Analyzing Molecular Determinants of Nanodrugs' Cytotoxic Effects
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, systematický přehled
Grantová podpora
SENDISO-CZ.02.01.01/00/22_008/0004596
Operational Program Johannes Amos Comenius financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports
PubMed
40724938
PubMed Central
PMC12294593
DOI
10.3390/ijms26146687
PII: ijms26146687
Knihovny.cz E-zdroje
- Klíčová slova
- ROS, cytotoxicity, molecular mechanisms of nanotoxicity, nanodrugs, nanoparticles, oxidative stress,
- MeSH
- apoptóza účinky léků MeSH
- lidé MeSH
- lyzozomy účinky léků metabolismus MeSH
- nanočástice * chemie toxicita MeSH
- nanostruktury * toxicita chemie MeSH
- oxidační stres účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
Nanodrugs hold great promise for targeted therapies, but their potential for cytotoxicity remains a major area of concern, threatening both patient safety and clinical translation. In this systematic review, we conducted a systematic investigation of nanotoxicity studies-identified through an AI-assisted screening procedure using Scopus, PubMed, and Elicit AI-to establish the molecular determinants of nanodrug-induced cytotoxicity. Our findings reveal three dominant and linked mechanisms that consistently act in a range of nanomaterials: oxidative stress, inflammatory signaling, and lysosomal disruption. Key nanomaterial properties like chemical structure, size, shape, surface charge, tendency to aggregate, and biocorona formation control these pathways, modulating cellular uptake, reactive oxygen species generation, cytokine release, and subcellular injury. Notably, the most frequent mechanism was oxidative stress, which often initiated downstream inflammatory and apoptotic signaling. By linking these toxicity pathways with particular nanoparticle characteristics, our review presents necessary guidelines for safer, more biocompatible nanodrug formulation design. This extensive framework acknowledges the imperative necessity for mechanistic toxicity assessment in nanopharmaceutical design and underscores the strength of AI tools in driving systematic toxicology studies.
Faculty of Mathematics and Physics Charles University 121 16 Prague Czech Republic
FZU Institute of Physics of the Czech Academy of Sciences 182 21 Prague Czech Republic
Institute for Clinical and Experimental Medicine 140 21 Prague Czech Republic
Zobrazit více v PubMed
Bhatia S.N., Chen X., Dobrovolskaia M.A., Lammers T. Cancer nanomedicine. Nat. Rev. Cancer. 2022;22:550–556. doi: 10.1038/s41568-022-00496-9. PubMed DOI PMC
Younis M.A., Tawfeek H.M., Abdellatif A.A.H., Abdel-Aleem J.A., Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv. Drug Deliv. Rev. 2022;181:114083. doi: 10.1016/j.addr.2021.114083. PubMed DOI
[(accessed on 27 January 2025)]; Available online: https://commonfund.nih.gov/nanomedicine.
Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC
Fan D., Cao Y., Cao M., Wang Y., Cao Y., Gong T. Nanomedicine in cancer therapy. Signal Transduct. Target. Ther. 2023;8:293. doi: 10.1038/s41392-023-01536-y. PubMed DOI PMC
Havelikar U., Ghorpade K.B., Kumar A., Patel A., Singh M., Banjare N., Gupta P.N. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. Discov. Nano. 2024;19:165. doi: 10.1186/s11671-024-04118-1. PubMed DOI PMC
Wang J., Li Y.Y., Nie G.J. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater. 2021;6:766–783. doi: 10.1038/s41578-021-00315-x. PubMed DOI PMC
Szebeni J., Storm G., Ljubimova J.Y., Castells M., Phillips E.J., Turjeman K., Barenholz Y., Crommelin D.J.A., Dobrovolskaia M.A. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat. Nanotechnol. 2022;17:337–346. doi: 10.1038/s41565-022-01071-x. PubMed DOI
Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng. Transl. Med. 2021;6:e10246. doi: 10.1002/btm2.10246. PubMed DOI PMC
Uzhytchak M., Smolková B., Lunova M., Frtús A., Jirsa M., Dejneka A., Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv. Drug Deliv. Rev. 2023;197:114828. doi: 10.1016/j.addr.2023.114828. PubMed DOI
Herrmann I., Li Z.A., Bahal R., Conde J. Translating nanomedicines from the lab to the clinic. Cell Rep. Phys. Sci. 2025;6:102357. doi: 10.1016/j.xcrp.2024.102357. DOI
Dordevic S., Gonzalez M.M., Conejos-Sánchez I., Carreira B., Pozzi S., Acúrcio R.C., Satchi-Fainaro R., Florindo H.F., Vicent M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 2022;12:500–525. doi: 10.1007/s13346-021-01024-2. PubMed DOI PMC
Mitragotri S., Lammers T., Bae Y.H., Schwendeman S., De Smedt S., Leroux J.C., Peer D., Kwon I.C., Harashima H., Kikuchi A., et al. Drug delivery research for the future: Expanding the nano horizons and beyond. J. Control. Release. 2017;246:183–184. doi: 10.1016/j.jconrel.2017.01.011. PubMed DOI
Hua S., de Matos M.B.C., Metselaar J.M., Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol. 2018;9:790. doi: 10.3389/fphar.2018.00790. PubMed DOI PMC
Skrypnyk N.I., Siskind L.J., Faubel S., de Caestecker M.P. Bridging translation for acute kidney injury with better preclinical modeling of human disease. Am. J. Physiol.-Ren. Physiol. 2016;310:F972–F984. doi: 10.1152/ajprenal.00552.2015. PubMed DOI PMC
Joudeh N., Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 2022;20:262. doi: 10.1186/s12951-022-01477-8. PubMed DOI PMC
Wu L.B., Zhang J., Watanabe W. Physical and chemical stability of drug nanoparticles. Adv. Drug Deliv. Rev. 2011;63:456–469. doi: 10.1016/j.addr.2011.02.001. PubMed DOI
Huang Y., Guo X., Wu Y., Chen X., Feng L., Xie N., Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment. Signal Transduct. Target. Ther. 2024;9:34. doi: 10.1038/s41392-024-01745-z. PubMed DOI PMC
Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016;1:16014. doi: 10.1038/natrevmats.2016.14. DOI
Rosenblum D., Joshi N., Tao W., Karp J.M., Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018;9:1410. doi: 10.1038/s41467-018-03705-y. PubMed DOI PMC
Sun D.X., Zhou S., Gao W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano. 2020;14:12281–12290. doi: 10.1021/acsnano.9b09713. PubMed DOI
Wáng Y.X.J., Idée J.M. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant. Imaging Med. Surg. 2017;7:88–122. doi: 10.21037/qims.2017.02.09. PubMed DOI PMC
Kendall M., Lynch I. Long-term monitoring for nanomedicine implants and drugs. Nat. Nanotechnol. 2016;11:206–210. doi: 10.1038/nnano.2015.341. PubMed DOI
Rubin R. Black box warning for anemia drug. JAMA. 2015;313:1704. doi: 10.1001/jama.2015.4114. DOI
Sun T., Kang Y.Y., Liu J., Zhang Y.L., Ou L.L., Liu X.N., Lai R.F., Shao L.Q. Nanomaterials and hepatic disease: Toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. J. Nanobiotechnol. 2021;19:108. doi: 10.1186/s12951-021-00843-2. PubMed DOI PMC
Frtús A., Smolková B., Uzhytchak M., Lunova M., Jirsa M., Kubinová S., Dejneka A., Lunov O. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J. Control. Release. 2020;328:59–77. doi: 10.1016/j.jconrel.2020.08.036. PubMed DOI
Bobo D., Robinson K.J., Islam J., Thurecht K.J., Corrie S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016;33:2373–2387. doi: 10.1007/s11095-016-1958-5. PubMed DOI
Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019;4:e10143. doi: 10.1002/btm2.10143. PubMed DOI PMC
Aronson J.K., Ferner R.E. Joining the DoTS: New approach to classifying adverse drug reactions. BMJ. 2003;327:1222–1225. doi: 10.1136/bmj.327.7425.1222. PubMed DOI PMC
Coleman J.J., Pontefract S.K. Adverse drug reactions. Clin. Med. 2016;16:481–485. doi: 10.7861/clinmedicine.16-5-481. PubMed DOI PMC
Liebler D.C., Guengerich F.P. Elucidating mechanisms of drug-induced toxicity. Nat. Rev. Drug Discov. 2005;4:410–420. doi: 10.1038/nrd1720. PubMed DOI
Pognan F., Beilmann M., Boonen H.C.M., Czich A., Dear G., Hewitt P., Mow T., Oinonen T., Roth A., Steger-Hartmann T., et al. The evolving role of investigative toxicology in the pharmaceutical industry. Nat. Rev. Drug Discov. 2023;22:317–335. doi: 10.1038/s41573-022-00633-x. PubMed DOI PMC
Helal-Neto E., de Barros A.O.D., Saldanha-Gama R., Brandao-Costa R., Alencar L.M.R., dos Santos C.C., Martínez-Máñez R., Ricci-Junior E., Alexis F., Morandi V., et al. Molecular and cellular risk assessment of healthy human cells and cancer human cells exposed to nanoparticles. Int. J. Mol. Sci. 2020;21:230. doi: 10.3390/ijms21010230. PubMed DOI PMC
Laux P., Tentschert J., Riebeling C., Braeuning A., Creutzenberg O., Epp A., Fessard V., Haas K.H., Haase A., Hund-Rinke K., et al. Nanomaterials: Certain aspects of application, risk assessment and risk communication. Arch. Toxicol. 2018;92:121–141. doi: 10.1007/s00204-017-2144-1. PubMed DOI PMC
Thu H.E., Haider M., Khan S., Sohail M., Hussain Z. Nanotoxicity induced by nanomaterials: A review of factors affecting nanotoxicity and possible adaptations. OpenNano. 2023;14:100190. doi: 10.1016/j.onano.2023.100190. DOI
Jiang W., Wang Y., Wargo J.A., Lang F.F., Kim B.Y.S. Considerations for designing preclinical cancer immune nanomedicine studies. Nat. Nanotechnol. 2021;16:6–15. doi: 10.1038/s41565-020-00817-9. PubMed DOI PMC
Singh A.V., Laux P., Luch A., Sudrik C., Wiehr S., Wild A.-M., Santomauro G., Bill J., Sitti M. Review of emerging concepts in nanotoxicology: Opportunities and challenges for safer nanomaterial design. Toxicol. Mech. Methods. 2019;29:378–387. doi: 10.1080/15376516.2019.1566425. PubMed DOI
Owen A., Rannard S., Bawa R., Feng S.-S. Interdisciplinary nanomedicine publications through interdisciplinary peer-review. J. Interdiscip. Nanomed. 2016;1:4–8. doi: 10.1002/jin2.1. DOI
Tinkle S., McNeil S.E., Mühlebach S., Bawa R., Borchard G., Barenholz Y., Tamarkin L., Desai N. Nanomedicines: Addressing the scientific and regulatory gap. Ann. New York Acad. Sci. 2014;1313:35–56. doi: 10.1111/nyas.12403. PubMed DOI
[(accessed on 27 January 2025)]. Available online: https://www.ema.europa.eu/en/news/european-medicines-agency-publishes-reflection-paper-general-issues-consideration-regarding-coated.
Liz-Marzán L.M., Nel A.E., Brinker C.J., Chan W.C.W., Chen C.Y., Chen X.D., Ho D.A., Hu T., Kataoka K., Kotov N.A., et al. What do we mean when we say nanomedicine? ACS Nano. 2022;16:13257–13259. doi: 10.1021/acsnano.2c08675. PubMed DOI
Mulvaney P. Nanoscience vs nanotechnology-Defining the field. ACS Nano. 2015;9:2215–2217. doi: 10.1021/acsnano.5b01418. PubMed DOI
[(accessed on 27 January 2025)]; Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considering-whether-fda-regulated-product-involves-application-nanotechnology.
[(accessed on 27 January 2025)]; Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/drug.
Onoue S., Yamada S., Chan H.K. Nanodrugs: Pharmacokinetics and safety. Int. J. Nanomed. 2014;9:1025–1037. doi: 10.2147/IJN.S38378. PubMed DOI PMC
Wang B.L., Hu S.Q., Teng Y., Chen J.L., Wang H.Y., Xu Y.Z., Wang K.Y., Xu J.G., Cheng Y.Z., Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct. Target. Ther. 2024;9:200. doi: 10.1038/s41392-024-01889-y. PubMed DOI PMC
Shan X.T., Gong X., Li J., Wen J.Y., Li Y.P., Zhang Z.W. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B. 2022;12:3028–3048. doi: 10.1016/j.apsb.2022.02.025. PubMed DOI PMC
Khurana N., Sünner T., Hubbard O., Imburgia C., Stoddard G.J., Yellepeddi V., Ghandehari H., Watt K.M. Micellar encapsulation of propofol reduces its adsorption on extracorporeal membrane oxygenator (ECMO) circuit. AAPS J. 2023;25:52. doi: 10.1208/s12248-023-00817-2. PubMed DOI
Kumari S., Kumar V., Tiwari R.K., Ravidas V., Pandey K., Kumar A. Amphotericin B: A drug of choice for Visceral Leishmaniasis. Acta Trop. 2022;235:106661. doi: 10.1016/j.actatropica.2022.106661. PubMed DOI
Alberto A.G., Shira G.-P., Shadan M., Ninh M.L.-B. Thirty years from FDA approval of pegylated liposomal doxorubicin (Doxil/Caelyx): An updated analysis and future perspective. BMJ Oncol. 2025;4:e000573. PubMed PMC
Sirks M.J., Subhi Y., Rosenberg N., Hollak C.E.M., Boon C.J.F., Diederen R.M.H., Yzer S., Norel J., de Jong-Hesse Y., Schlingemann R.O., et al. Perspectives and update on the global shortage of verteporfin (visudyne®) Ophthalmol. Ther. 2024;13:1821–1831. doi: 10.1007/s40123-024-00952-9. PubMed DOI PMC
Strom J.B., Mulvagh S.L., Porter T.R., Wei K., Stout J.L., Main M.L. Contemporary safety of ultrasound enhancing agents in a nationwide analysis. J. Am. Heart Assoc. Logo. 2025;14:e039480. doi: 10.1161/JAHA.124.039480. PubMed DOI PMC
Singh A.P., Biswas A., Shukla A., Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019;4:33. doi: 10.1038/s41392-019-0068-3. PubMed DOI PMC
Layon S.A., Williams A.D., Burns H.R., Parham M.J., Monson L.A., Mohammad S., Buchanan E.P. Managing donor site pain after alveolar bone grafting: A comparative analysis of liposomal bupivacaine (exparel), bupivacaine-soaked gelfoam, and ON-Q ropivacaine. J. Craniofacial Surg. 2025;36:1291–1296. doi: 10.1097/SCS.0000000000011169. PubMed DOI
Brown M.B., Blair H.A. Liposomal irinotecan: A review as first-line therapy in metastatic pancreatic adenocarcinoma. Drugs. 2025;85:255–262. doi: 10.1007/s40265-024-02133-1. PubMed DOI
Liu Z.C., Fu Z., Liu Y.H., Jiao Y. Biomaterial-based drug delivery: Evaluating the safety profiles of liposomal Vyxeos. Drug Deliv. 2025;32:2494781. doi: 10.1080/10717544.2025.2494781. PubMed DOI PMC
Curtis J.R., Conrad D.M., Krueger W.S., Gara A.P., Winthrop K.L. Real-world data on the use of the Shingrix vaccine among patients with inflammatory arthritis and risk of cardiovascular events following herpes zoster. Arthritis Res. Ther. 2025;27:108. doi: 10.1186/s13075-025-03565-0. PubMed DOI PMC
Vaikkathillam P., Sajeevan A., Mohan S., Solomon A.P., Rajan P.P., Manjusree S., Kumar P., Thomas S. Genomic analysis of colistin and carbapenem resistant Klebsiella pneumoniae GC29. Microb. Pathog. 2025;199:107220. doi: 10.1016/j.micpath.2024.107220. PubMed DOI
Hawley J.J., Allen S.L., Thompson D.M., Schwarz A.J., Tranquart F.J.M. Commercially available ultrasound contrast agents: Factors contributing to favorable outcomes with ultrasound-mediated drug delivery and ultrasound localization microscopy imaging. Investig. Radiol. 2025 doi: 10.1097/RLI.0000000000001197. PubMed DOI
Stukan I., Zuk A., Pukacka K., Mierzejewska J., Pawlowski J., Kowalski B., Dabkowska M. Wolf in sheep’s clothing: Taming cancer’s resistance with human serum albumin? Int. J. Nanomed. 2025;20:3493–3525. doi: 10.2147/IJN.S500997. PubMed DOI PMC
Paik J., Duggan S.T., Keam S.J. Triamcinolone acetonide extended-release: A review in osteoarthritis pain of the knee. Drugs. 2019;79:455–462. doi: 10.1007/s40265-019-01083-3. PubMed DOI PMC
Borges G.S.M., Lima F.A., Carneiro G., Goulart G.A.C., Ferreira L.A.M. All-trans retinoic acid in anticancer therapy: How nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opin. Drug Deliv. 2021;18:1335–1354. doi: 10.1080/17425247.2021.1919619. PubMed DOI
Macdougall I.C., Comin-Colet J., Breymann C., Spahn D.R., Koutroubakis I.E. Iron sucrose: A wealth of experience in treating iron deficiency. Adv. Ther. 2020;37:1960–2002. doi: 10.1007/s12325-020-01323-z. PubMed DOI PMC
Germain M., Caputo F., Metcalfe S., Tosi G., Spring K., Åslund A.K.O., Pottier A., Schiffelers R., Ceccaldi A., Schmid R. Delivering the power of nanomedicine to patients today. J. Control. Release. 2020;326:164–171. doi: 10.1016/j.jconrel.2020.07.007. PubMed DOI PMC
Sercombe L., Veerati T., Moheimani F., Wu S.Y., Sood A.K., Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286. PubMed DOI PMC
Inglut C.T., Sorrin A.J., Kuruppu T., Vig S., Cicalo J., Ahmad H., Huang H.C. Immunological and toxicological considerations for the design of liposomes. Nanomaterials. 2020;10:190. doi: 10.3390/nano10020190. PubMed DOI PMC
Janos S., Moghimi S.M. Liposome triggering of innate immune responses: A perspective on benefits and adverse reactions. J. Liposome Res. 2009;19:85–90. PubMed
Moraes-Lacerda T., de Jesus M.B. Mechanisms of solid lipid nanoparticles-triggered signaling pathways in eukaryotic cells. Colloids Surf. B Biointerfaces. 2022;220:112863. doi: 10.1016/j.colsurfb.2022.112863. PubMed DOI
Allen T.M., Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013;65:36–48. doi: 10.1016/j.addr.2012.09.037. PubMed DOI
Hua S., Wu S.Y. The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol. 2013;4:143. doi: 10.3389/fphar.2013.00143. PubMed DOI PMC
Monteiro N., Martins A., Reis R.L., Neves N.M. Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface. 2014;11:20140459. doi: 10.1098/rsif.2014.0459. PubMed DOI PMC
Shafiei M., Ansari M.N.M., Abd Razak S.I., Khan M.U.A. A comprehensive review on the applications of exosomes and liposomes in regenerative medicine and tissue engineering. Polymers. 2021;13:2529. doi: 10.3390/polym13152529. PubMed DOI PMC
Gomes-da-Silva L.C., Fonseca N.A., Moura V., de Lima M.C.P., Simoes S., Moreira J.N. Lipid-based nanoparticles for siRNA delivery in cancer therapy: Paradigms and challenges. Accounts Chem. Res. 2012;45:1163–1171. doi: 10.1021/ar300048p. PubMed DOI
Tenchov R., Bird R., Curtze A.E., Zhou Q.Q. Lipid nanoparticles-From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15:16982–17015. doi: 10.1021/acsnano.1c04996. PubMed DOI
Cheng X.W., Lee R.J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 2016;99:129–137. doi: 10.1016/j.addr.2016.01.022. PubMed DOI
Berraondo P., Martini P.G.V., Avila M.A., Fontanellas A. Messenger RNA therapy for rare genetic metabolic diseases. Gut. 2019;68:1323–1330. doi: 10.1136/gutjnl-2019-318269. PubMed DOI
Patel S., Ryals R.C., Weller K.K., Pennesi M.E., Sahay G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J. Control. Release. 2019;303:91–100. doi: 10.1016/j.jconrel.2019.04.015. PubMed DOI PMC
Afsharzadeh M., Hashemi M., Mokhtarzadeh A., Abnous K., Ramezani M. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artif. Cells Nanomed. Biotechnol. 2018;46:1095–1110. doi: 10.1080/21691401.2017.1376675. PubMed DOI
Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.D.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC
Nguyen J., Steele T.W.J., Merkel O., Reul R., Kissel T. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J. Control. Release. 2008;132:243–251. doi: 10.1016/j.jconrel.2008.06.010. PubMed DOI PMC
Brown S.B., Wang L., Jungels R.R., Sharma B. Effects of cartilage-targeting moieties on nanoparticle biodistribution in healthy and osteoarthritic joints. Acta Biomater. 2020;101:469–483. doi: 10.1016/j.actbio.2019.10.003. PubMed DOI PMC
Zhang C.-x., Cheng Y., Liu D.-z., Liu M., Cui H., Zhang B.-l., Mei Q.-b., Zhou S.-y. Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J. Nanobiotechnol. 2019;17:18. doi: 10.1186/s12951-019-0451-9. PubMed DOI PMC
Dong Y., Ng W.K., Shen S., Kim S., Tan R.B.H. Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydr. Polym. 2013;94:940–945. doi: 10.1016/j.carbpol.2013.02.013. PubMed DOI
He C.B., Yue H.M., Xu L., Liu Y.F., Song Y.D., Tang C., Yin C.H. siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. Acta Biomater. 2020;103:213–222. doi: 10.1016/j.actbio.2019.12.005. PubMed DOI
Zhang L.B., Beatty A., Lu L., Abdalrahman A., Makris T.M., Wang G.R., Wang Q. Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020;111:110768. doi: 10.1016/j.msec.2020.110768. PubMed DOI
Kucuk I., Edirisinghe M. Microfluidic preparation of polymer nanospheres. J. Nanopart. Res. 2014;16:2626. doi: 10.1007/s11051-014-2626-5. PubMed DOI PMC
Palmerston Mendes L., Pan J., Torchilin V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017;22:1401. doi: 10.3390/molecules22091401. PubMed DOI PMC
Abbasi E., Aval S.F., Akbarzadeh A., Milani M., Nasrabadi H.T., Joo S.W., Hanifehpour Y., Nejati-Koshki K., Pashaei-Asl R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014;9:247. doi: 10.1186/1556-276X-9-247. PubMed DOI PMC
Ghosh B., Biswas S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release. 2021;332:127–147. doi: 10.1016/j.jconrel.2021.02.016. PubMed DOI
Rideau E., Dimova R., Schwille P., Wurm F.R., Landfester K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem. Soc. Rev. 2018;47:8572–8610. doi: 10.1039/C8CS00162F. PubMed DOI
Thambi T., Deepagan V.G., Ko H., Lee D.S., Park J.H. Bioreducible polymersomes for intracellular dual-drug delivery. J. Mater. Chem. 2012;22:22028–22036. doi: 10.1039/c2jm34546c. DOI
Kim H.O., Kim E., An Y., Choi J., Jang E., Choi E.B., Kukreja A., Kim M.H., Kang B., Kim D.J., et al. A biodegradable polymersome containing Bcl-xL siRNA and doxorubicin as a dual delivery vehicle for a synergistic anticancer effect. Macromol. Biosci. 2013;13:745–754. doi: 10.1002/mabi.201200448. PubMed DOI
Huang Z.H., Teng W., Liu L.S., Wang L.C., Wang Q.M., Dong Y.G. Efficient cytosolic delivery mediated by polymersomes facilely prepared from a degradable, amphiphilic, and amphoteric copolymer. Nanotechnology. 2013;24:265104. doi: 10.1088/0957-4484/24/26/265104. PubMed DOI
Gouveia M.G., Wesseler J.P., Ramaekers J., Weder C., Scholten P.B.V., Bruns N. Polymersome-based protein drug delivery—Quo vadis? Chem. Soc. Rev. 2023;52:728–778. doi: 10.1039/D2CS00106C. PubMed DOI PMC
Hamidi M., Azadi A., Rafiei P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008;60:1638–1649. doi: 10.1016/j.addr.2008.08.002. PubMed DOI
Nunes D., Andrade S., Ramalho M.J., Loureiro J.A., Pereira M.C. Polymeric nanoparticles-loaded hydrogels for biomedical applications: A Systematic review on in vivo findings. Polymers. 2022;14:1010. doi: 10.3390/polym14051010. PubMed DOI PMC
Sonkar C., Ranjan R., Mukhopadhyay S. Inorganic nanoparticle-based nanogels and their biomedical applications. Dalton Trans. 2025;54:6346–6360. doi: 10.1039/D4DT02986K. PubMed DOI
Kim D., Kim J., Park Y.I., Lee N., Hyeon T. Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent. Sci. 2018;4:324–336. doi: 10.1021/acscentsci.7b00574. PubMed DOI PMC
Wu L., Wen W., Wang X., Huang D., Cao J., Qi X., Shen S. Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs. Part. Fibre Toxicol. 2022;19:24. doi: 10.1186/s12989-022-00465-y. PubMed DOI PMC
Bonvalot S., Rutkowski P.L., Thariat J., Carrère S., Ducassou A., Sunyach M.-P., Agoston P., Hong A., Mervoyer A., Rastrelli M., et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): A multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019;20:1148–1159. doi: 10.1016/S1470-2045(19)30326-2. PubMed DOI
Yang W., Liang H., Ma S., Wang D., Huang J. Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sustain. Mater. Technol. 2019;22:e00109. doi: 10.1016/j.susmat.2019.e00109. DOI
Wang J.X., Potocny A.M., Rosenthal J., Day E.S. Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega. 2020;5:926–940. doi: 10.1021/acsomega.9b04150. PubMed DOI PMC
Falagan-Lotsch P., Grzincic E.M., Murphy C.J. One low-dose exposure of gold nanoparticles induces long-term changes in human cells. Proc. Natl. Acad. Sci. USA. 2016;113:13318–13323. doi: 10.1073/pnas.1616400113. PubMed DOI PMC
Stern J.M., Kibanov Solomonov V.V., Sazykina E., Schwartz J.A., Gad S.C., Goodrich G.P. Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int. J. Toxicol. 2016;35:38–46. doi: 10.1177/1091581815600170. PubMed DOI
Rastinehad A.R., Anastos H., Wajswol E., Winoker J.S., Sfakianos J.P., Doppalapudi S.K., Carrick M.R., Knauer C.J., Taouli B., Lewis S.C., et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA. 2019;116:18590–18596. doi: 10.1073/pnas.1906929116. PubMed DOI PMC
Kumthekar P., Ko C.H., Paunesku T., Dixit K., Sonabend A.M., Bloch O., Tate M., Schwartz M., Zuckerman L., Lezon R., et al. A first-in-human phase 0 clinical study of RNA interference–based spherical nucleic acids in patients with recurrent glioblastoma. Sci. Transl. Med. 2021;13:eabb3945. doi: 10.1126/scitranslmed.abb3945. PubMed DOI PMC
Jang J., Nah H., Lee J.-H., Moon S.H., Kim M.G., Cheon J. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem.-Int. Edit. 2009;48:1234–1238. doi: 10.1002/anie.200805149. PubMed DOI
Arias L.S., Pessan J.P., Vieira A.P.M., de Lima T.M.T., Delbem A.C.B., Monteiro D.R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 2018;7:46. doi: 10.3390/antibiotics7020046. PubMed DOI PMC
Gudkov S.V., Burmistrov D.E., Serov D.A., Rebezov M.B., Semenova A.A., Lisitsyn A.B. Do iron oxide nanoparticles have significant antibacterial properties? Antibiotics. 2021;10:884. doi: 10.3390/antibiotics10070884. PubMed DOI PMC
Kang M., Lim C.-H., Han J.-H. Comparison of toxicity and deposition of nano-sized carbon black aerosol prepared with or without dispersing sonication. Toxicol. Res. 2013;29:121–127. doi: 10.5487/TR.2013.29.2.121. PubMed DOI PMC
Mirshafiee V., Sun B.B., Chang C.H., Liao Y.P., Jiang W., Jiang J.H., Liu X.S., Wang X., Xia T., Nel A.E. Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in Kupffer cells and macrophages versus apoptosis in hepatocytes. ACS Nano. 2018;12:3836–3852. doi: 10.1021/acsnano.8b01086. PubMed DOI PMC
Uzhytchak M., Smolková B., Lunova M., Jirsa M., Frtús A., Kubinová S., Dejneka A., Lunov O. Iron oxide nanoparticle-induced autophagic flux is regulated by interplay between p53-mTOR axis and Bcl-2 signaling in hepatic cells. Cells. 2020;9:1015. doi: 10.3390/cells9041015. PubMed DOI PMC
Sukhanova A., Bozrova S., Sokolov P., Berestovoy M., Karaulov A., Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 2018;13:44. doi: 10.1186/s11671-018-2457-x. PubMed DOI PMC
Arvizo R., Resham B., Mukherjee P. Gold nanoparticles: Opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv. 2010;7:753–763. doi: 10.1517/17425241003777010. PubMed DOI PMC
Cui M., Wiraja C., Qi L.W., Ting S.C.W., Jana D., Zheng M., Hu X., Xu C. One-step synthesis of amine-coated ultra-small mesoporous silica nanoparticles. Nano Res. 2020;13:1592–1596. doi: 10.1007/s12274-020-2775-z. DOI
Liu Y., Zhao Y.L., Sun B.Y., Chen C.Y. Understanding the toxicity of carbon nanotubes. Accounts Chem. Res. 2013;46:702–713. doi: 10.1021/ar300028m. PubMed DOI
Carnovale C., Bryant G., Shukla R., Bansal V. Identifying trends in gold nanoparticle toxicity and uptake: Size, shape, capping ligand, and biological corona. ACS Omega. 2019;4:242–256. doi: 10.1021/acsomega.8b03227. DOI
Wang D., Peng Y., Li Y., Kpegah J.K.S.K., Chen S. Multifunctional inorganic biomaterials: New weapons targeting osteosarcoma. Front. Mol. Biosci. 2023;9:1105540. doi: 10.3389/fmolb.2022.1105540. PubMed DOI PMC
Della Camera G., Liu T., Yang W., Li Y., Puntes V.F., Gioria S., Italiani P., Boraschi D. Induction of innate memory in human monocytes exposed to mixtures of bacterial agents and nanoparticles. Int. J. Mol. Sci. 2022;23:14655. doi: 10.3390/ijms232314655. PubMed DOI PMC
Dhawan A., Sharma V. Toxicity assessment of nanomaterials: Methods and challenges. Anal. Bioanal. Chem. 2010;398:589–605. doi: 10.1007/s00216-010-3996-x. PubMed DOI
Öztürk K., Kaplan M., Çalis S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int. J. Pharm. 2024;666:124799. doi: 10.1016/j.ijpharm.2024.124799. PubMed DOI
Awashra M., Mlynarz P. The toxicity of nanoparticles and their interaction with cells: An in vitro metabolomic perspective. Nanoscale Adv. 2023;5:2674–2723. doi: 10.1039/D2NA00534D. PubMed DOI PMC
He C.B., Hu Y.P., Yin L.C., Tang C., Yin C.H. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–3666. doi: 10.1016/j.biomaterials.2010.01.065. PubMed DOI
Bai X., Liu F., Liu Y., Li C., Wang S.Q., Zhou H.Y., Wang W.Y., Zhu H., Winkler D.A., Yan B. Toward a systematic exploration of nano-bio interactions. Toxicol. Appl. Pharmacol. 2017;323:66–73. doi: 10.1016/j.taap.2017.03.011. PubMed DOI PMC
Cheng L.-C., Jiang X., Wang J., Chen C., Liu R.-S. Nano–bio effects: Interaction of nanomaterials with cells. Nanoscale. 2013;5:3547–3569. doi: 10.1039/c3nr34276j. PubMed DOI
Huo S.D., Jin S.B., Ma X.W., Xue X.D., Yang K.N., Kumar A., Wang P.C., Zhang J.C., Hu Z.B., Liang X.J. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano. 2014;8:5852–5862. doi: 10.1021/nn5008572. PubMed DOI PMC
Foroozandeh P., Aziz A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018;13:339. doi: 10.1186/s11671-018-2728-6. PubMed DOI PMC
Rennick J.J., Johnston A.P.R., Parton R.G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 2021;16:266–276. doi: 10.1038/s41565-021-00858-8. PubMed DOI
Donahue N.D., Acar H., Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 2019;143:68–96. doi: 10.1016/j.addr.2019.04.008. PubMed DOI
Zhu M.T., Nie G.J., Meng H., Xia T., Nel A., Zhao Y.L. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res. 2013;46:622–631. doi: 10.1021/ar300031y. PubMed DOI PMC
Jiang W., Kim B.Y.S., Rutka J.T., Chan W.C.W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008;3:145–150. doi: 10.1038/nnano.2008.30. PubMed DOI
Chaparro D., Goudeli E. Design of engineered nanoparticles for biomedical applications by computational modeling. Nanoscale. 2025;17:9705–9737. doi: 10.1039/D4NR05199H. PubMed DOI
Dolai J., Mandal K., Jana N.R. Nanoparticle size effects in biomedical applications. ACS Appl. Nano Mater. 2021;4:6471–6496. doi: 10.1021/acsanm.1c00987. DOI
Zhang Y.N., Poon W., Tavares A.J., McGilvray I.D., Chan W.C.W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release. 2016;240:332–348. doi: 10.1016/j.jconrel.2016.01.020. PubMed DOI
Renwick L.C., Donaldson K., Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol. Appl. Pharmacol. 2001;172:119–127. doi: 10.1006/taap.2001.9128. PubMed DOI
Buzea C., Pacheco I.I., Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2:MR17–MR71. doi: 10.1116/1.2815690. PubMed DOI
Bakhshi S., Shoari A., Alibolandi P., Ganji M., Ghazy E., Rahdar A., Fathi-karkan S., Pandey S. Emerging innovations in vincristine-encapsulated nanoparticles: Pioneering a new era in oncological therapeutics. J. Drug Deliv. Sci. Technol. 2024;91:105270. doi: 10.1016/j.jddst.2023.105270. DOI
Kim I.-Y., Joachim E., Choi H., Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomed. Nanotechnol. Biol. Med. 2015;11:1407–1416. doi: 10.1016/j.nano.2015.03.004. PubMed DOI
Chen L.Q., Fang L., Ling J., Ding C.Z., Kang B., Huang C.Z. Nanotoxicity of silver nanoparticles to red blood cells: Size dependent adsorption, uptake, and hemolytic activity. Chem. Res. Toxicol. 2015;28:501–509. doi: 10.1021/tx500479m. PubMed DOI
Huang X.L., Li L.L., Liu T.L., Hao N.J., Liu H.Y., Chen D., Tang F.Q. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility. ACS Nano. 2011;5:5390–5399. doi: 10.1021/nn200365a. PubMed DOI
Gratton S.E.A., Ropp P.A., Pohlhaus P.D., Luft J.C., Madden V.J., Napier M.E., DeSimone J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA. 2008;105:11613–11618. doi: 10.1073/pnas.0801763105. PubMed DOI PMC
Kus-Liskiewicz M., Fickers P., Ben Tahar I. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations. Int. J. Mol. Sci. 2021;22:10952. doi: 10.3390/ijms222010952. PubMed DOI PMC
Li L.L., Liu T.L., Fu C.H., Tan L.F., Meng X.W., Liu H.Y. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomed. Nanotechnol. Biol. Med. 2015;11:1915–1924. doi: 10.1016/j.nano.2015.07.004. PubMed DOI
Li Y., Kröger M., Liu W.K. Shape effect in cellular uptake of PEGylated nanoparticles: Comparison between sphere, rod, cube and disk. Nanoscale. 2015;7:16631–16646. doi: 10.1039/C5NR02970H. PubMed DOI
Sharifi S., Behzadi S., Laurent S., Laird Forrest M., Stroeve P., Mahmoudi M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012;41:2323–2343. doi: 10.1039/C1CS15188F. PubMed DOI PMC
Yan L., Zhao F., Wang J., Zu Y., Gu Z., Zhao Y. A safe-by-design strategy towards safer nanomaterials in nanomedicines. Adv. Mater. 2019;31:1805391. doi: 10.1002/adma.201805391. PubMed DOI
Wu L., Shan W., Zhang Z.R., Huang Y. Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Adv. Drug Deliv. Rev. 2018;124:150–163. doi: 10.1016/j.addr.2017.10.001. PubMed DOI
Li M., Zhang H., Hou Y., Wang X., Xue C., Li W., Cai K., Zhao Y., Luo Z. State-of-the-art iron-based nanozymes for biocatalytic tumor therapy. Nanoscale Horiz. 2020;5:202–217. doi: 10.1039/C9NH00577C. DOI
Kiaie S.H., Zolbanin N.M., Ahmadi A., Bagherifar R., Valizadeh H., Kashanchi F., Jafari R. Recent advances in mRNA-LNP therapeutics: Immunological and pharmacological aspects. J. Nanobiotechnol. 2022;20:276. doi: 10.1186/s12951-022-01478-7. PubMed DOI PMC
Cai R., Ren J.Y., Ji Y.L., Wang Y.L., Liu Y., Chen Z.G., Sabet Z.F., Wu X.C., Lynch I., Chen C.Y. Corona of thorns: The surface chemistry-mediated protein corona perturbs the recognition and immune response of macrophages. ACS Appl. Mater. Interfaces. 2020;12:1997–2008. doi: 10.1021/acsami.9b15910. PubMed DOI
Augustine R., Hasan A., Primavera R., Wilson R.J., Thakor A.S., Kevadiya B.D. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 2020;25:101692. doi: 10.1016/j.mtcomm.2020.101692. DOI
Jerzykiewicz J., Czogalla A. Polyethyleneimine-based lipopolyplexes as carriers in anticancer gene therapies. Materials. 2022;15:179. doi: 10.3390/ma15010179. PubMed DOI PMC
Manshian B.B., Pokhrel S., Mädler L., Soenen S.J. The impact of nanoparticle-driven lysosomal alkalinization on cellular functionality. J. Nanobiotechnol. 2018;16:85. doi: 10.1186/s12951-018-0413-7. PubMed DOI PMC
Vukovic B., Milic M., Dobrosevic B., Milic M., Ilic K., Pavicic I., Seric V., Vrcek I.V. Surface stabilization affects toxicity of silver nanoparticles in human peripheral blood mononuclear cells. Nanomaterials. 2020;10:1390. doi: 10.3390/nano10071390. PubMed DOI PMC
Mihalache R., Verbeek J., Graczyk H., Murashov V., van Broekhuizen P. Occupational exposure limits for manufactured nanomaterials, a systematic review. Nanotoxicology. 2017;11:7–19. doi: 10.1080/17435390.2016.1262920. PubMed DOI
Kuhlbusch T.A.J., Asbach C., Fissan H., Göhler D., Stintz M. Nanoparticle exposure at nanotechnology workplaces: A review. Part. Fibre Toxicol. 2011;8:22. doi: 10.1186/1743-8977-8-22. PubMed DOI PMC
Missaoui W.N., Arnold R.D., Cummings B.S. Toxicological status of nanoparticles: What we know and what we don’t know. Chem.-Biol. Interact. 2018;295:1–12. doi: 10.1016/j.cbi.2018.07.015. PubMed DOI PMC
Murugadoss S., Godderis L., Ghosh M., Hoet P.H. Assessing the toxicological relevance of nanomaterial agglomerates and aggregates using realistic exposure in vitro. Nanomaterials. 2021;11:1793. doi: 10.3390/nano11071793. PubMed DOI PMC
Bruinink A., Wang J., Wick P. Effect of particle agglomeration in nanotoxicology. Arch. Toxicol. 2015;89:659–675. doi: 10.1007/s00204-015-1460-6. PubMed DOI
Sridhar K., Inbaraj B.S., Chen B.H. Recent advances on nanoparticle based strategies for improving carotenoid stability and biological activity. Antioxidants. 2021;10:713. doi: 10.3390/antiox10050713. PubMed DOI PMC
Biola-Clier M., Beal D., Caillat S., Libert S., Armand L., Herlin-Boime N., Sauvaigo S., Douki T., Carriere M. Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis. 2017;32:161–172. doi: 10.1093/mutage/gew055. PubMed DOI
Ke P.C., Lin S., Parak W.J., Davis T.P., Caruso F. A decade of the protein corona. ACS Nano. 2017;11:11773–11776. doi: 10.1021/acsnano.7b08008. PubMed DOI
Barz M., Parak W.J., Zentel R. Concepts and approaches to reduce or avoid protein corona formation on nanoparticles: Challenges and opportunities. Adv. Sci. 2024;11:e2402935. doi: 10.1002/advs.202402935. PubMed DOI PMC
Wheeler K.E., Chetwynd A.J., Fahy K.M., Hong B.S., Tochihuitl J.A., Foster L.A., Lynch I. Environmental dimensions of the protein corona. Nat. Nanotechnol. 2021;16:617–629. doi: 10.1038/s41565-021-00924-1. PubMed DOI
Baimanov D., Cai R., Chen C.Y. Understanding the chemical nature of nanoparticle-protein interactions. Bioconjug. Chem. 2019;30:1923–1937. doi: 10.1021/acs.bioconjchem.9b00348. PubMed DOI
Stepien G., Moros M., Pérez-Hernández M., Monge M., Gutiérrez L., Fratila R.M., Heras M.D., Guillén S.M., Lanzarote J.J.P., Solans C., et al. Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in vivo. ACS Appl. Mater. Interfaces. 2018;10:4548–4560. doi: 10.1021/acsami.7b18648. PubMed DOI
Smolková B., MacCulloch T., Rockwood T.F., Liu M.H., Henry S.J.W., Frtús A., Uzhytchak M., Lunova M., Hof M., Jurkiewicz P., et al. Protein corona inhibits endosomal escape of functionalized DNA nanostructures in living cells. ACS Appl. Mater. Interfaces. 2021;13:46375–46390. doi: 10.1021/acsami.1c14401. PubMed DOI PMC
Lesniak A., Salvati A., Santos-Martinez M.J., Radomski M.W., Dawson K.A., Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 2013;135:1438–1444. doi: 10.1021/ja309812z. PubMed DOI
Wang L., Hartel N., Ren K.X., Graham N.A., Malmstadt N. Effect of protein corona on nanoparticle-plasma membrane and nanoparticle-biomimetic membrane interactions. Environ. Sci. Nano. 2020;7:963–974. doi: 10.1039/D0EN00035C. DOI
Persaud I., Shannahan J.H., Raghavendra A.J., Alsaleh N.B., Podila R., Brown J.M. Biocorona formation contributes to silver nanoparticle induced endoplasmic reticulum stress. Ecotoxicol. Environ. Saf. 2019;170:77–86. doi: 10.1016/j.ecoenv.2018.11.107. PubMed DOI PMC
Huang Z., Wu L., Wang W., Zhou Y., Zhang X., Huang Y., Pan X., Wu C. Unraveling the pulmonary drug delivery carriers in inhalable nanostructures. J. Nanopart. Res. 2022;24:10. doi: 10.1007/s11051-021-05384-1. PubMed DOI PMC
Tan Y., Zhu X.Y., Wu D., Song E.Q., Song Y. Compromised autophagic effect of polystyrene nanoplastics mediated by protein corona was recovered after lysosomal degradation of corona. Environ. Sci. Technol. 2020;54:11485–11493. doi: 10.1021/acs.est.0c04097. PubMed DOI
Adhipandito C.F., Cheung S.H., Lin Y.H., Wu S.H. Atypical renal clearance of nanoparticles larger than the kidney filtration threshold. Int. J. Mol. Sci. 2021;22:11182. doi: 10.3390/ijms222011182. PubMed DOI PMC
Sohal I.S., Cho Y.K., O’Fallon K.S., Gaines P., Demokritou P., Bello D. Dissolution behavior and biodurability of ingested engineered nanomaterials in the gastrointestinal environment. ACS Nano. 2018;12:8115–8128. doi: 10.1021/acsnano.8b02978. PubMed DOI
Lee S.H., Jun B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019;20:865. doi: 10.3390/ijms20040865. PubMed DOI PMC
Egbuna C., Parmar V.K., Jeevanandam J., Ezzat S.M., Patrick-Iwuanyanwu K.C., Adetunji C.O., Khan J., Onyeike E.N., Uche C.Z., Akram M., et al. Toxicity of nanoparticles in biomedical application: Nanotoxicology. J. Toxicol. 2021;2021:954443. doi: 10.1155/2021/9954443. PubMed DOI PMC
Wang L.M., Zhang T.L., Li P.Y., Huang W.X., Tang J.L., Wang P.Y., Liu J., Yuan Q.X., Bai R., Li B., et al. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano. 2015;9:6532–6547. doi: 10.1021/acsnano.5b02483. PubMed DOI
Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 2013;87:1181–1200. doi: 10.1007/s00204-013-1079-4. PubMed DOI PMC
Khanna P., Ong C., Bay B.H., Baeg G.H. Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials. 2015;5:1163–1180. doi: 10.3390/nano5031163. PubMed DOI PMC
Won Y.Y., Sharma R., Konieczny S.F. Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes. J. Control. Release. 2009;139:88–93. doi: 10.1016/j.jconrel.2009.06.031. PubMed DOI PMC
Liu N., Tang M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J. Appl.Toxicol. 2020;40:16–36. doi: 10.1002/jat.3817. PubMed DOI
Lee E., Lee M., Kwon S., Kim J., Kwon Y. Systematic and mechanistic analysis of AuNP-induced nanotoxicity for risk assessment of nanomedicine. Nano Converg. 2022;9:27. doi: 10.1186/s40580-022-00320-y. PubMed DOI PMC
Chen M., Wu T.S. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. Sci. Total Environ. 2024;912:168739. doi: 10.1016/j.scitotenv.2023.168739. PubMed DOI
Nowak-Jary J., Machnicka B. Comprehensive analysis of the potential toxicity of magnetic iron oxide nanoparticles for medical applications: Cellular mechanisms and systemic effects. Int. J. Mol. Sci. 2024;25:12013. doi: 10.3390/ijms252212013. PubMed DOI PMC
Xu B., Wu S., Wang Y., Ji Y., Liang S., Wang C., Tian X. Paradoxical roles of carbon nanotubes in cancer therapy and carcinogenesis. J. Nanotheranostics. 2024;5:84–98. doi: 10.3390/jnt5030006. DOI
Aula S., Lakkireddy S., Jamil K., Kapley A., Swamy A.V.N., Lakkireddy H.R. Biophysical, biopharmaceutical and toxicological significance of biomedical nanoparticles. RSC Adv. 2015;5:47830–47859. doi: 10.1039/C5RA05889A. DOI
Winnik F.M., Maysinger D. Quantum dot cytotoxicity and ways to reduce it. Acc. Chem. Res. 2013;46:672–680. doi: 10.1021/ar3000585. PubMed DOI
Liang M.M., Fan K.L., Zhou M., Duan D.M., Zheng J.Y., Yang D.L., Feng J., Yan X.Y. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl. Acad. Sci. USA. 2014;111:14900–14905. doi: 10.1073/pnas.1407808111. PubMed DOI PMC
Chakraborty S., Chakraborty A., Mukherjee B., Besra S.E., Dewanjee S., Mukherjee A., Sen R., Ojha P.K., Kumar V., Shaw T.K., et al. Assessment of superiority of HSP70-targeting aptamer-functionalized drug-nanocarrier over non-targeted commercially available counterpart in HCC therapy: In vitro and in vivo investigations and molecular modeling. Life Sci. 2023;317:121467. doi: 10.1016/j.lfs.2023.121467. PubMed DOI
Kurzatkowska K., Pazos M.A., Herschkowitz J.I., Hepel M. Cancer-targeted controlled delivery of chemotherapeutic anthracycline derivatives using apoferritin nanocage carriers. Int. J. Mol. Sci. 2021;22:1362. doi: 10.3390/ijms22031362. PubMed DOI PMC
Scomparin A., Salmaso S., Eldar-Boock A., Ben-Shushan D., Ferber S., Tiram G., Shmeeda H., Landa-Rouben N., Leor J., Caliceti P., et al. A comparative study of folate receptor-targeted doxorubicin delivery systems: Dosing regimens and therapeutic index. J. Control. Release. 2015;208:106–120. doi: 10.1016/j.jconrel.2015.04.009. PubMed DOI
Maksimenko A., Dosio F., Mougin J., Ferrero A., Wack S., Reddy L.H., Weyn A.A., Lepeltier E., Bourgaux C., Stella B., et al. A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity. Proc. Natl. Acad. Sci. USA. 2014;111:E217–E226. doi: 10.1073/pnas.1313459110. PubMed DOI PMC
Man F., Lammers T., de Rosales R.T.M. Imaging nanomedicine-based drug delivery: A review of clinical studies. Mol. Imaging. Biol. 2018;20:683–695. doi: 10.1007/s11307-018-1255-2. PubMed DOI PMC
Prabhakar U., Maeda H., Jain R.K., Sevick-Muraca E.M., Zamboni W., Farokhzad O.C., Barry S.T., Gabizon A., Grodzinski P., Blakey D.C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73:2412–2417. doi: 10.1158/0008-5472.CAN-12-4561. PubMed DOI PMC
Perry J.L., Reuter K.G., Luft J.C., Pecot C.V., Zamboni W., DeSimone J.M. Mediating passive tumor accumulation through particle size, tumor type, and location. Nano Lett. 2017;17:2879–2886. doi: 10.1021/acs.nanolett.7b00021. PubMed DOI PMC
Ouyang B., Poon W., Zhang Y.N., Lin Z.P., Kingston B.R., Tavares A.J., Zhang Y.W., Chen J., Valic M.S., Syed A.M., et al. The dose threshold for nanoparticle tumour delivery. Nat. Mater. 2020;19:1362–1371. doi: 10.1038/s41563-020-0755-z. PubMed DOI
Nguyen L.N.M., Lin Z.P., Sindhwani S., MacMillan P., Mladjenovic S.M., Stordy B., Ngo W., Chan W.C.W. The exit of nanoparticles from solid tumours. Nat. Mater. 2023;22:1261–1272. doi: 10.1038/s41563-023-01630-0. PubMed DOI
Petty H.R. Could nanoparticles that mimic the NADPH oxidase be used to kill tumor cells? Nanomedicine. 2016;11:1631–1634. doi: 10.2217/nnm-2016-0193. PubMed DOI
Klaper R., Arndt D., Bozich J., Dominguez G. Molecular interactions of nanomaterials and organisms: Defining biomarkers for toxicity and high-throughput screening using traditional and next-generation sequencing approaches. Analyst. 2014;139:882–895. doi: 10.1039/C3AN01644G. PubMed DOI
Gupta G., Kaur J., Bhattacharya K., Chambers B.J., Gazzi A., Furesi G., Rauner M., Fuoco C., Orecchioni M., Delogu L.G., et al. Exploiting mass spectrometry to unlock the mechanism of nanoparticle-induced inflammasome activation. ACS Nano. 2023;17:17451–17467. doi: 10.1021/acsnano.3c05600. PubMed DOI PMC
Lunov O., Syrovets T., Loos C., Nienhaus G.U., Mailänder V., Landfester K., Rouis M., Simmet T. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano. 2011;5:9648–9657. doi: 10.1021/nn203596e. PubMed DOI
Baron L., Gombault A., Fanny M., Villeret B., Savigny F., Guillou N., Panek C., Le Bert M., Lagente V., Rassendren F., et al. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine. Cell Death Dis. 2015;6:e1629. doi: 10.1038/cddis.2014.576. PubMed DOI PMC
Aschner M., Skalny A.V., Martins A.C., Tizabi Y., Zaitseva I.P., Santamaria A., Lu R.Z., Gluhcheva Y.Y., Tinkov A.A. The role of NLRP3 inflammasome activation in proinflammatory and cytotoxic effects of metal nanoparticles. Arch. Toxicol. 2025;99:1287–1314. doi: 10.1007/s00204-025-03972-x. PubMed DOI
Yazdi A.S., Guarda G., Riteau N., Drexler S.K., Tardivel A., Couillin I., Tschopp J. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc. Natl. Acad. Sci. USA. 2010;107:19449–19454. doi: 10.1073/pnas.1008155107. PubMed DOI PMC
Senapati V.A., Kumar A., Gupta G.S., Pandey A.K., Dhawan A. ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: A mechanistic approach. Food Chem. Toxicol. 2015;85:61–70. doi: 10.1016/j.fct.2015.06.018. PubMed DOI
Rangasami V.K., Samanta S., Parihar V.S., Asawa K., Zhu K.Y., Varghese O.P., Teramura Y., Nilsson B., Hilborn J., Harris R.A., et al. Harnessing hyaluronic acid-based nanoparticles for combination therapy: A novel approach for suppressing systemic inflammation and to promote antitumor macrophage polarization. Carbohydr. Polym. 2021;254:117291. doi: 10.1016/j.carbpol.2020.117291. PubMed DOI
Sarfraz M., Roa W., Bou-Chacra N., Löbenberg R. Inflammation caused by nanosized delivery systems: Is there a benefit? Mol. Pharm. 2016;13:3270–3278. doi: 10.1021/acs.molpharmaceut.6b00530. PubMed DOI
Xu H., Ren D. Lysosomal physiology. Annu. Rev. Physiol. 2015;77:57–80. doi: 10.1146/annurev-physiol-021014-071649. PubMed DOI PMC
Levada K., Pshenichnikov S., Omelyanchik A., Rodionova V., Nikitin A., Savchenko A., Schetinin I., Zhukov D., Abakumov M., Majouga A., et al. Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. Nano Converg. 2020;7:17. doi: 10.1186/s40580-020-00228-5. PubMed DOI PMC
Yang K.X., Lu Y., Xie F.Y., Zou H., Fan X.Y., Li B.H., Li W., Zhang W., Mei L., Feng S., et al. Cationic liposomes induce cell necrosis through lysosomal dysfunction and late-stage autophagic flux inhibition. Nanomedicine. 2016;11:3117–3137. doi: 10.2217/nnm-2016-0289. PubMed DOI
He G., Ma Y., Zhu Y., Yong L., Liu X., Wang P., Liang C., Yang C., Zhao Z., Hai B., et al. Cross talk between autophagy and apoptosis contributes to ZnO nanoparticle-induced human osteosarcoma cell death. Adv. Healthc. Mater. 2018;7:1800332. doi: 10.1002/adhm.201800332. PubMed DOI PMC
Li H., Zhang H., He X., Zhao P., Wu T., Xiahou J., Wu Y., Liu Y., Chen Y., Jiang X., et al. Blocking spatiotemporal crosstalk between subcellular organelles for enhancing anticancer therapy with nanointercepters. Adv. Mater. 2023;35:2211597. doi: 10.1002/adma.202211597. PubMed DOI
Li J.J., Zou L., Hartono D., Ong C.N., Bay B.H., Yung L.Y.L. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv. Mater. 2008;20:138–142. doi: 10.1002/adma.200701853. DOI
Avalos A., Haza A.I., Mateo D., Morales P. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J. Appl. Toxicol. 2014;34:413–423. doi: 10.1002/jat.2957. PubMed DOI
Ahamed M., Posgai R., Gorey T.J., Nielsen M., Hussain S.M., Rowe J.J. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharm. 2010;242:263–269. doi: 10.1016/j.taap.2009.10.016. PubMed DOI
Guo D.W., Zhu L.Y., Huang Z.H., Zhou H.X., Ge Y., Ma W.J., Wu J., Zhang X.Y., Zhou X.F., Zhang Y., et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials. 2013;34:7884–7894. doi: 10.1016/j.biomaterials.2013.07.015. PubMed DOI
Huo L.L., Chen R., Zhao L., Shi X.F., Bai R., Long D.X., Chen F., Zhao Y.L., Chang Y.Z., Chen C.Y. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials. 2015;61:307–315. doi: 10.1016/j.biomaterials.2015.05.029. PubMed DOI
Choi A.O., Brown S.E., Szyf M., Maysinger D. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J. Mol. Med.-JMM. 2008;86:291–302. doi: 10.1007/s00109-007-0274-2. PubMed DOI
Lam C.W., James J.T., McCluskey R., Hunter R.L. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004;77:126–134. doi: 10.1093/toxsci/kfg243. PubMed DOI
Morimoto Y., Horie M., Kobayashi N., Shinohara N., Shimada M. Inhalation toxicity assessment of carbon-based nanoparticles. Acc. Chem. Res. 2013;46:770–781. doi: 10.1021/ar200311b. PubMed DOI
Cui D.X., Tian F.R., Ozkan C.S., Wang M., Gao H.J. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 2005;155:73–85. doi: 10.1016/j.toxlet.2004.08.015. PubMed DOI
Alazzam A., Mfoumou E., Stiharu I., Kassab A., Darnel A., Yasmeen A., Sivakumar N., Bhat R., Al Moustafa A.E. Identification of deregulated genes by single wall carbon-nanotubes in human normal bronchial epithelial cells. Nanomed. Nanotechnol. Biol. Med. 2010;6:563–569. doi: 10.1016/j.nano.2009.12.005. PubMed DOI
Wang J.Y., Sun P.P., Bao Y.M., Liu J.W., An L.J. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol. Vitro. 2011;25:242–250. doi: 10.1016/j.tiv.2010.11.010. PubMed DOI
Pacurari M., Yin X.J., Zhao J.S., Ding M., Leonard S.S., Schwegier-Berry D., Ducatman B.S., Sbarra D., Hoover M.D., Castranova V., et al. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-κB, and Akt in normal and malignant human mesothelial cells. Environ. Health Perspect. 2008;116:1211–1217. doi: 10.1289/ehp.10924. PubMed DOI PMC
Sarkar A., Sil P.C. Iron oxide nanoparticles mediated cytotoxicity via PI3K/AKT pathway: Role of quercetin. Food Chem. Toxicol. 2014;71:106–115. doi: 10.1016/j.fct.2014.06.003. PubMed DOI
Shukla S., Jadaun A., Arora V., Sinha R.K., Biyani N., Jain V.K. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicol. Rep. 2015;2:27–39. doi: 10.1016/j.toxrep.2014.11.002. PubMed DOI PMC
Park E.J., Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Rep. 2009;184:18–25. doi: 10.1016/j.toxlet.2008.10.012. PubMed DOI
Liu X., Sun J.A. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-κB pathways. Biomaterials. 2010;31:8198–8209. doi: 10.1016/j.biomaterials.2010.07.069. PubMed DOI
Duan J.C., Yu Y.B., Yu Y., Wang J., Geng W.J., Jiang L.Z., Li Q.L., Zhou X.Q., Sun Z.W. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int. J. Nanomed. 2014;9:5131–5141. doi: 10.2147/IJN.S71074. PubMed DOI PMC
Shrivastava R., Raza S., Yadav A., Kushwaha P., Flora S.J.S. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem. Toxicol. 2014;37:336–347. doi: 10.3109/01480545.2013.866134. PubMed DOI
Park E.J., Yi J., Chung Y.H., Ryu D.Y., Choi J., Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett. 2008;180:222–229. doi: 10.1016/j.toxlet.2008.06.869. PubMed DOI
González-Esquivel A.E., Charles-Niño C.L., Pacheco-Moisés F.P., Ortiz G.G., Jaramillo-Juárez F., Rincón-Sánchez A.R. Beneficial effects of quercetin on oxidative stress in liver and kidney induced by titanium dioxide (TiO) nanoparticles in rats. Toxicol. Mech. Methods. 2015;25:166–175. doi: 10.3109/15376516.2015.1006491. PubMed DOI
Roy R., Parashar V., Chauhan L.K.S., Shanker R., Das M., Tripathi A., Dwivedi P.D. Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling. Toxicol. Vitr. 2014;28:457–467. doi: 10.1016/j.tiv.2013.12.004. PubMed DOI
Fukui H., Horie M., Endoh S., Kato H., Fujita K., Nishio K., Komaba L.K., Maru J., Miyauhi A., Nakamura A., et al. Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem.-Biol. Interact. 2012;198:29–37. doi: 10.1016/j.cbi.2012.04.007. PubMed DOI
Wu W.D., Samet J.M., Peden D.B., Bromberg P.A. Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells. Environ. Health Perspect. 2010;118:982–987. doi: 10.1289/ehp.0901635. PubMed DOI PMC
Elblová P., Lunova M., Dejneka A., Jirsa M., Lunov O. Impact of mechanical cues on key cell functions and cell-nanoparticle interactions. Discov. Nano. 2024;19:106. doi: 10.1186/s11671-024-04052-2. PubMed DOI PMC
Karlsson H.L., Gliga A.R., Calléja F.M.G.R., Gonçalves C.S.A.G., Wallinder I.O., Vrieling H., Fadeel B., Hendriks G. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines. Part. Fibre Toxicol. 2014;11:41. doi: 10.1186/s12989-014-0041-9. PubMed DOI PMC
Gliga A.R., Skoglund S., Wallinder I.O., Fadeel B., Karlsson H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014;11:11. doi: 10.1186/1743-8977-11-11. PubMed DOI PMC
Wolfram J., Zhu M.T., Yang Y., Shen J.L., Gentile E., Paolino D., Fresta M., Nie G.J., Chen C.Y., Shen H.F., et al. Safety of nanoparticles in medicine. Curr. Drug Targets. 2015;16:1671–1681. doi: 10.2174/1389450115666140804124808. PubMed DOI PMC
Chen Y.C., Su Y.C., Roffler S.R. Polyethylene glycol immunogenicity in nanomedicine. Nat. Rev. Bioeng. 2025:1–19. doi: 10.1038/s44222-025-00321-6. DOI
Fröhlich E. Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. Curr. Drug Metab. 2013;14:976–988. doi: 10.2174/1389200211314090004. PubMed DOI PMC
Kozenkova E., Levada K., Efremova M.V., Omelyanchik A., Nalench Y.A., Garanina A.S., Pshenichnikov S., Zhukov D.G., Lunov O., Lunova M., et al. Multifunctional Fe3O4-Au nanoparticles for the MRI diagnosis and potential treatment of liver cancer. Nanomaterials. 2020;10:1646. doi: 10.3390/nano10091646. PubMed DOI PMC
Awasthi S., Srivastava A., Kumar D., Pandey S.K., Mubarak N.M., Dehghani M.H., Ansari K. An insight into the toxicological impacts of carbon nanotubes (CNTs) on human health: A review. Environ. Adv. 2024;18:100601. doi: 10.1016/j.envadv.2024.100601. DOI
Bhattacharya K., Andón F.T., El-Sayed R., Fadeel B. Mechanisms of carbon nanotube-induced toxicity: Focus on pulmonary inflammation. Adv. Drug Deliv. Rev. 2013;65:2087–2097. doi: 10.1016/j.addr.2013.05.012. PubMed DOI
Seabra A.B., Durán N. Nanotoxicology of metal oxide nanoparticles. Metals. 2015;5:934–975. doi: 10.3390/met5020934. DOI
Andón F.T., Fadeel B. Programmed cell death: Molecular mechanisms and implications for safety assessment of nanomaterials. Acc. Chem. Res. 2013;46:733–742. doi: 10.1021/ar300020b. PubMed DOI
Witika B.A., Makoni P.A., Matafwali S.K., Chabalenge B., Mwila C., Kalungia A.C., Nkanga C.I., Bapolisi A.M., Walker R.B. Biocompatibility of biomaterials for nanoencapsulation: Current approaches. Nanomaterials. 2020;10:1649. doi: 10.3390/nano10091649. PubMed DOI PMC
Setyawati M.I., Tay C.Y., Leong D.T. The gap between endothelial cells: Key to the quick escape of nanomaterials? Nanomedicine. 2014;9:1591–1594. doi: 10.2217/nnm.14.104. PubMed DOI
Faria M., Björnmalm M., Thurecht K.J., Kent S.J., Parton R.G., Kavallaris M., Johnston A.P.R., Gooding J.J., Corrie S.R., Boyd B.J., et al. Minimum information reporting in bio-nano experimental literature. Nat. Nanotechnol. 2018;13:777–785. doi: 10.1038/s41565-018-0246-4. PubMed DOI PMC
Islas P., Platnich C.M., Gidi Y., Karimi R., Ginot L., Saliba D., Luo X., Cosa G., Sleiman H.F. Automated synthesis of DNA nanostructures. Adv. Mater. 2024;36:2403477. doi: 10.1002/adma.202403477. PubMed DOI
Luo X., Saliba D., Yang T.X., Gentile S., Mori K., Islas P., Das T., Bagheri N., Porchetta A., Guarne A., et al. Minimalist design of wireframe DNA nanotubes: Tunable geometry, size, chirality, and dynamics. Angew. Chem.-Int. Edit. 2023;62:e202309869. doi: 10.1002/anie.202309869. PubMed DOI
Wang J., Xie M., Ouyang L., Li J., Wang L., Fan C., Chao J. Artificial molecular communication network based on DNA nanostructures recognition. Nat. Commun. 2025;16:244. doi: 10.1038/s41467-024-55527-w. PubMed DOI PMC
Liu X., Shi B., Gao Y., Zhu S.T., Yan Q.L., Liu X.G., Shi J.Y., Li Q., Wang L.H., Li J., et al. Ultrabright near-infrared fluorescent DNA frameworks for near-single-cell cancer imaging. Nat. Photonics. 2024;19:79–88. doi: 10.1038/s41566-024-01543-7. DOI
Knappe G.A., Wamhoff E.C., Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. Nat. Rev. Mater. 2023;8:123–138. doi: 10.1038/s41578-022-00517-x. PubMed DOI PMC
Stephanopoulos N. Hybrid nanostructures from the self-assembly of proteins and DNA. Chem. 2020;6:364–405. doi: 10.1016/j.chempr.2020.01.012. DOI
Elblová P., Andelová H., Lunova M., Anthi J., Henry S.J.W., Tu X.Y., Dejneka A., Jirsa M., Stephanopoulos N., Lunov O. Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake. J. Mater. Chem. B. 2025;13:2335–2351. doi: 10.1039/D5TB00074B. PubMed DOI PMC
Frtus A., Smolkova B., Uzhytchak M., Lunova M., Jirsa M., Henry S.J.W., Dejneka A., Stephanopoulos N., Lunov O. The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomater. 2022;146:10–22. doi: 10.1016/j.actbio.2022.04.046. PubMed DOI PMC
Lacroix A., Sleiman H.F. DNA nanostructures: Current challenges and opportunities for cellular delivery. ACS Nano. 2021;15:3631–3645. doi: 10.1021/acsnano.0c06136. PubMed DOI
Elblová P., Lunova M., Henry S.J.W., Tu X.Y., Calé A., Dejneka A., Havelková J., Petrenko Y., Jirsa M., Stephanopoulos N., et al. Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells. Chem. Eng. J. 2024;498:155633. doi: 10.1016/j.cej.2024.155633. PubMed DOI PMC
Veneziano R., Moyer T.J., Stone M.B., Wamhoff E.C., Read B.J., Mukherjee S., Shepherd T.R., Das J., Schief W.R., Irvine D.J., et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat. Nanotechnol. 2020;15:716–723. doi: 10.1038/s41565-020-0719-0. PubMed DOI PMC
Hellmeier J., Platzer R., Eklund A.S., Schlichthaerle T., Karner A., Motsch V., Schneider M.C., Kurz E., Bamieh V., Brameshuber M., et al. DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens. Proc. Natl. Acad. Sci. USA. 2021;118:e2016857118. doi: 10.1073/pnas.2016857118. PubMed DOI PMC
Fang T., Alvelid J., Spratt J., Ambrosetti E., Testa I., Teixeira A. Spatial regulation of T-Cell signaling by programmed death-ligand 1 on wireframe DNA origami flat sheets. ACS Nano. 2021;15:3441–3452. doi: 10.1021/acsnano.0c10632. PubMed DOI PMC
Dong R., Aksel T., Chan W., Germain R.N., Vale R.D., Douglas S.M. DNA origami patterning of synthetic T cell receptors reveals spatial control of the sensitivity and kinetics of signal activation. Proc. Natl. Acad. Sci. USA. 2021;118:e2109057118. doi: 10.1073/pnas.2109057118. PubMed DOI PMC
Rosier B.J.H.M., Markvoort A.J., Audenis B.G., Roodhuizen J.A.L., den Hamer A., Brunsveld L., de Greef T.F.A. Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome. Nat. Catal. 2020;3:295–306. doi: 10.1038/s41929-019-0403-7. PubMed DOI PMC
Klein W.P., Thomsen R.P., Turner K.B., Walper S.A., Vranish J., Kjems J., Ancona M.G., Medintz I.L. Enhanced catalysis from multienzyme cascades assembled on a DNA origami triangle. ACS Nano. 2019;13:13677–13689. doi: 10.1021/acsnano.9b05746. PubMed DOI
Shaw A., Hoffecker I.T., Smyrlaki I., Rosa J., Grevys A., Bratlie D., Sandlie I., Michaelsen T.E., Andersen J.T., Högberg B. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol. 2019;14:184–190. doi: 10.1038/s41565-018-0336-3. PubMed DOI PMC
Li F., Liu Y.J., Dong Y.H., Chu Y.W., Song N.C., Yang D.Y. Dynamic assembly of DNA nanostructures in living cells for mitochondrial interference. J. Am. Chem. Soc. 2022;144:4667–4677. doi: 10.1021/jacs.2c00823. PubMed DOI
Dong Y.H., Li F., Lv Z.Y., Li S., Yuan M.H., Song N.C., Liu J.Q., Yang D.Y. Lysosome interference enabled by proton-driven dynamic assembly of DNA nanoframeworks inside cells. Angew. Chem.-Int. Edit. 2022;61:e202207770. doi: 10.1002/anie.202207770. PubMed DOI
Yang S., Cheng Y., Liu M.X., Tang J.P., Li S.Q., Huang Y., Kou X.H., Yao C., Yang D.Y. Sequential assembly of DNA nanoparticles inside cells enables lysosome interference and cell behavior regulation. Nano Today. 2024;56:102224. doi: 10.1016/j.nantod.2024.102224. DOI
Yuan M.H., Dong Y.H., Lv Z.Y., Liu J.Q., Liu M.X., Xu M.D., Guo X.C., Yao C., Yang D.Y. Controlled sequential assembly of DNA nanoparticles inside cells enabling mitochondrial interference. Adv. Funct. Mater. 2024;34:2312880. doi: 10.1002/adfm.202312880. DOI
Elblová P., Anthi J., Liu M.H., Lunova M., Jirsa M., Stephanopoulos N., Lunov O. DNA nanostructures for rational regulation of cellular organelles. JACS Au. 2025;5:1591–1616. doi: 10.1021/jacsau.5c00117. PubMed DOI PMC