Targeting the mTOR Signaling Pathway Utilizing Nanoparticles: A Critical Overview
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
30642006
PubMed Central
PMC6356373
DOI
10.3390/cancers11010082
PII: cancers11010082
Knihovny.cz E-resources
- Keywords
- lysosomes, mTOR, molecular targeting, nanoparticles, reactive oxygen species,
- Publication type
- Journal Article MeSH
- Review MeSH
Proteins of the mammalian target of rapamycin (mTOR) signaling axis are overexpressed or mutated in cancers. However, clinical inhibition of mTOR signaling as a therapeutic strategy in oncology shows rather limited progress. Nanoparticle-based mTOR targeted therapy proposes an attractive therapeutic option for various types of cancers. Along with the progress in the biomedical applications of nanoparticles, we start to realize the challenges and opportunities that lie ahead. Here, we critically analyze the current literature on the modulation of mTOR activity by nanoparticles, demonstrate the complexity of cellular responses to functionalized nanoparticles, and underline challenges lying in the identification of the molecular mechanisms of mTOR signaling affected by nanoparticles. We propose the idea that subcytotoxic doses of nanoparticles could be relevant for the induction of subcellular structural changes with possible involvement of mTORC1 signaling. The evaluation of the mechanisms and therapeutic effects of nanoparticle-based mTOR modulation will provide fundamental knowledge which could help in developing safe and efficient nano-therapeutics.
Institute for Clinical and Experimental Medicine Prague 140 21 Czech Republic
Institute of Experimental Medicine of the Czech Academy of Sciences Prague 14220 Czech Republic
Institute of Physics of the Czech Academy of Sciences Prague 18221 Czech Republic
See more in PubMed
Blanco E., Shen H., Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015;33:941–951. doi: 10.1038/nbt.3330. PubMed DOI PMC
Shi J.J., Votruba A.R., Farokhzad O.C., Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010;10:3223–3230. doi: 10.1021/nl102184c. PubMed DOI PMC
Tukmachev D., Lunov O., Zablotskii V., Dejneka A., Babic M., Sykova E., Kubinova S. An effective strategy of magnetic stem cell delivery for spinal cord injury therapy. Nanoscale. 2015;7:3954–3958. doi: 10.1039/C4NR05791K. PubMed DOI
Schroeder A., Heller D.A., Winslow M.M., Dahlman J.E., Pratt G.W., Langer R., Jacks T., Anderson D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer. 2011;12:39–50. doi: 10.1038/nrc3180. PubMed DOI
Uzhytchak M., Lynnyk A., Zablotskii V., Dempsey N.M., Dias A.L., Bonfim M., Lunova M., Jirsa M., Kubinova S., Lunov O., et al. The use of pulsed magnetic fields to increase the uptake of iron oxide nanoparticles by living cells. Appl. Phys. Lett. 2017;111:243703. doi: 10.1063/1.5007797. DOI
Buzea C., Pacheco I.I., Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2:Mr17–Mr71. doi: 10.1116/1.2815690. PubMed DOI
Bobo D., Robinson K.J., Islam J., Thurecht K.J., Corrie S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016;33:2373–2387. doi: 10.1007/s11095-016-1958-5. PubMed DOI
Shi J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer. 2017;17:20–37. doi: 10.1038/nrc.2016.108. PubMed DOI PMC
Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer. 2005;5:161–171. doi: 10.1038/nrc1566. PubMed DOI
Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751–760. doi: 10.1038/nnano.2007.387. PubMed DOI
Rothenberg M.L., Carbone D.R., Johnson D.H. Improving the evaluation of new cancer treatments: Challenges and opportunities. Nat. Rev. Cancer. 2003;3:303–309. doi: 10.1038/nrc1047. PubMed DOI
Schaue D., McBride W.H. Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol. 2015;12:527–540. doi: 10.1038/nrclinonc.2015.120. PubMed DOI PMC
Nel A.E., Madler L., Velegol D., Xia T., Hoek E.M.V., Somasundaran P., Klaessig F., Castranova V., Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009;8:543–557. doi: 10.1038/nmat2442. PubMed DOI
Albanese A., Tang P.S., Chan W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012;14:1–16. doi: 10.1146/annurev-bioeng-071811-150124. PubMed DOI
Kim Y.C., Guan K.L. mTOR: A pharmacologic target for autophagy regulation. J. Clin. Investig. 2015;125:25–32. doi: 10.1172/JCI73939. PubMed DOI PMC
Sabatini D.M. Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Proc. Natl. Acad. Sci. USA. 2017;114:11818–11825. doi: 10.1073/pnas.1716173114. PubMed DOI PMC
Zoncu R., Efeyan A., Sabatini D.M. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011;12:21–35. doi: 10.1038/nrm3025. PubMed DOI PMC
Easton J.B., Houghton P.J. mTOR and cancer therapy. Oncogene. 2006;25:6436–6446. doi: 10.1038/sj.onc.1209886. PubMed DOI
Benjamin D., Colombi M., Moroni C., Hall M.N. Rapamycin passes the torch: A new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 2011;10:868–880. doi: 10.1038/nrd3531. PubMed DOI
Teachey D.T., Grupp S.A., Brown V.I. Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. Br. J. Haematol. 2009;145:569–580. doi: 10.1111/j.1365-2141.2009.07657.x. PubMed DOI PMC
Morad S.A., Schmid M., Buchele B., Siehl H.U., El Gafaary M., Lunov O., Syrovets T., Simmet T. A novel semisynthetic inhibitor of the FRB domain of mammalian target of rapamycin blocks proliferation and triggers apoptosis in chemoresistant prostate cancer cells. Mol. Pharmacol. 2013;83:531–541. doi: 10.1124/mol.112.081349. PubMed DOI
Chiu H.W., Xia T., Lee Y.H., Chen C.W., Tsai J.C., Wang Y.J. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale. 2015;7:736–746. doi: 10.1039/C4NR05509H. PubMed DOI
Loos C., Syrovets T., Musyanovych A., Mailander V., Landfester K., Simmet T. Amino-functionalized nanoparticles as inhibitors of mTOR and inducers of cell cycle arrest in leukemia cells. Biomaterials. 2014;35:1944–1953. doi: 10.1016/j.biomaterials.2013.11.056. PubMed DOI
Khan M.I., Mohammad A., Patil G., Naqvi S.A.H., Chauhan L.K.S., Ahmad I. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials. 2012;33:1477–1488. doi: 10.1016/j.biomaterials.2011.10.080. PubMed DOI
Liu H.L., Zhang Y.L., Yang N., Zhang Y.X., Liu X.Q., Li C.G., Zhao Y., Wang Y.G., Zhang G.G., Yang P., et al. A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death Dis. 2011;2:e159. doi: 10.1038/cddis.2011.27. PubMed DOI PMC
Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano. 2013;7:7442–7447. doi: 10.1021/nn404501g. PubMed DOI PMC
Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016;1:16014. doi: 10.1038/natrevmats.2016.14. DOI
Torrice M. Does nanomedicine have a delivery problem? ACS Cent. Sci. 2016;2:434–437. doi: 10.1021/acscentsci.6b00190. PubMed DOI PMC
McNeil S.E. Evaluation of nanomedicines: Stick to the basics. Nat. Rev. Mater. 2016;1:16073. doi: 10.1038/natrevmats.2016.73. DOI
Wilhelm S., Tavares A.J., Chan W.C.W. Reply to “Evaluation of nanomedicines: Stick to the basics”. Nat. Rev. Mater. 2016;1:16074. doi: 10.1038/natrevmats.2016.74. DOI
Hulea L., Markovic Z., Topisirovic I., Simmet T., Trajkovic V. Biomedical potential of mTOR modulation by nanoparticles. Trends Biotechnol. 2016;34:349–353. doi: 10.1016/j.tibtech.2016.01.005. PubMed DOI
Xia T., Kovochich M., Liong M., Zink J.I., Nel A.E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano. 2008;2:85–96. doi: 10.1021/nn700256c. PubMed DOI
Lunova M., Prokhorov A., Jirsa M., Hof M., Olzynska A., Jurkiewicz P., Kubinova S., Lunov O., Dejneka A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci. Rep. 2017;7:16049. doi: 10.1038/s41598-017-16447-6. PubMed DOI PMC
Vermeulen L.M.P., De Smedt S.C., Remaut K., Braeckmans K. The proton sponge hypothesis: Fable or fact? Eur. J. Pharm. Biopharm. 2018;129:184–190. doi: 10.1016/j.ejpb.2018.05.034. PubMed DOI
Benjaminsen R.V., Mattebjerg M.A., Henriksen J.R., Moghimi S.M., Andresen T.L. The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol. Ther. 2013;21:149–157. doi: 10.1038/mt.2012.185. PubMed DOI PMC
Wullschleger S., Loewith R., Hall M.N. TOR signaling in growth and metabolism. Cell. 2006;124:471–484. doi: 10.1016/j.cell.2006.01.016. PubMed DOI
Laplante M., Sabatini D.M. mTOR signaling at a glance. J. Cell Sci. 2009;122:3589–3594. doi: 10.1242/jcs.051011. PubMed DOI PMC
Sancak Y., Bar-Peled L., Zoncu R., Markhard A.L., Nada S., Sabatini D.M. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141:290–303. doi: 10.1016/j.cell.2010.02.024. PubMed DOI PMC
Sancak Y., Peterson T.R., Shaul Y.D., Lindquist R.A., Thoreen C.C., Bar-Peled L., Sabatini D.M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320:1496–1501. doi: 10.1126/science.1157535. PubMed DOI PMC
Bar-Peled L., Schweitzer L.D., Zoncu R., Sabatini D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell. 2012;150:1196–1208. doi: 10.1016/j.cell.2012.07.032. PubMed DOI PMC
Lim C.Y., Zoncu R. The lysosome as a command-and-control center for cellular metabolism. J. Cell Biol. 2016;214:653–664. doi: 10.1083/jcb.201607005. PubMed DOI PMC
Rabanal-Ruiz Y., Korolchuk V.I. mTORC1 and nutrient homeostasis: The central role of the lysosome. Int. J. Mol. Sci. 2018;19:818. doi: 10.3390/ijms19030818. PubMed DOI PMC
Benjamin D., Hall M.N. TSC on the peroxisome controls mTORC1. Nat. Cell Biol. 2013;15:1135–1136. doi: 10.1038/ncb2849. PubMed DOI
Zhang J.W., Kim J., Alexander A., Cai S.L., Tripathi D.N., Dere R., Tee A.R., Tait-Mulder J., Di Nardo A., Han J.M., et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat. Cell Biol. 2013;15:1186–1196. doi: 10.1038/ncb2822. PubMed DOI PMC
Demetriades C., Doumpas N., Teleman A.A. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell. 2014;156:786–799. doi: 10.1016/j.cell.2014.01.024. PubMed DOI PMC
Demetriades C., Plescher M., Teleman A.A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat. Commun. 2016;7:10662. doi: 10.1038/ncomms10662. PubMed DOI PMC
Shen K., Choe A., Sabatini D.M. Intersubunit crosstalk in the Rag GTPase heterodimer enables mTORC1 to respond rapidly to amino acid availability. Mol. Cell. 2017;68:821. doi: 10.1016/j.molcel.2017.10.031. PubMed DOI PMC
Jung J., Genau H.M., Behrends C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell. Biol. 2015;35:2479–2494. doi: 10.1128/MCB.00125-15. PubMed DOI PMC
Rebsamen M., Pochini L., Stasyk T., de Araujo M.E., Galluccio M., Kandasamy R.K., Snijder B., Fauster A., Rudashevskaya E.L., Bruckner M., et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519:477–481. doi: 10.1038/nature14107. PubMed DOI PMC
Wang S., Tsun Z.Y., Wolfson R.L., Shen K., Wyant G.A., Plovanich M.E., Yuan E.D., Jones T.D., Chantranupong L., Comb W., et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 2015;347:188–194. doi: 10.1126/science.1257132. PubMed DOI PMC
Kobayashi T., Shimabukuro-Demoto S., Yoshida-Sugitani R., Furuyama-Tanaka K., Karyu H., Sugiura Y., Shimizu Y., Hosaka T., Goto M., Kato N., et al. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity. 2014;41:375–388. doi: 10.1016/j.immuni.2014.08.011. PubMed DOI
Ogmundsdottir M.H., Heublein S., Kazi S., Reynolds B., Visvalingam S.M., Shaw M.K., Goberdhan D.C. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS ONE. 2012;7:e36616. doi: 10.1371/journal.pone.0036616. PubMed DOI PMC
Zoncu R., Bar-Peled L., Efeyan A., Wang S., Sancak Y., Sabatini D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 2011;334:678–683. doi: 10.1126/science.1207056. PubMed DOI PMC
Roczniak-Ferguson A., Petit C.S., Froehlich F., Qian S., Ky J., Angarola B., Walther T.C., Ferguson S.M. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 2012;5:ra42. doi: 10.1126/scisignal.2002790. PubMed DOI PMC
Yan Y., Jiang K., Liu P., Zhang X., Dong X., Gao J., Liu Q., Barr M.P., Zhang Q., Hou X., et al. Bafilomycin A1 induces caspase-independent cell death in hepatocellular carcinoma cells via targeting of autophagy and MAPK pathways. Sci. Rep. 2016;6:37052. doi: 10.1038/srep37052. PubMed DOI PMC
Zhou J., Tan S.H., Nicolas V., Bauvy C., Yang N.D., Zhang J., Xue Y., Codogno P., Shen H.M. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res. 2013;23:508–523. doi: 10.1038/cr.2013.11. PubMed DOI PMC
Yu L., McPhee C.K., Zheng L., Mardones G.A., Rong Y., Peng J., Mi N., Zhao Y., Liu Z., Wan F., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010;465:942–946. doi: 10.1038/nature09076. PubMed DOI PMC
Xu H., Ren D. Lysosomal physiology. Annu. Rev. Physiol. 2015;77:57–80. doi: 10.1146/annurev-physiol-021014-071649. PubMed DOI PMC
Newton P.T., Vuppalapati K.K., Bouderlique T., Chagin A.S. Pharmacological inhibition of lysosomes activates the MTORC1 signaling pathway in chondrocytes in an autophagy-independent manner. Autophagy. 2015;11:1594–1607. doi: 10.1080/15548627.2015.1068489. PubMed DOI PMC
Trudeau K.M., Colby A.H., Zeng J., Las G., Feng J.H., Grinstaff M.W., Shirihai O.S. Lysosome acidification by photoactivated nanoparticles restores autophagy under lipotoxicity. J. Cell Biol. 2016;214:25–34. doi: 10.1083/jcb.201511042. PubMed DOI PMC
Kawai A., Uchiyama H., Takano S., Nakamura N., Ohkuma S. Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells. Autophagy. 2007;3:154–157. doi: 10.4161/auto.3634. PubMed DOI
Mizushima N., Komatsu M. Autophagy: Renovation of cells and tissues. Cell. 2011;147:728–741. doi: 10.1016/j.cell.2011.10.026. PubMed DOI
Azoulay-Alfaguter I., Elya R., Avrahami L., Katz A., Eldar-Finkelman H. Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene. 2015;34:4613–4623. doi: 10.1038/onc.2014.390. PubMed DOI
Colacurcio D.J., Nixon R.A. Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res. Rev. 2016;32:75–88. doi: 10.1016/j.arr.2016.05.004. PubMed DOI PMC
Paquette M., El-Houjeiri L., Pause A. mTOR pathways in cancer and autophagy. Cancers. 2018;10:18. doi: 10.3390/cancers10010018. PubMed DOI PMC
Rad E., Murray J.T., Tee A.R. Oncogenic signalling through mechanistic target of rapamycin (mTOR): A driver of metabolic transformation and cancer progression. Cancers. 2018;10:5. doi: 10.3390/cancers10010005. PubMed DOI PMC
Ilagan E., Manning B.D. Emerging role of mTOR in the response to cancer therapeutics. Trends Cancer. 2016;2:241–251. doi: 10.1016/j.trecan.2016.03.008. PubMed DOI PMC
Meng L.H., Zheng X.F. Toward rapamycin analog (rapalog)-based precision cancer therapy. Acta Pharmacol. Sin. 2015;36:1163–1169. doi: 10.1038/aps.2015.68. PubMed DOI PMC
Li J., Kim S.G., Blenis J. Rapamycin: One drug, many effects. Cell Metab. 2014;19:373–379. doi: 10.1016/j.cmet.2014.01.001. PubMed DOI PMC
Spugnini E.P., Citro G., Fais S. Proton pump inhibitors as anti vacuolar-ATPases drugs: A novel anticancer strategy. J. Exp. Clin. Canc. Res. 2010;29:44. doi: 10.1186/1756-9966-29-44. PubMed DOI PMC
Lozupone F., Borghi M., Marzoli F., Azzarito T., Matarrese P., Iessi E., Venturi G., Meschini S., Canitano A., Bona R., et al. TM9SF4 is a novel V-ATPase-interacting protein that modulates tumor pH alterations associated with drug resistance and invasiveness of colon cancer cells. Oncogene. 2015;34:5163–5174. doi: 10.1038/onc.2014.437. PubMed DOI
Chude C.I., Amaravadi R.K. Targeting autophagy in cancer: Update on clinical trials and novel inhibitors. Int. J. Mol. Sci. 2017;18:1279. doi: 10.3390/ijms18061279. PubMed DOI PMC
Lee C.H., Inoki K., Guan K.L. mTOR pathway as a target in tissue hypertrophy. Annu. Rev. Pharmacol. Toxicol. 2007;47:443–467. doi: 10.1146/annurev.pharmtox.47.120505.105359. PubMed DOI
Dy G.K., Adjei A.A. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA Cancer J. Clin. 2013;63:249–279. doi: 10.3322/caac.21184. PubMed DOI
Polivka J., Jr., Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol. Ther. 2014;142:164–175. doi: 10.1016/j.pharmthera.2013.12.004. PubMed DOI
Faes S., Santoro T., Demartines N., Dormond O. Evolving significance and future relevance of anti-angiogenic activity of mTOR inhibitors in cancer therapy. Cancers. 2017;9:152. doi: 10.3390/cancers9110152. PubMed DOI PMC
Conciatori F., Ciuffreda L., Bazzichetto C., Falcone I., Pilotto S., Bria E., Cognetti F., Milella M. mTOR cross-talk in cancer and potential for combination therapy. Cancers. 2018;10:23. doi: 10.3390/cancers10010023. PubMed DOI PMC
Thoreen C.C., Sabatini D.M. Rapamycin inhibits mTORC1, but not completely. Autophagy. 2009;5:725–726. doi: 10.4161/auto.5.5.8504. PubMed DOI
Faes S., Demartines N., Dormond O. Resistance to mTORC1 Inhibitors in Cancer Therapy: From Kinase Mutations to Intratumoral Heterogeneity of Kinase Activity. Oxid. Med. Cell. Longev. 2017;2017:1726078. doi: 10.1155/2017/1726078. PubMed DOI PMC
D’Mello S.R., Cruz C.N., Chen M.L., Kapoor M., Lee S.L., Tyner K.M. The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol. 2017;12:523–529. doi: 10.1038/nnano.2017.67. PubMed DOI
Thorley A.J., Tetley T.D. New perspectives in nanomedicine. Pharmacol. Ther. 2013;140:176–185. doi: 10.1016/j.pharmthera.2013.06.008. PubMed DOI
Thakor A.S., Gambhir S.S. Nanooncology: The future of cancer diagnosis and therapy. CA Cancer J. Clin. 2013;63:395–418. doi: 10.3322/caac.21199. PubMed DOI
Elsabahy M., Wooley K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012;41:2545–2561. doi: 10.1039/c2cs15327k. PubMed DOI PMC
Kamaly N., Xiao Z., Valencia P.M., Radovic-Moreno A.F., Farokhzad O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev. 2012;41:2971–3010. doi: 10.1039/c2cs15344k. PubMed DOI PMC
Weissig V., Pettinger T.K., Murdock N. Nanopharmaceuticals (part 1): Products on the market. Int. J. Nanomed. 2014;9:4357–4373. doi: 10.2147/IJN.S46900. PubMed DOI PMC
Kang H., Hu S., Cho M.H., Hong S.H., Choi Y., Choi H.S. Theranostic nanosystems for targeted cancer therapy. Nano Today. 2018;23:59–72. doi: 10.1016/j.nantod.2018.11.001. PubMed DOI PMC
Havel H., Finch G., Strode P., Wolfgang M., Zale S., Bobe I., Youssoufian H., Peterson M., Liu M. Nanomedicines: From bench to bedside and beyond. AAPS J. 2016;18:1373–1378. doi: 10.1208/s12248-016-9961-7. PubMed DOI
Yu M., Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano. 2015;9:6655–6674. doi: 10.1021/acsnano.5b01320. PubMed DOI PMC
Muhamad N., Plengsuriyakarn T., Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int. J. Nanomed. 2018;13:3921–3935. doi: 10.2147/IJN.S165210. PubMed DOI PMC
Morita Y., Leslie M., Kameyama H., Volk D.E., Tanaka T. Aptamer therapeutics in cancer: Current and future. Cancers. 2018;10:80. doi: 10.3390/cancers10030080. PubMed DOI PMC
Wang Y., Liu Y., Luehmann H., Xia X., Wan D., Cutler C., Xia Y. Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging. Nano Lett. 2013;13:581–585. doi: 10.1021/nl304111v. PubMed DOI PMC
Zhao Y., Sultan D., Detering L., Cho S., Sun G., Pierce R., Wooley K.L., Liu Y. Copper-64-alloyed gold nanoparticles for cancer imaging: Improved radiolabel stability and diagnostic accuracy. Angew. Chem. Int. Ed. Engl. 2014;53:156–159. doi: 10.1002/anie.201308494. PubMed DOI
Zhao Y., Xing G., Chai Z. Nanotoxicology: Are carbon nanotubes safe? Nat. Nanotechnol. 2008;3:191–192. doi: 10.1038/nnano.2008.77. PubMed DOI
Johnston H.J., Hutchison G.R., Christensen F.M., Peters S., Hankin S., Aschberger K., Stone V. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics. Nanotoxicology. 2010;4:207–246. doi: 10.3109/17435390903569639. PubMed DOI
Pan Y., Neuss S., Leifert A., Fischler M., Wen F., Simon U., Schmid G., Brandau W., Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007;3:1941–1949. doi: 10.1002/smll.200700378. PubMed DOI
Malysheva A., Lombi E., Voelcker N.H. Bridging the divide between human and environmental nanotoxicology. Nat. Nanotechnol. 2015;10:835–844. doi: 10.1038/nnano.2015.224. PubMed DOI
Auffan M., Rose J., Bottero J.Y., Lowry G.V., Jolivet J.P., Wiesner M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009;4:634–641. doi: 10.1038/nnano.2009.242. PubMed DOI
Lunov O., Syrovets T., Loos C., Nienhaus G.U., Mailander V., Landfester K., Rouis M., Simmet T. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano. 2011;5:9648–9657. doi: 10.1021/nn203596e. PubMed DOI
Hamilton R.F., Wu N., Porter D., Buford M., Wolfarth M., Holian A. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part. Fibre Toxicol. 2009;6:35. doi: 10.1186/1743-8977-6-35. PubMed DOI PMC
Cho W.S., Duffin R., Howie S.E., Scotton C.J., Wallace W.A., Macnee W., Bradley M., Megson I.L., Donaldson K. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part. Fibre Toxicol. 2011;8:27. doi: 10.1186/1743-8977-8-27. PubMed DOI PMC
Zolnik B.S., Gonzalez-Fernandez A., Sadrieh N., Dobrovolskaia M.A. Nanoparticles and the immune system. Endocrinology. 2010;151:458–465. doi: 10.1210/en.2009-1082. PubMed DOI PMC
Grabbe S., Landfester K., Schuppan D., Barz M., Zentel R. Nanoparticles and the immune system: Challenges and opportunities. Nanomedicine. 2016;11:2621–2624. doi: 10.2217/nnm-2016-0281. PubMed DOI
Fang R.H., Zhang L. Nanoparticle-based modulation of the immune system. Annu. Rev. Chem. Biomol. Eng. 2016;7:305–326. doi: 10.1146/annurev-chembioeng-080615-034446. PubMed DOI
Tenzer S., Docter D., Kuharev J., Musyanovych A., Fetz V., Hecht R., Schlenk F., Fischer D., Kiouptsi K., Reinhardt C., et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013;8:772–781. doi: 10.1038/nnano.2013.181. PubMed DOI
Akinc A., Battaglia G. Exploiting endocytosis for nanomedicines. Cold Spring Harb. Perspect. Biol. 2013;5:a016980. doi: 10.1101/cshperspect.a016980. PubMed DOI PMC
Sahay G., Alakhova D.Y., Kabanov A.V. Endocytosis of nanomedicines. J. Control. Release. 2010;145:182–195. doi: 10.1016/j.jconrel.2010.01.036. PubMed DOI PMC
Holst B., Raby A.C., Hall J.E., Labeta M.O. Complement takes its Toll: An inflammatory crosstalk between Toll-like receptors and the receptors for the complement anaphylatoxin C5a. Anaesthesia. 2012;67:60–64. doi: 10.1111/j.1365-2044.2011.07011.x. PubMed DOI
Moghimi S.M., Farhangrazi Z.S. Nanomedicine and the complement paradigm. Nanomedicine. 2013;9:458–460. doi: 10.1016/j.nano.2013.02.011. PubMed DOI
Hamad I., Al-Hanbali O., Hunter A.C., Rutt K.J., Andresen T.L., Moghimi S.M. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: Implications for stealth nanoparticle engineering. ACS Nano. 2010;4:6629–6638. doi: 10.1021/nn101990a. PubMed DOI
Hamad I., Hunter A.C., Moghimi S.M. Complement monitoring of Pluronic 127 gel and micelles: Suppression of copolymer-mediated complement activation by elevated serum levels of HDL, LDL, and apolipoproteins AI and B-100. J. Control. Release. 2013;170:167–174. doi: 10.1016/j.jconrel.2013.05.030. PubMed DOI
Roy R., Singh S.K., Chauhan L.K., Das M., Tripathi A., Dwivedi P.D. Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicol. Lett. 2014;227:29–40. doi: 10.1016/j.toxlet.2014.02.024. PubMed DOI
Zhang X., Yin H., Li Z., Zhang T., Yang Z. Nano-TiO2 induces autophagy to protect against cell death through antioxidative mechanism in podocytes. Cell Biol. Toxicol. 2016;32:513–527. doi: 10.1007/s10565-016-9352-y. PubMed DOI
Juan J., Cheng L., Shi M., Liu Z., Mao X. Poly-(allylamine hydrochloride)-coated but not poly(acrylic acid)-coated upconversion nanoparticles induce autophagy and apoptosis in human blood cancer cells. J. Mater. Chem. B. 2015;3:5769–5776. doi: 10.1039/C5TB00646E. PubMed DOI
Xue X., Wang L.R., Sato Y., Jiang Y., Berg M., Yang D.S., Nixon R.A., Liang X.J. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer’s disease. Nano Lett. 2014;14:5110–5117. doi: 10.1021/nl501839q. PubMed DOI PMC
Wang J., Yu Y., Lu K., Yang M., Li Y., Zhou X., Sun Z. Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. Int. J. Nanomed. 2017;12:809–825. doi: 10.2147/IJN.S123596. PubMed DOI PMC
Li C., Liu H., Sun Y., Wang H., Guo F., Rao S., Deng J., Zhang Y., Miao Y., Guo C., et al. PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J. Mol. Cell Biol. 2009;1:37–45. doi: 10.1093/jmcb/mjp002. PubMed DOI
Wang Z., Liang P., He X., Wu B., Liu Q., Xu Z., Wu H., Liu Z., Qian Y., Wang S., et al. Etoposide loaded layered double hydroxide nanoparticles reversing chemoresistance and eradicating human glioma stem cells in vitro and in vivo. Nanoscale. 2018;10:13106–13121. doi: 10.1039/C8NR02708K. PubMed DOI
Liu Y., Yu H., Zhang X., Wang Y., Song Z., Zhao J., Shi H., Li R., Wang Y., Zhang L.W. The protective role of autophagy in nephrotoxicity induced by bismuth nanoparticles through AMPK/mTOR pathway. Nanotoxicology. 2018;12:586–601. doi: 10.1080/17435390.2018.1466932. PubMed DOI
Wang Y., Zhao Z., Wei F., Luo Z., Duan Y. Combining autophagy-inducing peptides and brefeldin A delivered by perinuclear-localized mesoporous silica nanoparticles: A manipulation strategy for ER-phagy. Nanoscale. 2018;10:8796–8805. doi: 10.1039/C8NR00872H. PubMed DOI
Wu L., Zhang Y., Zhang C., Cui X., Zhai S., Liu Y., Li C., Zhu H., Qu G., Jiang G., et al. Tuning cell autophagy by diversifying carbon nanotube surface chemistry. ACS Nano. 2014;8:2087–2099. doi: 10.1021/nn500376w. PubMed DOI PMC
Edelmann M.J., Shack L.A., Naske C.D., Walters K.B., Nanduri B. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles. PLoS ONE. 2014;9:e114390. doi: 10.1371/journal.pone.0114390. PubMed DOI PMC
Wang B., Chen N., Wei Y., Li J., Sun L., Wu J., Huang Q., Liu C., Fan C., Song H. Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila. Sci. Rep. 2012;2:563. doi: 10.1038/srep00563. PubMed DOI PMC
Wei M., Li S., Yang Z., Zheng W., Le W. Gold nanoparticles enhance the differentiation of embryonic stem cells into dopaminergic neurons via mTOR/p70S6K pathway. Nanomedicine. 2017;12:1305–1317. doi: 10.2217/nnm-2017-0001. PubMed DOI
Zeng Q., Yang Z., Gao Y.J., Yuan H., Cui K., Shi Y., Wang H., Huang X., Wong S.T., Wang Y., et al. Treating triple-negative breast cancer by a combination of rapamycin and cyclophosphamide: An in vivo bioluminescence imaging study. Eur. J. Cancer. 2010;46:1132–1143. doi: 10.1016/j.ejca.2010.01.014. PubMed DOI
Onyesom I., Lamprou D.A., Sygellou L., Owusu-Ware S.K., Antonijevic M., Chowdhry B.Z., Douroumis D. Sirolimus encapsulated liposomes for cancer therapy: Physicochemical and mechanical characterization of sirolimus distribution within liposome bilayers. Mol. Pharmacol. 2013;10:4281–4293. doi: 10.1021/mp400362v. PubMed DOI
Gillies E.R., Frechet J.M. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today. 2005;10:35–43. doi: 10.1016/S1359-6446(04)03276-3. PubMed DOI
Li Y., Wang S., Wang Z., Qian X., Fan J., Zeng X., Sun Y., Song P., Feng M., Ju D. Cationic poly(amidoamine) dendrimers induced cyto-protective autophagy in hepatocellular carcinoma cells. Nanotechnology. 2014;25:365101. doi: 10.1088/0957-4484/25/36/365101. PubMed DOI
Cirstea D., Hideshima T., Rodig S., Santo L., Pozzi S., Vallet S., Ikeda H., Perrone G., Gorgun G., Patel K., et al. Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol. Cancer Ther. 2010;9:963–975. doi: 10.1158/1535-7163.MCT-09-0763. PubMed DOI PMC
Duan J., Yu Y., Yu Y., Li Y., Wang J., Geng W., Jiang L., Li Q., Zhou X., Sun Z. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int. J. Nanomed. 2014;9:5131–5141. doi: 10.2147/IJN.S71074. PubMed DOI PMC
Li M., Zhao L., Liu J., Liu A., Jia C., Ma D., Jiang Y., Bai X. Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling. Cell. Signal. 2010;22:1469–1476. doi: 10.1016/j.cellsig.2010.05.015. PubMed DOI
Docter D., Westmeier D., Markiewicz M., Stolte S., Knauer S.K., Stauber R.H. The nanoparticle biomolecule corona: Lessons learned—Challenge accepted? Chem. Soc. Rev. 2015;44:6094–6121. doi: 10.1039/C5CS00217F. PubMed DOI
Bertoli F., Garry D., Monopoli M.P., Salvati A., Dawson K.A. The intracellular destiny of the protein corona: A study on its cellular internalization and evolution. ACS Nano. 2016;10:10471–10479. doi: 10.1021/acsnano.6b06411. PubMed DOI
Ke P.C., Lin S., Parak W.J., Davis T.P., Caruso F. A decade of the protein corona. ACS Nano. 2017;11:11773–11776. doi: 10.1021/acsnano.7b08008. PubMed DOI
Salvati A., Pitek A.S., Monopoli M.P., Prapainop K., Bombelli F.B., Hristov D.R., Kelly P.M., Aberg C., Mahon E., Dawson K.A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 2013;8:137–143. doi: 10.1038/nnano.2012.237. PubMed DOI
Lesniak A., Fenaroli F., Monopoli M.P., Aberg C., Dawson K.A., Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 2012;6:5845–5857. doi: 10.1021/nn300223w. PubMed DOI
Deng Z.J., Liang M., Monteiro M., Toth I., Minchin R.F. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol. 2011;6:39–44. doi: 10.1038/nnano.2010.250. PubMed DOI
Fleischer C.C., Payne C.K. Nanoparticle-cell interactions: Molecular structure of the protein corona and cellular outcomes. Acc. Chem. Res. 2014;47:2651–2659. doi: 10.1021/ar500190q. PubMed DOI PMC
Wan S., Kelly P.M., Mahon E., Stöckmann H., Rudd P.M., Caruso F., Dawson K.A., Yan Y., Monopoli M.P. The “sweet” side of the protein corona: Effects of glycosylation on nanoparticle–cell interactions. ACS Nano. 2015;9:2157–2166. doi: 10.1021/nn506060q. PubMed DOI
Yan Y., Gause K.T., Kamphuis M.M., Ang C.S., O’Brien-Simpson N.M., Lenzo J.C., Reynolds E.C., Nice E.C., Caruso F. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano. 2013;7:10960–10970. doi: 10.1021/nn404481f. PubMed DOI
Shang L., Wang Y., Jiang J., Dong S. pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: A spectroscopic study. Langmuir. 2007;23:2714–2721. doi: 10.1021/la062064e. PubMed DOI
Shang W., Nuffer J.H., Muniz-Papandrea V.A., Colon W., Siegel R.W., Dordick J.S. Cytochrome C on silica nanoparticles: Influence of nanoparticle size on protein structure, stability, and activity. Small. 2009;5:470–476. doi: 10.1002/smll.200800995. PubMed DOI
Shang W., Nuffer J.H., Dordick J.S., Siegel R.W. Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett. 2007;7:1991–1995. doi: 10.1021/nl070777r. PubMed DOI
Linse S., Cabaleiro-Lago C., Xue W.F., Lynch I., Lindman S., Thulin E., Radford S.E., Dawson K.A. Nucleation of protein fibrillation by nanoparticles. Proc. Natl. Acad. Sci. USA. 2007;104:8691–8696. doi: 10.1073/pnas.0701250104. PubMed DOI PMC
Mirshafiee V., Kim R., Park S., Mahmoudi M., Kraft M.L. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials. 2016;75:295–304. doi: 10.1016/j.biomaterials.2015.10.019. PubMed DOI
Corbo C., Molinaro R., Parodi A., Toledano Furman N.E., Salvatore F., Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine. 2016;11:81–100. doi: 10.2217/nnm.15.188. PubMed DOI PMC
Lunov O., Syrovets T., Loos C., Beil J., Delecher M., Tron K., Nienhaus G.U., Musyanovych A., Mailander V., Landfester K., et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano. 2011;5:1657–1669. doi: 10.1021/nn2000756. PubMed DOI
Lee Y.K., Choi E.J., Webster T.J., Kim S.H., Khang D. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int. J. Nanomed. 2015;10:97–113. PubMed PMC
Juling S., Niedzwiecka A., Bohmert L., Lichtenstein D., Selve S., Braeuning A., Thunemann A.F., Krause E., Lampen A. Protein corona analysis of silver nanoparticles links to their cellular effects. J. Proteome Res. 2017;16:4020–4034. doi: 10.1021/acs.jproteome.7b00412. PubMed DOI
Yang M.H., Yuan S.S., Huang Y.F., Lin P.C., Lu C.Y., Chung T.W., Tyan Y.C. A proteomic view to characterize the effect of chitosan nanoparticle to hepatic cells: Is chitosan nanoparticle an enhancer of PI3K/AKT1/mTOR pathway? Biomed. Res. Int. 2014;2014:789591. doi: 10.1155/2014/789591. PubMed DOI PMC
Ma X., Hartmann R., Jimenez de Aberasturi D., Yang F., Soenen S.J.H., Manshian B.B., Franz J., Valdeperez D., Pelaz B., Feliu N., et al. Colloidal gold nanoparticles induce changes in cellular and subcellular morphology. ACS Nano. 2017;11:7807–7820. doi: 10.1021/acsnano.7b01760. PubMed DOI
Yang J.A., Lohse S.E., Murphy C.J. Tuning cellular response to nanoparticles via surface chemistry and aggregation. Small. 2014;10:1642–1651. doi: 10.1002/smll.201302835. PubMed DOI
Tsang M.P., Kikuchi-Uehara E., Sonnemann G.W., Aymonier C., Hirao M. Evaluating nanotechnology opportunities and risks through integration of life-cycle and risk assessment. Nat. Nanotechnol. 2017;12:734–739. doi: 10.1038/nnano.2017.132. PubMed DOI
Donaldson K., Poland C.A. Nanotoxicity: Challenging the myth of nano-specific toxicity. Curr. Opin. Biotechnol. 2013;24:724–734. doi: 10.1016/j.copbio.2013.05.003. PubMed DOI
Morita M., Gravel S.P., Chenard V., Sikstrom K., Zheng L., Alain T., Gandin V., Avizonis D., Arguello M., Zakaria C., et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 2013;18:698–711. doi: 10.1016/j.cmet.2013.10.001. PubMed DOI
Morita M., Prudent J., Basu K., Goyon V., Katsumura S., Hulea L., Pearl D., Siddiqui N., Strack S., McGuirk S., et al. mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol. Cell. 2017;67:922–935. doi: 10.1016/j.molcel.2017.08.013. PubMed DOI