Modulation of collective cell behaviour by geometrical constraints
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27738682
DOI
10.1039/c6ib00125d
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- buněčné jádro fyziologie ultrastruktura MeSH
- buněčný převod mechanických signálů fyziologie MeSH
- buňky Hep G2 MeSH
- lidé MeSH
- mezibuněčná komunikace fyziologie MeSH
- počítačová simulace MeSH
- proliferace buněk fyziologie MeSH
- velikost buňky * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Intracellular and extracellular mechanical forces play a crucial role during tissue growth, modulating nuclear shape and function and resulting in complex collective cell behaviour. However, the mechanistic understanding of how the orientation, shape, symmetry and homogeneity of cells are affected by environmental geometry is still lacking. Here we investigate cooperative cell behaviour and patterns under geometric constraints created by topographically patterned substrates. We show how cells cooperatively adopt their geometry, shape, positioning of the nucleus and subsequent proliferation activity. Our findings indicate that geometric constraints induce significant squeezing of cells and nuclei, cytoskeleton reorganization, drastic condensation of chromatin resulting in a change in the cell proliferation rate and the anisotropic growth of cultures. Altogether, this work not only demonstrates complex non-trivial collective cellular responses to geometrical constraints but also provides a tentative explanation of the observed cell culture patterns grown on different topographically patterned substrates. These findings provide important fundamental knowledge, which could serve as a basis for better controlled tissue growth and cell-engineering applications.
Institute for Clinical and Experimental Medicine Prague Czech Republic
Institute of Experimental Medicine AS CR Prague Czech Republic
Institute of Physics of the Academy of Sciences of the Czech Republic Prague 18221 Czech Republic
Univ Grenoble Alpes Inst NEEL F 38042 Grenoble France and CNRS Inst NEEL F 38042 Grenoble France
Citace poskytuje Crossref.org
Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake
Protein Corona Inhibits Endosomal Escape of Functionalized DNA Nanostructures in Living Cells
Preliminary Study of Ge-DLC Nanocomposite Biomaterials Prepared by Laser Codeposition