo AC, Zhang M, Kumar S, Vogus DR, Menegatti S, Helgeson ME, et al. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano. 2015;9:3169–3177. doi: 10.1021/acsnano.5b00147. PubMed DOI

Yi X, Shi XH, Gao HJ. Cellular uptake of elastic nanoparticles. Phys Rev Lett. 2011;107:098101. doi: 10.1103/PhysRevLett.107.098101. PubMed DOI

Shen ZQ, Ye HL, Li Y. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation. Phys Chem Chem Phys. 2018;20:16372–16385. doi: 10.1039/c7cp08644j. PubMed DOI

Tang HY, Ye HF, Zhang HW, Zheng YG. Wrapping of nanoparticles by the cell membrane: the role of interactions between the nanoparticles. Soft Matter. 2015;11:8674–8683. doi: 10.1039/c5sm01460c. PubMed DOI

Yi X, Gao HJ. Kinetics of receptor-mediated endocytosis of elastic nanoparticles. Nanoscale. 2017;9:454–463. doi: 10.1039/c6nr07179a. PubMed DOI

Banquy X, Suarez F, Argaw A, Rabanel JM, Grutter P, Bouchard JF, et al. Effect of mechanical properties of hydrogel nanoparticles on macrophage cell uptake. Soft Matter. 2009;5:3984–3991. doi: 10.1039/b821583a. DOI

Guo P, Liu DX, Subramanyam K, Wang BR, Yang J, Huang J, et al. Nanoparticle elasticity directs tumor uptake. Nat Commun. 2018;9:130. doi: 10.1038/s41467-017-02588-9. PubMed DOI PMC

Sun JS, Zhang L, Wang JL, Feng Q, Liu DB, Yin QF, et al. Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake. Adv Mater. 2015;27:1402–1407. doi: 10.1002/adma.201404788. PubMed DOI

Geraghty RJ, Capes-Davis A, Davis JM, Downward J, Freshney RI, Knezevic I, et al. Guidelines for the use of cell lines in biomedical research. Br J Cancer. 2014;111:1021–1046. doi: 10.1038/bjc.2014.166. PubMed DOI PMC

Kaur G, Dufour JM. Cell lines: valuable tools or useless artifacts. Cell lines Spermatogen. 2012;2:1–5. doi: 10.4161/spmg.19885. PubMed DOI PMC

Richter M, Piwocka O, Musielak M, Piotrowski I, Suchorska WM, Trzeciak T. From donor to the lab: a fascinating journey of primary cell lines. Front Cell Dev Biol. 2021;9:711381. doi: 10.3389/fcell.2021.711381. PubMed DOI PMC

Hughes P, Marshall D, Reid Y, Parkes H, Gelber C. The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques. 2007;43:575–584. doi: 10.2144/000112598. PubMed DOI

Masters JRW. Cell line misidentification: the beginning of the end. Nat Rev Cancer. 2010;10:441–448. doi: 10.1038/nrc2852. PubMed DOI

Lorsch JR, Collins FS, Lippincott-Schwartz J. Fixing problems with cell lines. Science. 2014;346:1452–1453. doi: 10.1126/science.1259110. PubMed DOI PMC

Souren NY, Fusenig NE, Heck S, Dirks WG, Capes-Davis A, Bianchini F, et al. Cell line authentication: a necessity for reproducible biomedical research. EMBO J. 2022;41:e111307. doi: 10.15252/embj.2022111307. PubMed DOI PMC

Fusenig NE, Capes-Davis A, Bianchini F, Sundell S, Lichter P. The need for a worldwide consensus for cell line authentication: Experience implementing a mandatory requirement at the. PLoS Biol. 2017;15:e2001438. doi: 10.1371/journal.pbio.2001438. PubMed DOI PMC

Ben-David U, Siranosian B, Ha G, Tang H, Oren Y, Hinohara K, et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature. 2018;560:325–330. doi: 10.1038/s41586-018-0409-3. PubMed DOI PMC

Liu YS, Mi Y, Mueller T, Kreibich S, Williams EG, Van Drogen A, et al. Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat Biotechnol. 2019;37:314–322. doi: 10.1038/s41587-019-0037-y. PubMed DOI

Marx V. Cell-line authentication demystified. Nat Methods. 2014;11:483–488. doi: 10.1038/nmeth.2932. PubMed DOI

Pan CP, Kumar C, Bohl S, Klingmueller U, Mann M. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics. 2009;8:443–450. doi: 10.1074/mcp.M800258-MCP200. PubMed DOI PMC

Alge CS, Hauck SM, Priglinger SG, Kampik A, Ueffing M. Differential protein profiling of primary versus immortalized human RPE cells identifies expression patterns associated with cytoskeletal remodeling and cell survival. J Proteome Res. 2006;5:862–878. doi: 10.1021/pr050420t. PubMed DOI

Wei X, Wei R, Jiang GY, Jia YJ, Lou H, Yang ZY, et al. Mechanical cues modulate cellular uptake of nanoparticles in cancer via clathrin-mediated and caveolae-mediated endocytosis pathways. Nanomedicine. 2019;14:613–626. doi: 10.2217/nnm-2018-0334. PubMed DOI

Wei Q, Huang CJ, Zhang Y, Zhao TK, Zhao P, Butler P, et al. Mechanotargeting: mechanics-dependent cellular uptake of nanoparticles. Adv Mater. 2018;30:1707464. doi: 10.1002/adma.201707464. PubMed DOI

Panzetta V, Guarnieri D, Paciello A, Della Sala F, Muscetti O, Raiola L, et al. ECM mechano-sensing regulates cytoskeleton assembly and receptor-mediated endocytosis of nanoparticles. ACS Biomater Sci Eng. 2017;3:1586–1594. doi: 10.1021/acsbiomaterials.7b00018. PubMed DOI

Voigt JL, Timmer J, Pennarola F, Christian J, Meng N, Blumberg JW, et al. Substrate stiffness and particle properties influence cellular uptake of nanoparticles and viruses from the ventral side. Adv Funct Mater. 2023 doi: 10.1002/adfm.202304674. DOI

Davis JR, Tapon N. Hippo signalling during development. Development. 2019;146:dev167106. doi: 10.1242/dev.167106. PubMed DOI PMC

Rausch V, Hansen CG. The Hippo pathway, YAP/TAZ, and the plasma membrane. Trends Cell Biol. 2020;30:32–48. doi: 10.1016/j.tcb.2019.10.005. PubMed DOI

Strippoli R, Sandoval P, Moreno-Vicente R, Rossi L, Battistelli C, Terri M, et al. Caveolin1 and YAP drive mechanically induced mesothelial to mesenchymal transition and fibrosis. Cell Death Dis. 2020;11:1. doi: 10.1038/s41419-020-02822-1. PubMed DOI PMC

Abostait A, Tyrrell J, Abdelkarim M, Shojaei S, Tse WH, El-Sherbiny IM, et al. Placental nanoparticle uptake-on-a-chip: the impact of trophoblast syncytialization and shear stress. Mol Pharm. 2022;19:3757–3769. doi: 10.1021/acs.molpharmaceut.2c00216. PubMed DOI

Rinkenauer AC, Press AT, Raasch M, Pietsch C, Schweizer S, Schwörer S, et al. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic systems as well as. J Control Release. 2015;216:158–168. doi: 10.1016/j.jconrel.2015.08.008. PubMed DOI

Jurney P, Agarwal R, Singh V, Choi D, Roy K, Sreenivasan SV, et al. Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow. J Control Release. 2017;245:170–176. doi: 10.1016/j.jconrel.2016.11.033. PubMed DOI

Hosta-Rigau L, Städler B. Shear stress and its effect on the interaction of myoblast cells with nanosized drug delivery vehicles. Mol Pharm. 2013;10:2707–2712. doi: 10.1021/mp4001298. PubMed DOI

Chen YY, Syed AM, MacMillan P, Rocheleau JV, Chan WCW. Flow rate affects nanoparticle uptake into endothelial cells. Adv Mater. 2020;32:1906274. doi: 10.1002/adma.201906274. PubMed DOI

Palchetti S, Pozzi D, Capriottic AL, La Barbera G, Chiozzi RZ, Digiacomo L, et al. Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells. Colloid Surf B-Biointerfaces. 2017;153:263–271. doi: 10.1016/j.colsurfb.2017.02.037. PubMed DOI

Samuel SP, Jain N, O'Dowd F, Paul T, Kashanin D, Gerard VA, et al. Multifactorial determinants that govern nanoparticle uptake by human endothelial cells under flow. Int J Nanomed. 2012;7:2943–2956. doi: 10.2147/Ijn.S30624. PubMed DOI PMC

Fede C, Albertin G, Petrelli L, De Caro R, Fortunati I, Weber V, et al. Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles. J Nanopart Res. 2017;19:316. doi: 10.1007/s11051-017-3993-5. PubMed DOI PMC

Yazdimamaghani M, Barber ZB, Moghaddam SPH, Ghandehari H. Influence of silica nanoparticle density and flow conditions on sedimentation, cell uptake, and cytotoxicity. Mol Pharm. 2018;15:2372–2383. doi: 10.1021/acs.molpharmaceut.8b00213. PubMed DOI

Tsai CL, Huang CY, Lu YC, Pai LM, Horák D, Ma YH. Cyclic strain mitigates nanoparticle internalization by vascular smooth muscle cells. Int J Nanomed. 2022;17:969–981. doi: 10.2147/Ijn.S337942. PubMed DOI PMC

Rouse JG, Haslauer CM, Loboa EG, Monteiro-Riviere NA. Cyclic tensile strain increases interactions between human epidermal keratinocytes and quantum dot nanoparticles. Toxicol Vitro. 2008;22:491–497. doi: 10.1016/j.tiv.2007.10.010. PubMed DOI

Torosean S, Flynn B, Axelsson J, Gunn J, Samkoe KS, Hasan T, et al. Nanoparticle uptake in tumors is mediated by the interplay of vascular and collagen density with interstitial pressure. Nanomed-Nanotechnol Biol Med. 2013;9:151–158. doi: 10.1016/j.nano.2012.07.002. PubMed DOI PMC

Zhang HP, Hu ZQ, Wang JX, Xu JX, Wang XX, Zang GC, et al. Shear stress regulation of nanoparticle uptake in vascular endothelial cells. Regen Biomater. 2023;10:rbad047. doi: 10.1093/rb/rbad047. PubMed DOI PMC

Zhao YX, Ye ZY, Liu YL, Zhang JJ, Kuermanbayi S, Zhou Y, et al. Investigating the role of extracellular matrix stiffness in modulating the ferroptosis process in hepatocellular carcinoma cells via scanning electrochemical microscopy. Anal Chem. 2024;96:1102–1111. doi: 10.1021/acs.analchem.3c03771. PubMed DOI

Mai Z, Lin Y, Lin P, Zhao X, Cui L. Modulating extracellular matrix stiffness: a strategic approach to boost cancer immunotherapy. Cell Death Dis. 2024;15:307. doi: 10.1038/s41419-024-06697-4. PubMed DOI PMC

Tilghman RW, Blais EM, Cowan CR, Sherman NE, Grigera PR, Jeffery ED, et al. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis. PLoS ONE. 2012;7:e37231. doi: 10.1371/journal.pone.0037231. PubMed DOI PMC

Yeh YC, Ling JY, Chen WC, Lin HH, Tang MJ. Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and β1 integrin. Sci Rep. 2017;7:15008. doi: 10.1038/s41598-017-14932-6. PubMed DOI PMC

Li X, Klausen LH, Zhang W, Jahed Z, Tsai CT, Li TL, et al. Nanoscale surface topography reduces focal adhesions and cell stiffness by enhancing integrin endocytosis. Nano Lett. 2021;21:8518–8526. doi: 10.1021/acs.nanolett.1c01934. PubMed DOI PMC

Mason DE, Collins JM, Dawahare JH, Nguyen TD, Lin Y, Voytik-Harbin SL, et al. YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. J Cell Biol. 2019;218:1369–1389. doi: 10.1083/jcb.201806065. PubMed DOI PMC

Qin X, Zhang K, Qiu JH, Wang N, Qu K, Cui YL, et al. Uptake of oxidative stress-mediated extracellular vesicles by vascular endothelial cells under low magnitude shear stress. Bioact Mater. 2022;9:397–410. doi: 10.1016/j.bioactmat.2021.10.038. PubMed DOI PMC

Cheng MJ, Mitra R, Okorafor CC, Nersesyan AA, Harding IC, Bal NN, et al. Targeted intravenous nanoparticle delivery: role of flow and endothelial glycocalyx integrity. Ann Biomed Eng. 2020;48:1941–1954. doi: 10.1007/s10439-020-02474-4. PubMed DOI PMC

Yamamoto K, Ando J. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases. J Cell Sci. 2013;126:1227–1234. doi: 10.1242/jcs.119628. PubMed DOI

Mészáros M, Porkoláb G, Kiss L, Pilbat AM, Kóta Z, Kupihár Z, et al. Niosomes decorated with dual ligands targeting brain endothelial transporters increase cargo penetration across the blood-brain barrier. Eur J Pharm Sci. 2018;123:228–240. doi: 10.1016/j.ejps.2018.07.042. PubMed DOI

Charwat V, Calvo IO, Rothbauer M, Kratz SRA, Jungreuthmayer C, Zanghellini J, et al. Combinatorial in vitro and in silico approach to describe shear-force dependent uptake of nanoparticles in microfluidic vascular models. Anal Chem. 2018;90:3651–3655. doi: 10.1021/acs.analchem.7b04788. PubMed DOI

Xu YY, Qin S, Niu YN, Gong T, Zhang ZR, Fu Y. Effect of fluid shear stress on the internalization of kidney-targeted delivery systems in renal tubular epithelial cells. Acta Pharm Sin B. 2020;10:680–692. doi: 10.1016/j.apsb.2019.11.012. PubMed DOI PMC

Freese C, Schreiner D, Anspach L, Bantz C, Maskos M, Unger RE, et al. In vitro investigation of silica nanoparticle uptake into human endothelial cells under physiological cyclic stretch. Part Fibre Toxicol. 2014;11:68. doi: 10.1186/s12989-014-0068-y. PubMed DOI PMC

Shurbaji S, Anlar GG, Hussein EA, Elzatahry A, Yalcin HC. Effect of flow-induced shear stress in nanomaterial uptake by cells: Focus on targeted anti-cancer therapy. Cancers. 2020;12:1916. doi: 10.3390/cancers12071916. PubMed DOI PMC

Frtus A, Smolkov B, Uzhytchak M, Lunova M, Jirsa M, Petrenko Y, et al. Mechanical regulation of mitochondrial dynamics and function in a 3D-engineered liver tumor microenvironment. ACS Biomater Sci Eng. 2023;9:2408–2425. doi: 10.1021/acsbiomaterials.2c01518. PubMed DOI PMC

Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, Bhushan BM, et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep. 2018;8:4530. doi: 10.1038/s41598-018-22749-0. PubMed DOI PMC

Bircsak KM, DeBiasio R, Miedel M, Alsebahi A, Reddinger R, Saleh A, et al. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology. 2021;450:152667. doi: 10.1016/j.tox.2020.152667. PubMed DOI

Tischenko K, Brill-Karniely Y, Steinberg E, Segev-Yekutiel H, Benny O. Surface physical cues mediate the uptake of foreign particles by cancer cells. APL Bioeng. 2023;7:016113. doi: 10.1063/5.0138245. PubMed DOI PMC

Hu J, Liu YL. Cyclic strain enhances cellular uptake of nanoparticles. J Nanomater. 2015;2015:953584. doi: 10.1155/2015/953584. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake

. 2025 Feb 12 ; 13 (7) : 2335-2351. [epub] 20250212

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...