Preliminary Study of Ge-DLC Nanocomposite Biomaterials Prepared by Laser Codeposition

. 2019 Mar 18 ; 9 (3) : . [epub] 20190318

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30889797

This paper deals with the synthesis and study of the properties of germanium-doped diamond-like carbon (DLC) films. For deposition of doped DLC films, hybrid laser technology was used. Using two deposition lasers, it was possible to arrange the dopant concentrations by varying the laser repetition rate. Doped films of Ge concentrations from 0 at.% to 12 at.% were prepared on Si (100) and fused silica (FS) substrates at room temperature. Film properties, such as growth rate, roughness, scanning electron microscopy (SEM) morphology, wavelength dependent X-ray spectroscopy (WDS) composition, VIS-near infrared (IR) transmittance, and biological properties (cytotoxicity, effects on cellular morphology, and ability to produce reactive oxygen species (ROS)) were studied in relation to codeposition conditions and dopant concentrations. The analysis showed that Ge-DLC films exhibit cytotoxicity for higher Ge doping.

Zobrazit více v PubMed

Joung Y.H. Development of implantable medical devices: From an engineering perspective. Int. Neurourol. J. 2013;17:98–106. doi: 10.5213/inj.2013.17.3.98. PubMed DOI PMC

Thorwarth G., Falub C.V., Muller U., Weisse B., Voisard C., Tobler M., Hauert R. Tribological behavior of DLC-coated articulating joint implants. Acta Biomater. 2010;6:2335–2341. doi: 10.1016/j.actbio.2009.12.019. PubMed DOI

Thomson L.A., Law F.C., Rushton N., Franks J. Biocompatibility of diamond-like carbon coating. Biomaterials. 1991;12:37–40. doi: 10.1016/0142-9612(91)90129-X. PubMed DOI

Gorzelanny C., Kmeth R., Obermeier A., Bauer A.T., Halter N., Kumpel K., Schneider M.F., Wixforth A., Gollwitzer H., Burgkart R., et al. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties. Sci. Rep. 2016;6:22849. doi: 10.1038/srep22849. PubMed DOI PMC

Harrasser N., Jussen S., Obermeir A., Kmeth R., Stritzker B., Gollwitzer H., Burgkart R. Antibacterial potency of different deposition methods of silver and copper containing diamond-like carbon coated polyethylene. Biomater. Res. 2016;20:17. doi: 10.1186/s40824-016-0062-6. PubMed DOI PMC

Dwivedi N., Kumar S., Carey J.D., Tripathi R.K., Malik H.K., Dalai M.K. Influence of silver incorporation on the structural and electrical properties of diamond-like carbon thin films. ACS Appl. Mater. Interfaces. 2013;5:2725–2732. doi: 10.1021/am4003183. PubMed DOI

Palyanov Y.N., Kupriyanov I.N., Borzdov Y.M., Surovtsev N.V. Germanium: A new catalyst for diamond synthesis and a new optically active impurity in diamond. Sci. Rep. 2015;5:14789. doi: 10.1038/srep14789. PubMed DOI PMC

Wei Q., Sharma A.K., Sankar J., Narayan J. Mechanical properties of diamond-like carbon composite thin films prepared by pulsed laser deposition. Compos. Part B-Eng. 1999;30:675–684. doi: 10.1016/S1359-8368(99)00035-9. DOI

Evans A.C., Franks J., Revell P.J. Diamond-like carbon applied to bioengineering materials. Surf. Coat. Tech. 1991;47:662–667. doi: 10.1016/0257-8972(91)90338-W. DOI

Bian D., Zhou W., Deng J., Liu Y., Li W., Chu X., Xiu P., Cai H., Kou Y., Jiang B., et al. Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Acta Biomater. 2017;64:421–436. doi: 10.1016/j.actbio.2017.10.004. PubMed DOI

Hwang S.W., Park G., Edwards C., Corbin E.A., Kang S.K., Cheng H., Song J.K., Kim J.H., Yu S., Ng J., et al. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano. 2014;8:5843–5851. doi: 10.1021/nn500847g. PubMed DOI

Kang S.K., Park G., Kim K., Hwang S.W., Cheng H., Shin J., Chung S., Kim M., Yin L., Lee J.C., et al. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl. Mater. Interfaces. 2015;7:9297–9305. doi: 10.1021/acsami.5b02526. PubMed DOI

Adiga S.P., Jin C., Curtiss L.A., Monteiro-Riviere N.A., Narayan R.J. Nanoporous membranes for medical and biological applications. Int. Rev. Nanomed. Nanobiotechnol. 2009;1:568–581. doi: 10.1002/wnan.50. PubMed DOI PMC

Sousani F., Jamali H., Mozafarinia R., Eshaghi A. Thermal stability of germanium-carbon coatings prepared by a RF plasma enhanced chemical vapor deposition method. Infrared Phys. Techn. 2018;93:255–259. doi: 10.1016/j.infrared.2018.08.006. DOI

Mahmood A., Iqbal M., Ali Z., Shafi H.Z., Shah A., Batani D. Optical analysis of germanium carbide thin films deposited by reactive pulsed laser ablation. J. Laser Micro Nanoen. 2010;5:204–208. doi: 10.2961/jlmn.2010.03.0004. DOI

Mahmood A., Shah A., Castillon F.F., Araiza L.C., Heiras J., Raja M.Y.A., Khizar M. Surface analysis of GeC prepared by reactive pulsed laser deposition technique. Curr. Appl. Phys. 2011;11:547–550. doi: 10.1016/j.cap.2010.09.011. DOI

Varade A., Krishna A., Reddy K.N., Chellamalai M., Shashikumar P.V. Diamond-like carbon coating made by RF plasma enhanced chemical vapour deposition for protective antireflective coatings on germanium. Proc. Mat. Sci. 2014;5:1015–1019. doi: 10.1016/j.mspro.2014.07.390. DOI

Cheng Y., Lu Y.M., Guo Y.L., Huang G.J., Wang S.Y., Tian F.T. Multilayers diamond-like carbon film with germanium buffer layers by pulsed laser deposition. Surf. Rev. Lett. 2017;24:02. doi: 10.1142/S0218625X17500147. DOI

Ankit K., Varade A., Reddy K.N., Dhan S., Chellamalai M., Balashanmugam N., Krishna P. Synthesis of high hardness IR optical coating using diamond-like carbon by PECVD at room temperature. Diam. Relat. Mater. 2017;78:39–43.

Martin P.M., Johnston J.W., Bennett W.D. Properties of reactively-deposited Sic and Gec alloys. P. Soc. Photo-Opt. Ins. 1990;1323:291–298.

Lu Y.M., Huang G.J., Guo Y.L., Wang S.Y. Diamond-like carbon film with gradient germanium-doped buffer layer by pulsed laser deposition. Surf. Coat. Tech. 2018;337:290–295. doi: 10.1016/j.surfcoat.2018.01.023. DOI

Robertson S.N., Gibson D., MacKay W.G., Reid S., Williams C., Birney R. Investigation of the antimicrobial properties of modified multilayer diamond-like carbon coatings on 316 stainless steel. Surf. Coat. Tech. 2017;314:72–78. doi: 10.1016/j.surfcoat.2016.11.035. DOI

Tao S.H., Bolger P.M. Hazard assessment of germanium supplements. Regul. Toxicol. Pharmacol. 1997;25:211–219. doi: 10.1006/rtph.1997.1098. PubMed DOI

Lunova M., Zablotskii V., Dempsey N.M., Devillers T., Jirsa M., Sykova E., Kubinova S., Lunov O., Dejneka A. Modulation of collective cell behaviour by geometrical constraints. Integr. Biol. 2016;8:1099–1110. doi: 10.1039/C6IB00125D. PubMed DOI

Wrobel K., Claudio E., Segade F., Ramos S., Lazo P.S. Measurement of cytotoxicity by propidium iodide staining of target cell DNA. Application to the quantification of murine TNF-alpha. J. Immunol. Methods. 1996;189:243–249. doi: 10.1016/0022-1759(95)00253-7. PubMed DOI

Back S.A., Khan R., Gan X., Rosenberg P.A., Volpe J.J. A new Alamar Blue viability assay to rapidly quantify oligodendrocyte death. J. Neurosci. Methods. 1999;91:47–54. doi: 10.1016/S0165-0270(99)00062-X. PubMed DOI

Braut-Boucher F., Pichon J., Rat P., Adolphe M., Aubery M., Font J. A non-isotopic, highly sensitive, fluorimetric, cell-cell adhesion microplate assay using calcein AM-labeled lymphocytes. J. Immunol. Methods. 1995;178:41–51. doi: 10.1016/0022-1759(94)00239-S. PubMed DOI

Lynnyk A., Lunova M., Jirsa M., Egorova D., Kulikov A., Kubinova S., Lunov O., Dejneka A. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation. Biomed. Opt. Express. 2018;9:1283–1300. doi: 10.1364/BOE.9.001283. PubMed DOI PMC

Buettner G.R. Moving free radical and redox biology ahead in the next decade(s) Free Radic. Biol. Med. 2015;78:236–238. doi: 10.1016/j.freeradbiomed.2014.10.578. PubMed DOI PMC

March S., Ramanan V., Trehan K., Ng S., Galstian A., Gural N., Scull M.A., Shlomai A., Mota M.M., Fleming H.E., et al. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat. Protoc. 2015;10:2027–2053. doi: 10.1038/nprot.2015.128. PubMed DOI PMC

Treyer A., Musch A. Hepatocyte polarity. Compr. Physiol. 2013;3:243–287. PubMed PMC

Schauss A.G. Nephrotoxicity and neurotoxicity in humans from organogermanium compounds and germanium dioxide. Biol. Trace Elem. Res. 1991;29:267–280. doi: 10.1007/BF03032683. PubMed DOI

Jomova K., Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283:65–87. doi: 10.1016/j.tox.2011.03.001. PubMed DOI

Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. Heavy metals toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012;101:133–164. PubMed PMC

Lunova M., Smolkova B., Lynnyk A., Uzhytchak M., Jirsa M., Kubinova S., Dejneka A., Lunov O. Targeting the mTOR signaling pathway utilizing nanoparticles: A critical overview. Cancers. 2019;11:82. doi: 10.3390/cancers11010082. PubMed DOI PMC

Smolkova B., Lunova M., Lynnyk A., Uzhytchak M., Churpita O., Jirsa M., Kubinova S., Lunov O., Dejneka A. Non-thermal plasma, as a new physicochemical source, to induce redox imbalance and subsequent cell death in liver cancer cell lines. Cell. Physiol. Biochem. 2019;52:119–140. PubMed

Lunova M., Prokhorov A., Jirsa M., Hof M., Olzynska A., Jurkiewicz P., Kubinova S., Lunov O., Dejneka A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci. Rep. 2017;7:16049. doi: 10.1038/s41598-017-16447-6. PubMed DOI PMC

Fink S.L., Cookson B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 2005;73:1907–1916. doi: 10.1128/IAI.73.4.1907-1916.2005. PubMed DOI PMC

Zhang Y., Chen X., Gueydan C., Han J. Plasma membrane changes during programmed cell deaths. Cell Res. 2018;28:9–21. doi: 10.1038/cr.2017.133. PubMed DOI PMC

Lynch C., Panagopoulou M., Gregory C.D. Extracellular vesicles arising from apoptotic cells in tumors: Roles in cancer pathogenesis and potential clinical applications. Front. Immunol. 2017;8:1174. doi: 10.3389/fimmu.2017.01174. PubMed DOI PMC

Caruso S., Poon I.K.H. Apoptotic cell-derived extracellular vesicles: More than just debris. Front. Immunol. 2018;9:1486. doi: 10.3389/fimmu.2018.01486. PubMed DOI PMC

Gyorgy B., Szabo T.G., Pasztoi M., Pal Z., Misjak P., Aradi B., Laszlo V., Pallinger E., Pap E., Kittel A., et al. Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cell. Mol. Life Sci. 2011;68:2667–2688. doi: 10.1007/s00018-011-0689-3. PubMed DOI PMC

Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008;4:278–286. doi: 10.1038/nchembio.85. PubMed DOI

Sun S.Y. N-acetylcysteine, reactive oxygen species and beyond. Cancer Biol. Ther. 2010;9:109–110. doi: 10.4161/cbt.9.2.10583. PubMed DOI PMC

Halasi M., Wang M., Chavan T.S., Gaponenko V., Hay N., Gartel A.L. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochem. J. 2013;454:201–208. doi: 10.1042/BJ20130282. PubMed DOI PMC

Smolkova B., Uzhytchak M., Lynnyk A., Kubinova S., Dejneka A., Lunov O. A critical review on selected external physical cues and modulation of cell behavior: Magnetic nanoparticles, non-thermal plasma and lasers. J. Funct. Biomater. 2019;10:2. doi: 10.3390/jfb10010002. PubMed DOI PMC

Castilla R., Gonzalez R., Fouad D., Fraga E., Muntane J. Dual effect of ethanol on cell death in primary culture of human and rat hepatocytes. Alcohol Alcohol. 2004;39:290–296. doi: 10.1093/alcalc/agh065. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...