Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DP2 GM132931
NIGMS NIH HHS - United States
R01 GM145916
NIGMS NIH HHS - United States
PubMed
39835937
PubMed Central
PMC11749194
DOI
10.1039/d5tb00074b
Knihovny.cz E-zdroje
- MeSH
- aktiny metabolismus chemie MeSH
- cytoskelet metabolismus účinky léků MeSH
- DNA * chemie metabolismus MeSH
- lidé MeSH
- mikrofilamenta metabolismus účinky léků MeSH
- nanostruktury * chemie MeSH
- velikost částic MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aktiny MeSH
- DNA * MeSH
DNA nanostructures (DNs) have gained popularity in various biomedical applications due to their unique properties, including structural programmability, ease of synthesis and functionalization, and low cytotoxicity. Effective utilization of DNs in biomedical applications requires a fundamental understanding of their interactions with living cells and the mechanics of cellular uptake. Current knowledge primarily focuses on how the physicochemical properties of DNs, such as mass, shape, size, and surface functionalization, affect uptake efficacy. However, the role of cellular mechanics and morphology in DN uptake remains largely unexplored. In this work, we show that cells subjected to geometric constraints remodel their actin cytoskeleton, resulting in differential mechanical force generation that facilitates DN uptake. The length, number, and orientation of F-actin fibers are influenced by these constraints, leading to distinct mechanophenotypes. Overall, DN uptake is governed by F-actin forces arising from filament reorganisation under geometric constraints. These results underscore the importance of actin dynamics in the cellular uptake of DNs and suggest that leveraging geometric constraints to induce specific cell morphology adaptations could enhance the uptake of therapeutically designed DNs.
Biodesign Center for Molecular Design and Biomimetics Arizona State University Tempe USA
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 CZ 121 16 Prague 2 Czech Republic
Institute for Clinical and Experimental Medicine Prague 14021 Czech Republic
School of Molecular Sciences Arizona State University Tempe Arizona 85287 USA
Zobrazit více v PubMed
Ginzberg M. B. et al. . Science. 2015;348:1245075. doi: 10.1126/science.1245075. PubMed DOI PMC
Lloyd A. C. Cell. 2013;154:1194–1205. doi: 10.1016/j.cell.2013.08.053. PubMed DOI
Bao M. et al. . Nat. Commun. 2017;8:1962. doi: 10.1038/s41467-017-02163-2. PubMed DOI PMC
Wang X. L. et al. . Biomater. Sci. 2016;4:970–978. doi: 10.1039/C6BM00171H. PubMed DOI
Khetan J. et al. . Biophys. J. 2019;116:347–359. doi: 10.1016/j.bpj.2018.11.3134. PubMed DOI PMC
Elblová P. et al. . Discover Nano. 2024;19:106. doi: 10.1186/s11671-024-04052-2. PubMed DOI PMC
Shin H. et al. . Nanoscale. 2020;12:15743–15751. doi: 10.1039/D0NR01627F. PubMed DOI
Amodeo A. A. et al. . Cold Spring Harbor Perspect. Biol. 2016;8:a019083. doi: 10.1101/cshperspect.a019083. PubMed DOI PMC
Lindemann C. et al. . Front. Mar. Sci. 2016;3:26.
Rupprecht J. F. et al. . Mol. Biol. Cell. 2017;28:3582–3594. doi: 10.1091/mbc.e17-01-0060. PubMed DOI PMC
Lunova M. et al. . Integr. Biol. 2016;8:1099–1110. doi: 10.1039/C6IB00125D. PubMed DOI
Vogel V. et al. . Nat. Rev. Mol. Cell Biol. 2006;7:265–275. doi: 10.1038/nrm1890. PubMed DOI
Bidhendi A. J. et al. . Nat. Commun. 2023;14:8275. doi: 10.1038/s41467-023-44075-4. PubMed DOI PMC
Versaevel M. et al. . Nat. Commun. 2012;3:671. doi: 10.1038/ncomms1668. PubMed DOI
Jain N. et al. . Proc. Natl. Acad. Sci. U. S. A. 2013;110:11349–11354. doi: 10.1073/pnas.1300801110. PubMed DOI PMC
Li Y. W. et al. . Matter. 2021;4:1863–1891. doi: 10.1016/j.matt.2021.03.013. PubMed DOI PMC
Chen C. S. et al. . Science. 1997;276:1425–1428. doi: 10.1126/science.276.5317.1425. PubMed DOI
Fattahi P. et al. . Adv. Mater. Interfaces. 2023;10:2300137. doi: 10.1002/admi.202300137. DOI
Rennick J. J. et al. . Nat. Nanotechnol. 2021;16:266–276. doi: 10.1038/s41565-021-00858-8. PubMed DOI
Zhang S. L. et al. . ACS Nano. 2015;9:8655–8671. doi: 10.1021/acsnano.5b03184. PubMed DOI PMC
Muoth C. et al. . RSC Adv. 2016;6:72827–72835. doi: 10.1039/C6RA13782B. DOI
Ladoux B. et al. . Nat. Rev. Mol. Cell Biol. 2017;18:743–757. doi: 10.1038/nrm.2017.98. PubMed DOI
Atia L. et al. . Nat. Phys. 2018;14:613–620. PubMed PMC
Dupont S. et al. . Nat. Rev. Genet. 2022;23:624–643. doi: 10.1038/s41576-022-00493-6. PubMed DOI
Massey A. et al. . Nat. Rev. Phys. 2024;6:269–282. doi: 10.1038/s42254-024-00707-2. PubMed DOI PMC
Romani P. et al. . Nat. Cell Biol. 2024;26:2046–2060. doi: 10.1038/s41556-024-01527-3. PubMed DOI PMC
Keller A. et al. . Angew. Chem., Int. Ed. 2020;59:15818–15833. doi: 10.1002/anie.201916390. PubMed DOI PMC
Jahanban-Esfahlan A. et al. . J. Controlled Release. 2019;315:166–185. doi: 10.1016/j.jconrel.2019.10.003. PubMed DOI
Henry S. J. W. et al. . Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2021;13:e1729. PubMed PMC
Dey S. et al. . Nat. Rev. Methods Primers. 2021;1:13. doi: 10.1038/s43586-020-00009-8. DOI
Wang J. et al. . Nat. Rev. Mater. 2021;6:766–783. doi: 10.1038/s41578-021-00315-x. PubMed DOI PMC
Simmons C. R. et al. . Angew. Chem., Int. Ed. 2020;59:18619–18626. doi: 10.1002/anie.202005505. PubMed DOI
Frtus A. et al. . Acta Biomater. 2022;146:10–22. doi: 10.1016/j.actbio.2022.04.046. PubMed DOI PMC
Tian T. R. et al. . Bone Res. 2022;10:40. doi: 10.1038/s41413-022-00212-1. PubMed DOI PMC
Xu R. et al. . Adv. NanoBiomed Res. 2023;3:2200119. doi: 10.1002/anbr.202200119. DOI
Wang W. T. et al. . Nano Lett. 2023;23:7076–7085. doi: 10.1021/acs.nanolett.3c01878. PubMed DOI PMC
Wang W. T. et al. . ACS Appl. Mater. Interfaces. 2024;16:15783–15797. doi: 10.1021/acsami.3c18068. PubMed DOI PMC
Wang P. et al. . J. Am. Chem. Soc. 2018;140:2478–2484. doi: 10.1021/jacs.7b09024. PubMed DOI PMC
Bastings M. M. C. et al. . Nano Lett. 2018;18:3557–3564. doi: 10.1021/acs.nanolett.8b00660. PubMed DOI
Whitehouse W. L. et al. . Bioconjugate Chem. 2019;30:1836–1844. doi: 10.1021/acs.bioconjchem.9b00036. PubMed DOI
Balakrishnan D. et al. . Nanomedicine. 2019;14:911–925. doi: 10.2217/nnm-2018-0440. PubMed DOI
Wang P. F. et al. . Chem. 2017;2:359–382.
Mikkila J. et al. . Nano Lett. 2014;14:2196–2200. doi: 10.1021/nl500677j. PubMed DOI
Liu K. et al. . J. Mater. Chem. B. 2020;8:6802–6809. doi: 10.1039/D0TB00663G. PubMed DOI
Arulkumaran N. et al. . ACS Nano. 2021;15:4394–4404. doi: 10.1021/acsnano.0c07915. PubMed DOI
Maezawa T. et al. . Nanoscale. 2020;12:14818–14824. doi: 10.1039/D0NR02361B. PubMed DOI
Lee D. S. et al. . Chem. Soc. Rev. 2016;45:4199–4225. doi: 10.1039/C5CS00700C. PubMed DOI
Mosquera J. et al. . Acc. Chem. Res. 2018;51:2305–2313. doi: 10.1021/acs.accounts.8b00292. PubMed DOI
Behzadi S. et al. . Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC
Lunov O. et al. . ACS Nano. 2011;5:1657–1669. doi: 10.1021/nn2000756. PubMed DOI
Donahue N. D. et al. . Adv. Drug Delivery Rev. 2019;143:68–96. doi: 10.1016/j.addr.2019.04.008. PubMed DOI
Smolková B. et al. . ACS Appl. Mater. Interfaces. 2021;13:46375–46390. doi: 10.1021/acsami.1c14401. PubMed DOI PMC
Rajwar A. et al. . ACS Nano. 2022;16:10496–10508. doi: 10.1021/acsnano.2c01382. PubMed DOI
Mathur D. et al. . Nano Lett. 2022;22:5037–5045. doi: 10.1021/acs.nanolett.2c00917. PubMed DOI PMC
Peng Y. A. et al. . Adv. Sci. 2023;10:2300614. doi: 10.1002/advs.202300614. PubMed DOI PMC
Elblová P. et al. . Chem. Eng. J. 2024;498:155633. doi: 10.1016/j.cej.2024.155633. PubMed DOI PMC
Ngo W. et al. . Adv. Drug Delivery Rev. 2022;185:114238. doi: 10.1016/j.addr.2022.114238. PubMed DOI
Frtús A. et al. . J. Controlled Release. 2020;328:59–77. doi: 10.1016/j.jconrel.2020.08.036. PubMed DOI
Tsoi K. M. et al. . Nat. Mater. 2016;15:1212–1221. doi: 10.1038/nmat4718. PubMed DOI PMC
Uzhytchak M. et al. . Adv. Drug Delivery Rev. 2023;197:114828. doi: 10.1016/j.addr.2023.114828. PubMed DOI
Schulze R. J. et al. . J. Cell Biol. 2019;218:2096–2112. doi: 10.1083/jcb.201903090. PubMed DOI PMC
Fernandez-Checa J. C. et al. . J. Hepatol. 2021;75:935–959. doi: 10.1016/j.jhep.2021.06.021. PubMed DOI
Andrade R. J. et al. . Nat. Rev. Dis. Primers. 2019;5:58. doi: 10.1038/s41572-019-0105-0. PubMed DOI
Guo L. et al. . Drug Metab. Dispos. 2011;39:528–538. doi: 10.1124/dmd.110.035873. PubMed DOI PMC
Arzumanian V. A. et al. . Int. J. Mol. Sci. 2021;22:13135. doi: 10.3390/ijms222313135. PubMed DOI PMC
Fukuyama K. et al. . PLoS One. 2021;16:e0245939. doi: 10.1371/journal.pone.0245939. PubMed DOI PMC
Lunova M. et al. . Cell. Mol. Life Sci. 2020;77:2815–2838. doi: 10.1007/s00018-019-03321-z. PubMed DOI PMC
Kroemer G. et al. . Cell Death Differ. 2009;16:3–11. doi: 10.1038/cdd.2008.150. PubMed DOI PMC
Crowley L. C. et al. . Cold Spring Harb. Protoc. 2016;2016:647–651. PubMed
Frtus A. et al. . ACS Biomater. Sci. Eng. 2023;9:2408–2425. doi: 10.1021/acsbiomaterials.2c01518. PubMed DOI PMC
de Chaumont F. et al. . Nat. Methods. 2012;9:690–696. doi: 10.1038/nmeth.2075. PubMed DOI
Suzuki H. et al. . Environ. Sci. Technol. 2007;41:3018–3024. doi: 10.1021/es0625632. PubMed DOI
Uzhytchak M. et al. . Cells. 2020;9:1015. doi: 10.3390/cells9041015. PubMed DOI PMC
Torrano A. A. et al. . Nanomedicine. 2013;8:1815–1828. doi: 10.2217/nnm.12.178. PubMed DOI
Blechinger J. et al. . Small. 2013;9:3970–3980. doi: 10.1002/smll.201301004. PubMed DOI
Arganda-Carreras I. et al. . Microsc. Res. Tech. 2010;73:1019–1029. doi: 10.1002/jemt.20829. PubMed DOI
Rezakhaniha R. et al. . Biomech. Model. Mechanobiol. 2012;11:461–473. doi: 10.1007/s10237-011-0325-z. PubMed DOI
Mogilner A. et al. . Biophys. J. 2003;84:1591–1605. doi: 10.1016/S0006-3495(03)74969-8. PubMed DOI PMC
Martiel J. L. et al. . Biophys. J. 2020;118:182–192. doi: 10.1016/j.bpj.2019.10.039. PubMed DOI PMC
Dolati S. et al. . Mol. Biol. Cell. 2018;29:2674–2686. doi: 10.1091/mbc.E18-02-0082. PubMed DOI PMC
Koudehi M. A. et al. . Cytoskeleton. 2019;76:532–548. doi: 10.1002/cm.21565. PubMed DOI PMC
Falcke M. Phys. D. 2016;318:50–57. doi: 10.1016/j.physd.2015.10.019. DOI
Gupta M. et al. . Nat. Commun. 2015;6:7525. doi: 10.1038/ncomms8525. PubMed DOI PMC
Sakamoto R. et al. . Nat. Commun. 2024;15:3444. doi: 10.1038/s41467-024-47593-x. PubMed DOI PMC
Chen X. D. et al. . Commun. Biol. 2020;3:616. doi: 10.1038/s42003-020-01335-z. PubMed DOI PMC
Shi C. et al. . EURASIP J. Wirel. Commun. Netw. 2021;2021:31. doi: 10.1186/s13638-021-01910-w. PubMed DOI PMC
Hamilton N. Traffic. 2009;10:951–961. doi: 10.1111/j.1600-0854.2009.00938.x. PubMed DOI
Jonkman J. et al. . Nat. Protoc. 2020;15:1585–1611. doi: 10.1038/s41596-020-0313-9. PubMed DOI
Lee J. Y. et al. . Mol. Biol. Cell. 2018;29:1519–1525. doi: 10.1091/mbc.E17-05-0276. PubMed DOI PMC
Uzhytchak M. et al. . Sci. Rep. 2023;13:10818. doi: 10.1038/s41598-023-38015-x. PubMed DOI PMC
Dell R. B. et al. . ILAR J. 2002;43:207–213. doi: 10.1093/ilar.43.4.207. PubMed DOI PMC
Birkholz O. et al. . Nat. Commun. 2018;9:1521. doi: 10.1038/s41467-018-02905-w. PubMed DOI PMC
Burns J. R. et al. . ACS Nano. 2018;12:3263–3271. doi: 10.1021/acsnano.7b07835. PubMed DOI
Burns J. R. et al. . Nat. Nanotechnol. 2016;11:152–156. doi: 10.1038/nnano.2015.279. PubMed DOI
Zhang Y. L. et al. . ACS Nano. 2023;17:10486–10495. doi: 10.1021/acsnano.3c01342. PubMed DOI PMC
Long Q. P. et al. . ACS Appl. Mater. Interfaces. 2021;13:47987–47995. doi: 10.1021/acsami.1c15585. PubMed DOI
Mei Q. A. et al. . Nano Lett. 2011;11:1477–1482. doi: 10.1021/nl1040836. PubMed DOI PMC
Keum J. W. et al. . Chem. Commun. 2009:7036–7038. doi: 10.1039/B917661F. PubMed DOI
Massich M. D. et al. . ACS Nano. 2010;4:5641–5646. doi: 10.1021/nn102228s. PubMed DOI PMC
Shen X. B. et al. . Chem. Commun. 2012;48:11301–11303. doi: 10.1039/C2CC36185J. PubMed DOI
Walsh A. S. et al. . ACS Nano. 2011;5:5427–5432. doi: 10.1021/nn2005574. PubMed DOI
Li P. et al. . Int. J. Nanomed. 2012;7:925–939. PubMed PMC
Mendes B. B. et al. . Nat. Rev. Methods Primers. 2022;2:24. doi: 10.1038/s43586-022-00104-y. PubMed DOI PMC
Dilliard S. A. et al. . Nat. Rev. Mater. 2023;8:282–300. doi: 10.1038/s41578-022-00529-7. PubMed DOI PMC
Prasad R. Y. et al. . ACS Nano. 2013;7:1929–1942. doi: 10.1021/nn302280n. PubMed DOI
Salvati A. et al. . Nanoimpact. 2018;9:42–50. doi: 10.1016/j.impact.2017.10.004. DOI
Bolte S. et al. . J. Microsc. 2006;224:213–232. doi: 10.1111/j.1365-2818.2006.01706.x. PubMed DOI
Chen H. H. et al. . J. Nanobiotechnol. 2011;9:14. doi: 10.1186/1477-3155-9-14. PubMed DOI PMC
Elsaesser A. et al. . Nanomedicine. 2010;5:1447–1457. doi: 10.2217/nnm.10.118. PubMed DOI
Qiu Z. X. et al. . Sci. Rep. 2016;6:27411. doi: 10.1038/srep27411. PubMed DOI PMC
Septiadi D. et al. . Adv. Mater. 2018;30:1704463. doi: 10.1002/adma.201704463. PubMed DOI
Rees P. et al. . Nat. Commun. 2019;10:2341. doi: 10.1038/s41467-019-10112-4. PubMed DOI PMC
Ishikawa J. et al. . Commun. Biol. 2021;4:409. doi: 10.1038/s42003-021-01936-2. PubMed DOI PMC
Baiocchini A. et al. , in Hepatocellular Carcinoma, ed. G. M. Ettorre, Springer International Publishing, Cham, 2023, pp. 45–5210.1007/978-3-031-09371-5_6 DOI
Lacroix A. et al. . ACS Cent. Sci. 2019;5:882–891. doi: 10.1021/acscentsci.9b00174. PubMed DOI PMC
Chandrasekaran A. R. Nat. Rev. Chem. 2021;5:225–239. doi: 10.1038/s41570-021-00251-y. PubMed DOI PMC
Letort G. et al. . F1000Res. 2015;4:940. PubMed PMC
Papakonstanti E. A. et al. . FEBS Lett. 2008;582:2120–2127. doi: 10.1016/j.febslet.2008.02.064. PubMed DOI
Fletcher D. A. et al. . Nature. 2010;463:485–492. doi: 10.1038/nature08908. PubMed DOI PMC
Nel A. E. et al. . Nat. Mater. 2009;8:543–557. doi: 10.1038/nmat2442. PubMed DOI
Svitkina T. Cold Spring Harbor Perspect. Biol. 2018;10:a018267. doi: 10.1101/cshperspect.a018267. PubMed DOI PMC
Clarke D. N. et al. . Curr. Biol. 2021;31:R667–R680. doi: 10.1016/j.cub.2021.03.031. PubMed DOI PMC
Wu L. G. et al. . Front. Synaptic Neurosci. 2022;14:841704. doi: 10.3389/fnsyn.2022.841704. PubMed DOI PMC
van der Meel R. et al. . Expert Opin. Drug Delivery. 2017;14:1–5. doi: 10.1080/17425247.2017.1262346. PubMed DOI PMC
Dawson K. A. et al. . Nat. Nanotechnol. 2021;16:229–242. doi: 10.1038/s41565-021-00860-0. PubMed DOI