Analyzing Molecular Determinants of Nanodrugs' Cytotoxic Effects

. 2025 Jul 11 ; 26 (14) : . [epub] 20250711

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, systematický přehled

Perzistentní odkaz   https://www.medvik.cz/link/pmid40724938

Grantová podpora
SENDISO-CZ.02.01.01/00/22_008/0004596 Operational Program Johannes Amos Comenius financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports

Nanodrugs hold great promise for targeted therapies, but their potential for cytotoxicity remains a major area of concern, threatening both patient safety and clinical translation. In this systematic review, we conducted a systematic investigation of nanotoxicity studies-identified through an AI-assisted screening procedure using Scopus, PubMed, and Elicit AI-to establish the molecular determinants of nanodrug-induced cytotoxicity. Our findings reveal three dominant and linked mechanisms that consistently act in a range of nanomaterials: oxidative stress, inflammatory signaling, and lysosomal disruption. Key nanomaterial properties like chemical structure, size, shape, surface charge, tendency to aggregate, and biocorona formation control these pathways, modulating cellular uptake, reactive oxygen species generation, cytokine release, and subcellular injury. Notably, the most frequent mechanism was oxidative stress, which often initiated downstream inflammatory and apoptotic signaling. By linking these toxicity pathways with particular nanoparticle characteristics, our review presents necessary guidelines for safer, more biocompatible nanodrug formulation design. This extensive framework acknowledges the imperative necessity for mechanistic toxicity assessment in nanopharmaceutical design and underscores the strength of AI tools in driving systematic toxicology studies.

Zobrazit více v PubMed

Bhatia S.N., Chen X., Dobrovolskaia M.A., Lammers T. Cancer nanomedicine. Nat. Rev. Cancer. 2022;22:550–556. doi: 10.1038/s41568-022-00496-9. PubMed DOI PMC

Younis M.A., Tawfeek H.M., Abdellatif A.A.H., Abdel-Aleem J.A., Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv. Drug Deliv. Rev. 2022;181:114083. doi: 10.1016/j.addr.2021.114083. PubMed DOI

[(accessed on 27 January 2025)]; Available online: https://commonfund.nih.gov/nanomedicine.

Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC

Fan D., Cao Y., Cao M., Wang Y., Cao Y., Gong T. Nanomedicine in cancer therapy. Signal Transduct. Target. Ther. 2023;8:293. doi: 10.1038/s41392-023-01536-y. PubMed DOI PMC

Havelikar U., Ghorpade K.B., Kumar A., Patel A., Singh M., Banjare N., Gupta P.N. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. Discov. Nano. 2024;19:165. doi: 10.1186/s11671-024-04118-1. PubMed DOI PMC

Wang J., Li Y.Y., Nie G.J. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater. 2021;6:766–783. doi: 10.1038/s41578-021-00315-x. PubMed DOI PMC

Szebeni J., Storm G., Ljubimova J.Y., Castells M., Phillips E.J., Turjeman K., Barenholz Y., Crommelin D.J.A., Dobrovolskaia M.A. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat. Nanotechnol. 2022;17:337–346. doi: 10.1038/s41565-022-01071-x. PubMed DOI

Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng. Transl. Med. 2021;6:e10246. doi: 10.1002/btm2.10246. PubMed DOI PMC

Uzhytchak M., Smolková B., Lunova M., Frtús A., Jirsa M., Dejneka A., Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv. Drug Deliv. Rev. 2023;197:114828. doi: 10.1016/j.addr.2023.114828. PubMed DOI

Herrmann I., Li Z.A., Bahal R., Conde J. Translating nanomedicines from the lab to the clinic. Cell Rep. Phys. Sci. 2025;6:102357. doi: 10.1016/j.xcrp.2024.102357. DOI

Dordevic S., Gonzalez M.M., Conejos-Sánchez I., Carreira B., Pozzi S., Acúrcio R.C., Satchi-Fainaro R., Florindo H.F., Vicent M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 2022;12:500–525. doi: 10.1007/s13346-021-01024-2. PubMed DOI PMC

Mitragotri S., Lammers T., Bae Y.H., Schwendeman S., De Smedt S., Leroux J.C., Peer D., Kwon I.C., Harashima H., Kikuchi A., et al. Drug delivery research for the future: Expanding the nano horizons and beyond. J. Control. Release. 2017;246:183–184. doi: 10.1016/j.jconrel.2017.01.011. PubMed DOI

Hua S., de Matos M.B.C., Metselaar J.M., Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol. 2018;9:790. doi: 10.3389/fphar.2018.00790. PubMed DOI PMC

Skrypnyk N.I., Siskind L.J., Faubel S., de Caestecker M.P. Bridging translation for acute kidney injury with better preclinical modeling of human disease. Am. J. Physiol.-Ren. Physiol. 2016;310:F972–F984. doi: 10.1152/ajprenal.00552.2015. PubMed DOI PMC

Joudeh N., Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 2022;20:262. doi: 10.1186/s12951-022-01477-8. PubMed DOI PMC

Wu L.B., Zhang J., Watanabe W. Physical and chemical stability of drug nanoparticles. Adv. Drug Deliv. Rev. 2011;63:456–469. doi: 10.1016/j.addr.2011.02.001. PubMed DOI

Huang Y., Guo X., Wu Y., Chen X., Feng L., Xie N., Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment. Signal Transduct. Target. Ther. 2024;9:34. doi: 10.1038/s41392-024-01745-z. PubMed DOI PMC

Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016;1:16014. doi: 10.1038/natrevmats.2016.14. DOI

Rosenblum D., Joshi N., Tao W., Karp J.M., Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018;9:1410. doi: 10.1038/s41467-018-03705-y. PubMed DOI PMC

Sun D.X., Zhou S., Gao W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano. 2020;14:12281–12290. doi: 10.1021/acsnano.9b09713. PubMed DOI

Wáng Y.X.J., Idée J.M. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant. Imaging Med. Surg. 2017;7:88–122. doi: 10.21037/qims.2017.02.09. PubMed DOI PMC

Kendall M., Lynch I. Long-term monitoring for nanomedicine implants and drugs. Nat. Nanotechnol. 2016;11:206–210. doi: 10.1038/nnano.2015.341. PubMed DOI

Rubin R. Black box warning for anemia drug. JAMA. 2015;313:1704. doi: 10.1001/jama.2015.4114. DOI

Sun T., Kang Y.Y., Liu J., Zhang Y.L., Ou L.L., Liu X.N., Lai R.F., Shao L.Q. Nanomaterials and hepatic disease: Toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. J. Nanobiotechnol. 2021;19:108. doi: 10.1186/s12951-021-00843-2. PubMed DOI PMC

Frtús A., Smolková B., Uzhytchak M., Lunova M., Jirsa M., Kubinová S., Dejneka A., Lunov O. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J. Control. Release. 2020;328:59–77. doi: 10.1016/j.jconrel.2020.08.036. PubMed DOI

Bobo D., Robinson K.J., Islam J., Thurecht K.J., Corrie S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016;33:2373–2387. doi: 10.1007/s11095-016-1958-5. PubMed DOI

Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019;4:e10143. doi: 10.1002/btm2.10143. PubMed DOI PMC

Aronson J.K., Ferner R.E. Joining the DoTS: New approach to classifying adverse drug reactions. BMJ. 2003;327:1222–1225. doi: 10.1136/bmj.327.7425.1222. PubMed DOI PMC

Coleman J.J., Pontefract S.K. Adverse drug reactions. Clin. Med. 2016;16:481–485. doi: 10.7861/clinmedicine.16-5-481. PubMed DOI PMC

Liebler D.C., Guengerich F.P. Elucidating mechanisms of drug-induced toxicity. Nat. Rev. Drug Discov. 2005;4:410–420. doi: 10.1038/nrd1720. PubMed DOI

Pognan F., Beilmann M., Boonen H.C.M., Czich A., Dear G., Hewitt P., Mow T., Oinonen T., Roth A., Steger-Hartmann T., et al. The evolving role of investigative toxicology in the pharmaceutical industry. Nat. Rev. Drug Discov. 2023;22:317–335. doi: 10.1038/s41573-022-00633-x. PubMed DOI PMC

Helal-Neto E., de Barros A.O.D., Saldanha-Gama R., Brandao-Costa R., Alencar L.M.R., dos Santos C.C., Martínez-Máñez R., Ricci-Junior E., Alexis F., Morandi V., et al. Molecular and cellular risk assessment of healthy human cells and cancer human cells exposed to nanoparticles. Int. J. Mol. Sci. 2020;21:230. doi: 10.3390/ijms21010230. PubMed DOI PMC

Laux P., Tentschert J., Riebeling C., Braeuning A., Creutzenberg O., Epp A., Fessard V., Haas K.H., Haase A., Hund-Rinke K., et al. Nanomaterials: Certain aspects of application, risk assessment and risk communication. Arch. Toxicol. 2018;92:121–141. doi: 10.1007/s00204-017-2144-1. PubMed DOI PMC

Thu H.E., Haider M., Khan S., Sohail M., Hussain Z. Nanotoxicity induced by nanomaterials: A review of factors affecting nanotoxicity and possible adaptations. OpenNano. 2023;14:100190. doi: 10.1016/j.onano.2023.100190. DOI

Jiang W., Wang Y., Wargo J.A., Lang F.F., Kim B.Y.S. Considerations for designing preclinical cancer immune nanomedicine studies. Nat. Nanotechnol. 2021;16:6–15. doi: 10.1038/s41565-020-00817-9. PubMed DOI PMC

Singh A.V., Laux P., Luch A., Sudrik C., Wiehr S., Wild A.-M., Santomauro G., Bill J., Sitti M. Review of emerging concepts in nanotoxicology: Opportunities and challenges for safer nanomaterial design. Toxicol. Mech. Methods. 2019;29:378–387. doi: 10.1080/15376516.2019.1566425. PubMed DOI

Owen A., Rannard S., Bawa R., Feng S.-S. Interdisciplinary nanomedicine publications through interdisciplinary peer-review. J. Interdiscip. Nanomed. 2016;1:4–8. doi: 10.1002/jin2.1. DOI

Tinkle S., McNeil S.E., Mühlebach S., Bawa R., Borchard G., Barenholz Y., Tamarkin L., Desai N. Nanomedicines: Addressing the scientific and regulatory gap. Ann. New York Acad. Sci. 2014;1313:35–56. doi: 10.1111/nyas.12403. PubMed DOI

[(accessed on 27 January 2025)]. Available online: https://www.ema.europa.eu/en/news/european-medicines-agency-publishes-reflection-paper-general-issues-consideration-regarding-coated.

Liz-Marzán L.M., Nel A.E., Brinker C.J., Chan W.C.W., Chen C.Y., Chen X.D., Ho D.A., Hu T., Kataoka K., Kotov N.A., et al. What do we mean when we say nanomedicine? ACS Nano. 2022;16:13257–13259. doi: 10.1021/acsnano.2c08675. PubMed DOI

Mulvaney P. Nanoscience vs nanotechnology-Defining the field. ACS Nano. 2015;9:2215–2217. doi: 10.1021/acsnano.5b01418. PubMed DOI

[(accessed on 27 January 2025)]; Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considering-whether-fda-regulated-product-involves-application-nanotechnology.

[(accessed on 27 January 2025)]; Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/drug.

Onoue S., Yamada S., Chan H.K. Nanodrugs: Pharmacokinetics and safety. Int. J. Nanomed. 2014;9:1025–1037. doi: 10.2147/IJN.S38378. PubMed DOI PMC

Wang B.L., Hu S.Q., Teng Y., Chen J.L., Wang H.Y., Xu Y.Z., Wang K.Y., Xu J.G., Cheng Y.Z., Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct. Target. Ther. 2024;9:200. doi: 10.1038/s41392-024-01889-y. PubMed DOI PMC

Shan X.T., Gong X., Li J., Wen J.Y., Li Y.P., Zhang Z.W. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B. 2022;12:3028–3048. doi: 10.1016/j.apsb.2022.02.025. PubMed DOI PMC

Khurana N., Sünner T., Hubbard O., Imburgia C., Stoddard G.J., Yellepeddi V., Ghandehari H., Watt K.M. Micellar encapsulation of propofol reduces its adsorption on extracorporeal membrane oxygenator (ECMO) circuit. AAPS J. 2023;25:52. doi: 10.1208/s12248-023-00817-2. PubMed DOI

Kumari S., Kumar V., Tiwari R.K., Ravidas V., Pandey K., Kumar A. Amphotericin B: A drug of choice for Visceral Leishmaniasis. Acta Trop. 2022;235:106661. doi: 10.1016/j.actatropica.2022.106661. PubMed DOI

Alberto A.G., Shira G.-P., Shadan M., Ninh M.L.-B. Thirty years from FDA approval of pegylated liposomal doxorubicin (Doxil/Caelyx): An updated analysis and future perspective. BMJ Oncol. 2025;4:e000573. PubMed PMC

Sirks M.J., Subhi Y., Rosenberg N., Hollak C.E.M., Boon C.J.F., Diederen R.M.H., Yzer S., Norel J., de Jong-Hesse Y., Schlingemann R.O., et al. Perspectives and update on the global shortage of verteporfin (visudyne®) Ophthalmol. Ther. 2024;13:1821–1831. doi: 10.1007/s40123-024-00952-9. PubMed DOI PMC

Strom J.B., Mulvagh S.L., Porter T.R., Wei K., Stout J.L., Main M.L. Contemporary safety of ultrasound enhancing agents in a nationwide analysis. J. Am. Heart Assoc. Logo. 2025;14:e039480. doi: 10.1161/JAHA.124.039480. PubMed DOI PMC

Singh A.P., Biswas A., Shukla A., Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019;4:33. doi: 10.1038/s41392-019-0068-3. PubMed DOI PMC

Layon S.A., Williams A.D., Burns H.R., Parham M.J., Monson L.A., Mohammad S., Buchanan E.P. Managing donor site pain after alveolar bone grafting: A comparative analysis of liposomal bupivacaine (exparel), bupivacaine-soaked gelfoam, and ON-Q ropivacaine. J. Craniofacial Surg. 2025;36:1291–1296. doi: 10.1097/SCS.0000000000011169. PubMed DOI

Brown M.B., Blair H.A. Liposomal irinotecan: A review as first-line therapy in metastatic pancreatic adenocarcinoma. Drugs. 2025;85:255–262. doi: 10.1007/s40265-024-02133-1. PubMed DOI

Liu Z.C., Fu Z., Liu Y.H., Jiao Y. Biomaterial-based drug delivery: Evaluating the safety profiles of liposomal Vyxeos. Drug Deliv. 2025;32:2494781. doi: 10.1080/10717544.2025.2494781. PubMed DOI PMC

Curtis J.R., Conrad D.M., Krueger W.S., Gara A.P., Winthrop K.L. Real-world data on the use of the Shingrix vaccine among patients with inflammatory arthritis and risk of cardiovascular events following herpes zoster. Arthritis Res. Ther. 2025;27:108. doi: 10.1186/s13075-025-03565-0. PubMed DOI PMC

Vaikkathillam P., Sajeevan A., Mohan S., Solomon A.P., Rajan P.P., Manjusree S., Kumar P., Thomas S. Genomic analysis of colistin and carbapenem resistant Klebsiella pneumoniae GC29. Microb. Pathog. 2025;199:107220. doi: 10.1016/j.micpath.2024.107220. PubMed DOI

Hawley J.J., Allen S.L., Thompson D.M., Schwarz A.J., Tranquart F.J.M. Commercially available ultrasound contrast agents: Factors contributing to favorable outcomes with ultrasound-mediated drug delivery and ultrasound localization microscopy imaging. Investig. Radiol. 2025 doi: 10.1097/RLI.0000000000001197. PubMed DOI

Stukan I., Zuk A., Pukacka K., Mierzejewska J., Pawlowski J., Kowalski B., Dabkowska M. Wolf in sheep’s clothing: Taming cancer’s resistance with human serum albumin? Int. J. Nanomed. 2025;20:3493–3525. doi: 10.2147/IJN.S500997. PubMed DOI PMC

Paik J., Duggan S.T., Keam S.J. Triamcinolone acetonide extended-release: A review in osteoarthritis pain of the knee. Drugs. 2019;79:455–462. doi: 10.1007/s40265-019-01083-3. PubMed DOI PMC

Borges G.S.M., Lima F.A., Carneiro G., Goulart G.A.C., Ferreira L.A.M. All-trans retinoic acid in anticancer therapy: How nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opin. Drug Deliv. 2021;18:1335–1354. doi: 10.1080/17425247.2021.1919619. PubMed DOI

Macdougall I.C., Comin-Colet J., Breymann C., Spahn D.R., Koutroubakis I.E. Iron sucrose: A wealth of experience in treating iron deficiency. Adv. Ther. 2020;37:1960–2002. doi: 10.1007/s12325-020-01323-z. PubMed DOI PMC

Germain M., Caputo F., Metcalfe S., Tosi G., Spring K., Åslund A.K.O., Pottier A., Schiffelers R., Ceccaldi A., Schmid R. Delivering the power of nanomedicine to patients today. J. Control. Release. 2020;326:164–171. doi: 10.1016/j.jconrel.2020.07.007. PubMed DOI PMC

Sercombe L., Veerati T., Moheimani F., Wu S.Y., Sood A.K., Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286. PubMed DOI PMC

Inglut C.T., Sorrin A.J., Kuruppu T., Vig S., Cicalo J., Ahmad H., Huang H.C. Immunological and toxicological considerations for the design of liposomes. Nanomaterials. 2020;10:190. doi: 10.3390/nano10020190. PubMed DOI PMC

Janos S., Moghimi S.M. Liposome triggering of innate immune responses: A perspective on benefits and adverse reactions. J. Liposome Res. 2009;19:85–90. PubMed

Moraes-Lacerda T., de Jesus M.B. Mechanisms of solid lipid nanoparticles-triggered signaling pathways in eukaryotic cells. Colloids Surf. B Biointerfaces. 2022;220:112863. doi: 10.1016/j.colsurfb.2022.112863. PubMed DOI

Allen T.M., Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013;65:36–48. doi: 10.1016/j.addr.2012.09.037. PubMed DOI

Hua S., Wu S.Y. The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol. 2013;4:143. doi: 10.3389/fphar.2013.00143. PubMed DOI PMC

Monteiro N., Martins A., Reis R.L., Neves N.M. Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface. 2014;11:20140459. doi: 10.1098/rsif.2014.0459. PubMed DOI PMC

Shafiei M., Ansari M.N.M., Abd Razak S.I., Khan M.U.A. A comprehensive review on the applications of exosomes and liposomes in regenerative medicine and tissue engineering. Polymers. 2021;13:2529. doi: 10.3390/polym13152529. PubMed DOI PMC

Gomes-da-Silva L.C., Fonseca N.A., Moura V., de Lima M.C.P., Simoes S., Moreira J.N. Lipid-based nanoparticles for siRNA delivery in cancer therapy: Paradigms and challenges. Accounts Chem. Res. 2012;45:1163–1171. doi: 10.1021/ar300048p. PubMed DOI

Tenchov R., Bird R., Curtze A.E., Zhou Q.Q. Lipid nanoparticles-From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15:16982–17015. doi: 10.1021/acsnano.1c04996. PubMed DOI

Cheng X.W., Lee R.J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 2016;99:129–137. doi: 10.1016/j.addr.2016.01.022. PubMed DOI

Berraondo P., Martini P.G.V., Avila M.A., Fontanellas A. Messenger RNA therapy for rare genetic metabolic diseases. Gut. 2019;68:1323–1330. doi: 10.1136/gutjnl-2019-318269. PubMed DOI

Patel S., Ryals R.C., Weller K.K., Pennesi M.E., Sahay G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J. Control. Release. 2019;303:91–100. doi: 10.1016/j.jconrel.2019.04.015. PubMed DOI PMC

Afsharzadeh M., Hashemi M., Mokhtarzadeh A., Abnous K., Ramezani M. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artif. Cells Nanomed. Biotechnol. 2018;46:1095–1110. doi: 10.1080/21691401.2017.1376675. PubMed DOI

Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.D.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC

Nguyen J., Steele T.W.J., Merkel O., Reul R., Kissel T. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J. Control. Release. 2008;132:243–251. doi: 10.1016/j.jconrel.2008.06.010. PubMed DOI PMC

Brown S.B., Wang L., Jungels R.R., Sharma B. Effects of cartilage-targeting moieties on nanoparticle biodistribution in healthy and osteoarthritic joints. Acta Biomater. 2020;101:469–483. doi: 10.1016/j.actbio.2019.10.003. PubMed DOI PMC

Zhang C.-x., Cheng Y., Liu D.-z., Liu M., Cui H., Zhang B.-l., Mei Q.-b., Zhou S.-y. Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J. Nanobiotechnol. 2019;17:18. doi: 10.1186/s12951-019-0451-9. PubMed DOI PMC

Dong Y., Ng W.K., Shen S., Kim S., Tan R.B.H. Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydr. Polym. 2013;94:940–945. doi: 10.1016/j.carbpol.2013.02.013. PubMed DOI

He C.B., Yue H.M., Xu L., Liu Y.F., Song Y.D., Tang C., Yin C.H. siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. Acta Biomater. 2020;103:213–222. doi: 10.1016/j.actbio.2019.12.005. PubMed DOI

Zhang L.B., Beatty A., Lu L., Abdalrahman A., Makris T.M., Wang G.R., Wang Q. Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020;111:110768. doi: 10.1016/j.msec.2020.110768. PubMed DOI

Kucuk I., Edirisinghe M. Microfluidic preparation of polymer nanospheres. J. Nanopart. Res. 2014;16:2626. doi: 10.1007/s11051-014-2626-5. PubMed DOI PMC

Palmerston Mendes L., Pan J., Torchilin V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017;22:1401. doi: 10.3390/molecules22091401. PubMed DOI PMC

Abbasi E., Aval S.F., Akbarzadeh A., Milani M., Nasrabadi H.T., Joo S.W., Hanifehpour Y., Nejati-Koshki K., Pashaei-Asl R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014;9:247. doi: 10.1186/1556-276X-9-247. PubMed DOI PMC

Ghosh B., Biswas S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release. 2021;332:127–147. doi: 10.1016/j.jconrel.2021.02.016. PubMed DOI

Rideau E., Dimova R., Schwille P., Wurm F.R., Landfester K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem. Soc. Rev. 2018;47:8572–8610. doi: 10.1039/C8CS00162F. PubMed DOI

Thambi T., Deepagan V.G., Ko H., Lee D.S., Park J.H. Bioreducible polymersomes for intracellular dual-drug delivery. J. Mater. Chem. 2012;22:22028–22036. doi: 10.1039/c2jm34546c. DOI

Kim H.O., Kim E., An Y., Choi J., Jang E., Choi E.B., Kukreja A., Kim M.H., Kang B., Kim D.J., et al. A biodegradable polymersome containing Bcl-xL siRNA and doxorubicin as a dual delivery vehicle for a synergistic anticancer effect. Macromol. Biosci. 2013;13:745–754. doi: 10.1002/mabi.201200448. PubMed DOI

Huang Z.H., Teng W., Liu L.S., Wang L.C., Wang Q.M., Dong Y.G. Efficient cytosolic delivery mediated by polymersomes facilely prepared from a degradable, amphiphilic, and amphoteric copolymer. Nanotechnology. 2013;24:265104. doi: 10.1088/0957-4484/24/26/265104. PubMed DOI

Gouveia M.G., Wesseler J.P., Ramaekers J., Weder C., Scholten P.B.V., Bruns N. Polymersome-based protein drug delivery—Quo vadis? Chem. Soc. Rev. 2023;52:728–778. doi: 10.1039/D2CS00106C. PubMed DOI PMC

Hamidi M., Azadi A., Rafiei P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008;60:1638–1649. doi: 10.1016/j.addr.2008.08.002. PubMed DOI

Nunes D., Andrade S., Ramalho M.J., Loureiro J.A., Pereira M.C. Polymeric nanoparticles-loaded hydrogels for biomedical applications: A Systematic review on in vivo findings. Polymers. 2022;14:1010. doi: 10.3390/polym14051010. PubMed DOI PMC

Sonkar C., Ranjan R., Mukhopadhyay S. Inorganic nanoparticle-based nanogels and their biomedical applications. Dalton Trans. 2025;54:6346–6360. doi: 10.1039/D4DT02986K. PubMed DOI

Kim D., Kim J., Park Y.I., Lee N., Hyeon T. Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent. Sci. 2018;4:324–336. doi: 10.1021/acscentsci.7b00574. PubMed DOI PMC

Wu L., Wen W., Wang X., Huang D., Cao J., Qi X., Shen S. Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs. Part. Fibre Toxicol. 2022;19:24. doi: 10.1186/s12989-022-00465-y. PubMed DOI PMC

Bonvalot S., Rutkowski P.L., Thariat J., Carrère S., Ducassou A., Sunyach M.-P., Agoston P., Hong A., Mervoyer A., Rastrelli M., et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): A multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019;20:1148–1159. doi: 10.1016/S1470-2045(19)30326-2. PubMed DOI

Yang W., Liang H., Ma S., Wang D., Huang J. Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sustain. Mater. Technol. 2019;22:e00109. doi: 10.1016/j.susmat.2019.e00109. DOI

Wang J.X., Potocny A.M., Rosenthal J., Day E.S. Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega. 2020;5:926–940. doi: 10.1021/acsomega.9b04150. PubMed DOI PMC

Falagan-Lotsch P., Grzincic E.M., Murphy C.J. One low-dose exposure of gold nanoparticles induces long-term changes in human cells. Proc. Natl. Acad. Sci. USA. 2016;113:13318–13323. doi: 10.1073/pnas.1616400113. PubMed DOI PMC

Stern J.M., Kibanov Solomonov V.V., Sazykina E., Schwartz J.A., Gad S.C., Goodrich G.P. Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int. J. Toxicol. 2016;35:38–46. doi: 10.1177/1091581815600170. PubMed DOI

Rastinehad A.R., Anastos H., Wajswol E., Winoker J.S., Sfakianos J.P., Doppalapudi S.K., Carrick M.R., Knauer C.J., Taouli B., Lewis S.C., et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA. 2019;116:18590–18596. doi: 10.1073/pnas.1906929116. PubMed DOI PMC

Kumthekar P., Ko C.H., Paunesku T., Dixit K., Sonabend A.M., Bloch O., Tate M., Schwartz M., Zuckerman L., Lezon R., et al. A first-in-human phase 0 clinical study of RNA interference–based spherical nucleic acids in patients with recurrent glioblastoma. Sci. Transl. Med. 2021;13:eabb3945. doi: 10.1126/scitranslmed.abb3945. PubMed DOI PMC

Jang J., Nah H., Lee J.-H., Moon S.H., Kim M.G., Cheon J. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem.-Int. Edit. 2009;48:1234–1238. doi: 10.1002/anie.200805149. PubMed DOI

Arias L.S., Pessan J.P., Vieira A.P.M., de Lima T.M.T., Delbem A.C.B., Monteiro D.R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 2018;7:46. doi: 10.3390/antibiotics7020046. PubMed DOI PMC

Gudkov S.V., Burmistrov D.E., Serov D.A., Rebezov M.B., Semenova A.A., Lisitsyn A.B. Do iron oxide nanoparticles have significant antibacterial properties? Antibiotics. 2021;10:884. doi: 10.3390/antibiotics10070884. PubMed DOI PMC

Kang M., Lim C.-H., Han J.-H. Comparison of toxicity and deposition of nano-sized carbon black aerosol prepared with or without dispersing sonication. Toxicol. Res. 2013;29:121–127. doi: 10.5487/TR.2013.29.2.121. PubMed DOI PMC

Mirshafiee V., Sun B.B., Chang C.H., Liao Y.P., Jiang W., Jiang J.H., Liu X.S., Wang X., Xia T., Nel A.E. Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in Kupffer cells and macrophages versus apoptosis in hepatocytes. ACS Nano. 2018;12:3836–3852. doi: 10.1021/acsnano.8b01086. PubMed DOI PMC

Uzhytchak M., Smolková B., Lunova M., Jirsa M., Frtús A., Kubinová S., Dejneka A., Lunov O. Iron oxide nanoparticle-induced autophagic flux is regulated by interplay between p53-mTOR axis and Bcl-2 signaling in hepatic cells. Cells. 2020;9:1015. doi: 10.3390/cells9041015. PubMed DOI PMC

Sukhanova A., Bozrova S., Sokolov P., Berestovoy M., Karaulov A., Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 2018;13:44. doi: 10.1186/s11671-018-2457-x. PubMed DOI PMC

Arvizo R., Resham B., Mukherjee P. Gold nanoparticles: Opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv. 2010;7:753–763. doi: 10.1517/17425241003777010. PubMed DOI PMC

Cui M., Wiraja C., Qi L.W., Ting S.C.W., Jana D., Zheng M., Hu X., Xu C. One-step synthesis of amine-coated ultra-small mesoporous silica nanoparticles. Nano Res. 2020;13:1592–1596. doi: 10.1007/s12274-020-2775-z. DOI

Liu Y., Zhao Y.L., Sun B.Y., Chen C.Y. Understanding the toxicity of carbon nanotubes. Accounts Chem. Res. 2013;46:702–713. doi: 10.1021/ar300028m. PubMed DOI

Carnovale C., Bryant G., Shukla R., Bansal V. Identifying trends in gold nanoparticle toxicity and uptake: Size, shape, capping ligand, and biological corona. ACS Omega. 2019;4:242–256. doi: 10.1021/acsomega.8b03227. DOI

Wang D., Peng Y., Li Y., Kpegah J.K.S.K., Chen S. Multifunctional inorganic biomaterials: New weapons targeting osteosarcoma. Front. Mol. Biosci. 2023;9:1105540. doi: 10.3389/fmolb.2022.1105540. PubMed DOI PMC

Della Camera G., Liu T., Yang W., Li Y., Puntes V.F., Gioria S., Italiani P., Boraschi D. Induction of innate memory in human monocytes exposed to mixtures of bacterial agents and nanoparticles. Int. J. Mol. Sci. 2022;23:14655. doi: 10.3390/ijms232314655. PubMed DOI PMC

Dhawan A., Sharma V. Toxicity assessment of nanomaterials: Methods and challenges. Anal. Bioanal. Chem. 2010;398:589–605. doi: 10.1007/s00216-010-3996-x. PubMed DOI

Öztürk K., Kaplan M., Çalis S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int. J. Pharm. 2024;666:124799. doi: 10.1016/j.ijpharm.2024.124799. PubMed DOI

Awashra M., Mlynarz P. The toxicity of nanoparticles and their interaction with cells: An in vitro metabolomic perspective. Nanoscale Adv. 2023;5:2674–2723. doi: 10.1039/D2NA00534D. PubMed DOI PMC

He C.B., Hu Y.P., Yin L.C., Tang C., Yin C.H. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–3666. doi: 10.1016/j.biomaterials.2010.01.065. PubMed DOI

Bai X., Liu F., Liu Y., Li C., Wang S.Q., Zhou H.Y., Wang W.Y., Zhu H., Winkler D.A., Yan B. Toward a systematic exploration of nano-bio interactions. Toxicol. Appl. Pharmacol. 2017;323:66–73. doi: 10.1016/j.taap.2017.03.011. PubMed DOI PMC

Cheng L.-C., Jiang X., Wang J., Chen C., Liu R.-S. Nano–bio effects: Interaction of nanomaterials with cells. Nanoscale. 2013;5:3547–3569. doi: 10.1039/c3nr34276j. PubMed DOI

Huo S.D., Jin S.B., Ma X.W., Xue X.D., Yang K.N., Kumar A., Wang P.C., Zhang J.C., Hu Z.B., Liang X.J. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano. 2014;8:5852–5862. doi: 10.1021/nn5008572. PubMed DOI PMC

Foroozandeh P., Aziz A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018;13:339. doi: 10.1186/s11671-018-2728-6. PubMed DOI PMC

Rennick J.J., Johnston A.P.R., Parton R.G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 2021;16:266–276. doi: 10.1038/s41565-021-00858-8. PubMed DOI

Donahue N.D., Acar H., Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 2019;143:68–96. doi: 10.1016/j.addr.2019.04.008. PubMed DOI

Zhu M.T., Nie G.J., Meng H., Xia T., Nel A., Zhao Y.L. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res. 2013;46:622–631. doi: 10.1021/ar300031y. PubMed DOI PMC

Jiang W., Kim B.Y.S., Rutka J.T., Chan W.C.W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008;3:145–150. doi: 10.1038/nnano.2008.30. PubMed DOI

Chaparro D., Goudeli E. Design of engineered nanoparticles for biomedical applications by computational modeling. Nanoscale. 2025;17:9705–9737. doi: 10.1039/D4NR05199H. PubMed DOI

Dolai J., Mandal K., Jana N.R. Nanoparticle size effects in biomedical applications. ACS Appl. Nano Mater. 2021;4:6471–6496. doi: 10.1021/acsanm.1c00987. DOI

Zhang Y.N., Poon W., Tavares A.J., McGilvray I.D., Chan W.C.W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release. 2016;240:332–348. doi: 10.1016/j.jconrel.2016.01.020. PubMed DOI

Renwick L.C., Donaldson K., Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol. Appl. Pharmacol. 2001;172:119–127. doi: 10.1006/taap.2001.9128. PubMed DOI

Buzea C., Pacheco I.I., Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2:MR17–MR71. doi: 10.1116/1.2815690. PubMed DOI

Bakhshi S., Shoari A., Alibolandi P., Ganji M., Ghazy E., Rahdar A., Fathi-karkan S., Pandey S. Emerging innovations in vincristine-encapsulated nanoparticles: Pioneering a new era in oncological therapeutics. J. Drug Deliv. Sci. Technol. 2024;91:105270. doi: 10.1016/j.jddst.2023.105270. DOI

Kim I.-Y., Joachim E., Choi H., Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomed. Nanotechnol. Biol. Med. 2015;11:1407–1416. doi: 10.1016/j.nano.2015.03.004. PubMed DOI

Chen L.Q., Fang L., Ling J., Ding C.Z., Kang B., Huang C.Z. Nanotoxicity of silver nanoparticles to red blood cells: Size dependent adsorption, uptake, and hemolytic activity. Chem. Res. Toxicol. 2015;28:501–509. doi: 10.1021/tx500479m. PubMed DOI

Huang X.L., Li L.L., Liu T.L., Hao N.J., Liu H.Y., Chen D., Tang F.Q. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility. ACS Nano. 2011;5:5390–5399. doi: 10.1021/nn200365a. PubMed DOI

Gratton S.E.A., Ropp P.A., Pohlhaus P.D., Luft J.C., Madden V.J., Napier M.E., DeSimone J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA. 2008;105:11613–11618. doi: 10.1073/pnas.0801763105. PubMed DOI PMC

Kus-Liskiewicz M., Fickers P., Ben Tahar I. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations. Int. J. Mol. Sci. 2021;22:10952. doi: 10.3390/ijms222010952. PubMed DOI PMC

Li L.L., Liu T.L., Fu C.H., Tan L.F., Meng X.W., Liu H.Y. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomed. Nanotechnol. Biol. Med. 2015;11:1915–1924. doi: 10.1016/j.nano.2015.07.004. PubMed DOI

Li Y., Kröger M., Liu W.K. Shape effect in cellular uptake of PEGylated nanoparticles: Comparison between sphere, rod, cube and disk. Nanoscale. 2015;7:16631–16646. doi: 10.1039/C5NR02970H. PubMed DOI

Sharifi S., Behzadi S., Laurent S., Laird Forrest M., Stroeve P., Mahmoudi M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012;41:2323–2343. doi: 10.1039/C1CS15188F. PubMed DOI PMC

Yan L., Zhao F., Wang J., Zu Y., Gu Z., Zhao Y. A safe-by-design strategy towards safer nanomaterials in nanomedicines. Adv. Mater. 2019;31:1805391. doi: 10.1002/adma.201805391. PubMed DOI

Wu L., Shan W., Zhang Z.R., Huang Y. Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Adv. Drug Deliv. Rev. 2018;124:150–163. doi: 10.1016/j.addr.2017.10.001. PubMed DOI

Li M., Zhang H., Hou Y., Wang X., Xue C., Li W., Cai K., Zhao Y., Luo Z. State-of-the-art iron-based nanozymes for biocatalytic tumor therapy. Nanoscale Horiz. 2020;5:202–217. doi: 10.1039/C9NH00577C. DOI

Kiaie S.H., Zolbanin N.M., Ahmadi A., Bagherifar R., Valizadeh H., Kashanchi F., Jafari R. Recent advances in mRNA-LNP therapeutics: Immunological and pharmacological aspects. J. Nanobiotechnol. 2022;20:276. doi: 10.1186/s12951-022-01478-7. PubMed DOI PMC

Cai R., Ren J.Y., Ji Y.L., Wang Y.L., Liu Y., Chen Z.G., Sabet Z.F., Wu X.C., Lynch I., Chen C.Y. Corona of thorns: The surface chemistry-mediated protein corona perturbs the recognition and immune response of macrophages. ACS Appl. Mater. Interfaces. 2020;12:1997–2008. doi: 10.1021/acsami.9b15910. PubMed DOI

Augustine R., Hasan A., Primavera R., Wilson R.J., Thakor A.S., Kevadiya B.D. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 2020;25:101692. doi: 10.1016/j.mtcomm.2020.101692. DOI

Jerzykiewicz J., Czogalla A. Polyethyleneimine-based lipopolyplexes as carriers in anticancer gene therapies. Materials. 2022;15:179. doi: 10.3390/ma15010179. PubMed DOI PMC

Manshian B.B., Pokhrel S., Mädler L., Soenen S.J. The impact of nanoparticle-driven lysosomal alkalinization on cellular functionality. J. Nanobiotechnol. 2018;16:85. doi: 10.1186/s12951-018-0413-7. PubMed DOI PMC

Vukovic B., Milic M., Dobrosevic B., Milic M., Ilic K., Pavicic I., Seric V., Vrcek I.V. Surface stabilization affects toxicity of silver nanoparticles in human peripheral blood mononuclear cells. Nanomaterials. 2020;10:1390. doi: 10.3390/nano10071390. PubMed DOI PMC

Mihalache R., Verbeek J., Graczyk H., Murashov V., van Broekhuizen P. Occupational exposure limits for manufactured nanomaterials, a systematic review. Nanotoxicology. 2017;11:7–19. doi: 10.1080/17435390.2016.1262920. PubMed DOI

Kuhlbusch T.A.J., Asbach C., Fissan H., Göhler D., Stintz M. Nanoparticle exposure at nanotechnology workplaces: A review. Part. Fibre Toxicol. 2011;8:22. doi: 10.1186/1743-8977-8-22. PubMed DOI PMC

Missaoui W.N., Arnold R.D., Cummings B.S. Toxicological status of nanoparticles: What we know and what we don’t know. Chem.-Biol. Interact. 2018;295:1–12. doi: 10.1016/j.cbi.2018.07.015. PubMed DOI PMC

Murugadoss S., Godderis L., Ghosh M., Hoet P.H. Assessing the toxicological relevance of nanomaterial agglomerates and aggregates using realistic exposure in vitro. Nanomaterials. 2021;11:1793. doi: 10.3390/nano11071793. PubMed DOI PMC

Bruinink A., Wang J., Wick P. Effect of particle agglomeration in nanotoxicology. Arch. Toxicol. 2015;89:659–675. doi: 10.1007/s00204-015-1460-6. PubMed DOI

Sridhar K., Inbaraj B.S., Chen B.H. Recent advances on nanoparticle based strategies for improving carotenoid stability and biological activity. Antioxidants. 2021;10:713. doi: 10.3390/antiox10050713. PubMed DOI PMC

Biola-Clier M., Beal D., Caillat S., Libert S., Armand L., Herlin-Boime N., Sauvaigo S., Douki T., Carriere M. Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis. 2017;32:161–172. doi: 10.1093/mutage/gew055. PubMed DOI

Ke P.C., Lin S., Parak W.J., Davis T.P., Caruso F. A decade of the protein corona. ACS Nano. 2017;11:11773–11776. doi: 10.1021/acsnano.7b08008. PubMed DOI

Barz M., Parak W.J., Zentel R. Concepts and approaches to reduce or avoid protein corona formation on nanoparticles: Challenges and opportunities. Adv. Sci. 2024;11:e2402935. doi: 10.1002/advs.202402935. PubMed DOI PMC

Wheeler K.E., Chetwynd A.J., Fahy K.M., Hong B.S., Tochihuitl J.A., Foster L.A., Lynch I. Environmental dimensions of the protein corona. Nat. Nanotechnol. 2021;16:617–629. doi: 10.1038/s41565-021-00924-1. PubMed DOI

Baimanov D., Cai R., Chen C.Y. Understanding the chemical nature of nanoparticle-protein interactions. Bioconjug. Chem. 2019;30:1923–1937. doi: 10.1021/acs.bioconjchem.9b00348. PubMed DOI

Stepien G., Moros M., Pérez-Hernández M., Monge M., Gutiérrez L., Fratila R.M., Heras M.D., Guillén S.M., Lanzarote J.J.P., Solans C., et al. Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in vivo. ACS Appl. Mater. Interfaces. 2018;10:4548–4560. doi: 10.1021/acsami.7b18648. PubMed DOI

Smolková B., MacCulloch T., Rockwood T.F., Liu M.H., Henry S.J.W., Frtús A., Uzhytchak M., Lunova M., Hof M., Jurkiewicz P., et al. Protein corona inhibits endosomal escape of functionalized DNA nanostructures in living cells. ACS Appl. Mater. Interfaces. 2021;13:46375–46390. doi: 10.1021/acsami.1c14401. PubMed DOI PMC

Lesniak A., Salvati A., Santos-Martinez M.J., Radomski M.W., Dawson K.A., Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 2013;135:1438–1444. doi: 10.1021/ja309812z. PubMed DOI

Wang L., Hartel N., Ren K.X., Graham N.A., Malmstadt N. Effect of protein corona on nanoparticle-plasma membrane and nanoparticle-biomimetic membrane interactions. Environ. Sci. Nano. 2020;7:963–974. doi: 10.1039/D0EN00035C. DOI

Persaud I., Shannahan J.H., Raghavendra A.J., Alsaleh N.B., Podila R., Brown J.M. Biocorona formation contributes to silver nanoparticle induced endoplasmic reticulum stress. Ecotoxicol. Environ. Saf. 2019;170:77–86. doi: 10.1016/j.ecoenv.2018.11.107. PubMed DOI PMC

Huang Z., Wu L., Wang W., Zhou Y., Zhang X., Huang Y., Pan X., Wu C. Unraveling the pulmonary drug delivery carriers in inhalable nanostructures. J. Nanopart. Res. 2022;24:10. doi: 10.1007/s11051-021-05384-1. PubMed DOI PMC

Tan Y., Zhu X.Y., Wu D., Song E.Q., Song Y. Compromised autophagic effect of polystyrene nanoplastics mediated by protein corona was recovered after lysosomal degradation of corona. Environ. Sci. Technol. 2020;54:11485–11493. doi: 10.1021/acs.est.0c04097. PubMed DOI

Adhipandito C.F., Cheung S.H., Lin Y.H., Wu S.H. Atypical renal clearance of nanoparticles larger than the kidney filtration threshold. Int. J. Mol. Sci. 2021;22:11182. doi: 10.3390/ijms222011182. PubMed DOI PMC

Sohal I.S., Cho Y.K., O’Fallon K.S., Gaines P., Demokritou P., Bello D. Dissolution behavior and biodurability of ingested engineered nanomaterials in the gastrointestinal environment. ACS Nano. 2018;12:8115–8128. doi: 10.1021/acsnano.8b02978. PubMed DOI

Lee S.H., Jun B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019;20:865. doi: 10.3390/ijms20040865. PubMed DOI PMC

Egbuna C., Parmar V.K., Jeevanandam J., Ezzat S.M., Patrick-Iwuanyanwu K.C., Adetunji C.O., Khan J., Onyeike E.N., Uche C.Z., Akram M., et al. Toxicity of nanoparticles in biomedical application: Nanotoxicology. J. Toxicol. 2021;2021:954443. doi: 10.1155/2021/9954443. PubMed DOI PMC

Wang L.M., Zhang T.L., Li P.Y., Huang W.X., Tang J.L., Wang P.Y., Liu J., Yuan Q.X., Bai R., Li B., et al. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano. 2015;9:6532–6547. doi: 10.1021/acsnano.5b02483. PubMed DOI

Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 2013;87:1181–1200. doi: 10.1007/s00204-013-1079-4. PubMed DOI PMC

Khanna P., Ong C., Bay B.H., Baeg G.H. Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials. 2015;5:1163–1180. doi: 10.3390/nano5031163. PubMed DOI PMC

Won Y.Y., Sharma R., Konieczny S.F. Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes. J. Control. Release. 2009;139:88–93. doi: 10.1016/j.jconrel.2009.06.031. PubMed DOI PMC

Liu N., Tang M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J. Appl.Toxicol. 2020;40:16–36. doi: 10.1002/jat.3817. PubMed DOI

Lee E., Lee M., Kwon S., Kim J., Kwon Y. Systematic and mechanistic analysis of AuNP-induced nanotoxicity for risk assessment of nanomedicine. Nano Converg. 2022;9:27. doi: 10.1186/s40580-022-00320-y. PubMed DOI PMC

Chen M., Wu T.S. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. Sci. Total Environ. 2024;912:168739. doi: 10.1016/j.scitotenv.2023.168739. PubMed DOI

Nowak-Jary J., Machnicka B. Comprehensive analysis of the potential toxicity of magnetic iron oxide nanoparticles for medical applications: Cellular mechanisms and systemic effects. Int. J. Mol. Sci. 2024;25:12013. doi: 10.3390/ijms252212013. PubMed DOI PMC

Xu B., Wu S., Wang Y., Ji Y., Liang S., Wang C., Tian X. Paradoxical roles of carbon nanotubes in cancer therapy and carcinogenesis. J. Nanotheranostics. 2024;5:84–98. doi: 10.3390/jnt5030006. DOI

Aula S., Lakkireddy S., Jamil K., Kapley A., Swamy A.V.N., Lakkireddy H.R. Biophysical, biopharmaceutical and toxicological significance of biomedical nanoparticles. RSC Adv. 2015;5:47830–47859. doi: 10.1039/C5RA05889A. DOI

Winnik F.M., Maysinger D. Quantum dot cytotoxicity and ways to reduce it. Acc. Chem. Res. 2013;46:672–680. doi: 10.1021/ar3000585. PubMed DOI

Liang M.M., Fan K.L., Zhou M., Duan D.M., Zheng J.Y., Yang D.L., Feng J., Yan X.Y. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl. Acad. Sci. USA. 2014;111:14900–14905. doi: 10.1073/pnas.1407808111. PubMed DOI PMC

Chakraborty S., Chakraborty A., Mukherjee B., Besra S.E., Dewanjee S., Mukherjee A., Sen R., Ojha P.K., Kumar V., Shaw T.K., et al. Assessment of superiority of HSP70-targeting aptamer-functionalized drug-nanocarrier over non-targeted commercially available counterpart in HCC therapy: In vitro and in vivo investigations and molecular modeling. Life Sci. 2023;317:121467. doi: 10.1016/j.lfs.2023.121467. PubMed DOI

Kurzatkowska K., Pazos M.A., Herschkowitz J.I., Hepel M. Cancer-targeted controlled delivery of chemotherapeutic anthracycline derivatives using apoferritin nanocage carriers. Int. J. Mol. Sci. 2021;22:1362. doi: 10.3390/ijms22031362. PubMed DOI PMC

Scomparin A., Salmaso S., Eldar-Boock A., Ben-Shushan D., Ferber S., Tiram G., Shmeeda H., Landa-Rouben N., Leor J., Caliceti P., et al. A comparative study of folate receptor-targeted doxorubicin delivery systems: Dosing regimens and therapeutic index. J. Control. Release. 2015;208:106–120. doi: 10.1016/j.jconrel.2015.04.009. PubMed DOI

Maksimenko A., Dosio F., Mougin J., Ferrero A., Wack S., Reddy L.H., Weyn A.A., Lepeltier E., Bourgaux C., Stella B., et al. A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity. Proc. Natl. Acad. Sci. USA. 2014;111:E217–E226. doi: 10.1073/pnas.1313459110. PubMed DOI PMC

Man F., Lammers T., de Rosales R.T.M. Imaging nanomedicine-based drug delivery: A review of clinical studies. Mol. Imaging. Biol. 2018;20:683–695. doi: 10.1007/s11307-018-1255-2. PubMed DOI PMC

Prabhakar U., Maeda H., Jain R.K., Sevick-Muraca E.M., Zamboni W., Farokhzad O.C., Barry S.T., Gabizon A., Grodzinski P., Blakey D.C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73:2412–2417. doi: 10.1158/0008-5472.CAN-12-4561. PubMed DOI PMC

Perry J.L., Reuter K.G., Luft J.C., Pecot C.V., Zamboni W., DeSimone J.M. Mediating passive tumor accumulation through particle size, tumor type, and location. Nano Lett. 2017;17:2879–2886. doi: 10.1021/acs.nanolett.7b00021. PubMed DOI PMC

Ouyang B., Poon W., Zhang Y.N., Lin Z.P., Kingston B.R., Tavares A.J., Zhang Y.W., Chen J., Valic M.S., Syed A.M., et al. The dose threshold for nanoparticle tumour delivery. Nat. Mater. 2020;19:1362–1371. doi: 10.1038/s41563-020-0755-z. PubMed DOI

Nguyen L.N.M., Lin Z.P., Sindhwani S., MacMillan P., Mladjenovic S.M., Stordy B., Ngo W., Chan W.C.W. The exit of nanoparticles from solid tumours. Nat. Mater. 2023;22:1261–1272. doi: 10.1038/s41563-023-01630-0. PubMed DOI

Petty H.R. Could nanoparticles that mimic the NADPH oxidase be used to kill tumor cells? Nanomedicine. 2016;11:1631–1634. doi: 10.2217/nnm-2016-0193. PubMed DOI

Klaper R., Arndt D., Bozich J., Dominguez G. Molecular interactions of nanomaterials and organisms: Defining biomarkers for toxicity and high-throughput screening using traditional and next-generation sequencing approaches. Analyst. 2014;139:882–895. doi: 10.1039/C3AN01644G. PubMed DOI

Gupta G., Kaur J., Bhattacharya K., Chambers B.J., Gazzi A., Furesi G., Rauner M., Fuoco C., Orecchioni M., Delogu L.G., et al. Exploiting mass spectrometry to unlock the mechanism of nanoparticle-induced inflammasome activation. ACS Nano. 2023;17:17451–17467. doi: 10.1021/acsnano.3c05600. PubMed DOI PMC

Lunov O., Syrovets T., Loos C., Nienhaus G.U., Mailänder V., Landfester K., Rouis M., Simmet T. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano. 2011;5:9648–9657. doi: 10.1021/nn203596e. PubMed DOI

Baron L., Gombault A., Fanny M., Villeret B., Savigny F., Guillou N., Panek C., Le Bert M., Lagente V., Rassendren F., et al. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine. Cell Death Dis. 2015;6:e1629. doi: 10.1038/cddis.2014.576. PubMed DOI PMC

Aschner M., Skalny A.V., Martins A.C., Tizabi Y., Zaitseva I.P., Santamaria A., Lu R.Z., Gluhcheva Y.Y., Tinkov A.A. The role of NLRP3 inflammasome activation in proinflammatory and cytotoxic effects of metal nanoparticles. Arch. Toxicol. 2025;99:1287–1314. doi: 10.1007/s00204-025-03972-x. PubMed DOI

Yazdi A.S., Guarda G., Riteau N., Drexler S.K., Tardivel A., Couillin I., Tschopp J. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc. Natl. Acad. Sci. USA. 2010;107:19449–19454. doi: 10.1073/pnas.1008155107. PubMed DOI PMC

Senapati V.A., Kumar A., Gupta G.S., Pandey A.K., Dhawan A. ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: A mechanistic approach. Food Chem. Toxicol. 2015;85:61–70. doi: 10.1016/j.fct.2015.06.018. PubMed DOI

Rangasami V.K., Samanta S., Parihar V.S., Asawa K., Zhu K.Y., Varghese O.P., Teramura Y., Nilsson B., Hilborn J., Harris R.A., et al. Harnessing hyaluronic acid-based nanoparticles for combination therapy: A novel approach for suppressing systemic inflammation and to promote antitumor macrophage polarization. Carbohydr. Polym. 2021;254:117291. doi: 10.1016/j.carbpol.2020.117291. PubMed DOI

Sarfraz M., Roa W., Bou-Chacra N., Löbenberg R. Inflammation caused by nanosized delivery systems: Is there a benefit? Mol. Pharm. 2016;13:3270–3278. doi: 10.1021/acs.molpharmaceut.6b00530. PubMed DOI

Xu H., Ren D. Lysosomal physiology. Annu. Rev. Physiol. 2015;77:57–80. doi: 10.1146/annurev-physiol-021014-071649. PubMed DOI PMC

Levada K., Pshenichnikov S., Omelyanchik A., Rodionova V., Nikitin A., Savchenko A., Schetinin I., Zhukov D., Abakumov M., Majouga A., et al. Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. Nano Converg. 2020;7:17. doi: 10.1186/s40580-020-00228-5. PubMed DOI PMC

Yang K.X., Lu Y., Xie F.Y., Zou H., Fan X.Y., Li B.H., Li W., Zhang W., Mei L., Feng S., et al. Cationic liposomes induce cell necrosis through lysosomal dysfunction and late-stage autophagic flux inhibition. Nanomedicine. 2016;11:3117–3137. doi: 10.2217/nnm-2016-0289. PubMed DOI

He G., Ma Y., Zhu Y., Yong L., Liu X., Wang P., Liang C., Yang C., Zhao Z., Hai B., et al. Cross talk between autophagy and apoptosis contributes to ZnO nanoparticle-induced human osteosarcoma cell death. Adv. Healthc. Mater. 2018;7:1800332. doi: 10.1002/adhm.201800332. PubMed DOI PMC

Li H., Zhang H., He X., Zhao P., Wu T., Xiahou J., Wu Y., Liu Y., Chen Y., Jiang X., et al. Blocking spatiotemporal crosstalk between subcellular organelles for enhancing anticancer therapy with nanointercepters. Adv. Mater. 2023;35:2211597. doi: 10.1002/adma.202211597. PubMed DOI

Li J.J., Zou L., Hartono D., Ong C.N., Bay B.H., Yung L.Y.L. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv. Mater. 2008;20:138–142. doi: 10.1002/adma.200701853. DOI

Avalos A., Haza A.I., Mateo D., Morales P. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J. Appl. Toxicol. 2014;34:413–423. doi: 10.1002/jat.2957. PubMed DOI

Ahamed M., Posgai R., Gorey T.J., Nielsen M., Hussain S.M., Rowe J.J. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharm. 2010;242:263–269. doi: 10.1016/j.taap.2009.10.016. PubMed DOI

Guo D.W., Zhu L.Y., Huang Z.H., Zhou H.X., Ge Y., Ma W.J., Wu J., Zhang X.Y., Zhou X.F., Zhang Y., et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials. 2013;34:7884–7894. doi: 10.1016/j.biomaterials.2013.07.015. PubMed DOI

Huo L.L., Chen R., Zhao L., Shi X.F., Bai R., Long D.X., Chen F., Zhao Y.L., Chang Y.Z., Chen C.Y. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials. 2015;61:307–315. doi: 10.1016/j.biomaterials.2015.05.029. PubMed DOI

Choi A.O., Brown S.E., Szyf M., Maysinger D. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J. Mol. Med.-JMM. 2008;86:291–302. doi: 10.1007/s00109-007-0274-2. PubMed DOI

Lam C.W., James J.T., McCluskey R., Hunter R.L. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004;77:126–134. doi: 10.1093/toxsci/kfg243. PubMed DOI

Morimoto Y., Horie M., Kobayashi N., Shinohara N., Shimada M. Inhalation toxicity assessment of carbon-based nanoparticles. Acc. Chem. Res. 2013;46:770–781. doi: 10.1021/ar200311b. PubMed DOI

Cui D.X., Tian F.R., Ozkan C.S., Wang M., Gao H.J. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 2005;155:73–85. doi: 10.1016/j.toxlet.2004.08.015. PubMed DOI

Alazzam A., Mfoumou E., Stiharu I., Kassab A., Darnel A., Yasmeen A., Sivakumar N., Bhat R., Al Moustafa A.E. Identification of deregulated genes by single wall carbon-nanotubes in human normal bronchial epithelial cells. Nanomed. Nanotechnol. Biol. Med. 2010;6:563–569. doi: 10.1016/j.nano.2009.12.005. PubMed DOI

Wang J.Y., Sun P.P., Bao Y.M., Liu J.W., An L.J. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol. Vitro. 2011;25:242–250. doi: 10.1016/j.tiv.2010.11.010. PubMed DOI

Pacurari M., Yin X.J., Zhao J.S., Ding M., Leonard S.S., Schwegier-Berry D., Ducatman B.S., Sbarra D., Hoover M.D., Castranova V., et al. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-κB, and Akt in normal and malignant human mesothelial cells. Environ. Health Perspect. 2008;116:1211–1217. doi: 10.1289/ehp.10924. PubMed DOI PMC

Sarkar A., Sil P.C. Iron oxide nanoparticles mediated cytotoxicity via PI3K/AKT pathway: Role of quercetin. Food Chem. Toxicol. 2014;71:106–115. doi: 10.1016/j.fct.2014.06.003. PubMed DOI

Shukla S., Jadaun A., Arora V., Sinha R.K., Biyani N., Jain V.K. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicol. Rep. 2015;2:27–39. doi: 10.1016/j.toxrep.2014.11.002. PubMed DOI PMC

Park E.J., Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Rep. 2009;184:18–25. doi: 10.1016/j.toxlet.2008.10.012. PubMed DOI

Liu X., Sun J.A. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-κB pathways. Biomaterials. 2010;31:8198–8209. doi: 10.1016/j.biomaterials.2010.07.069. PubMed DOI

Duan J.C., Yu Y.B., Yu Y., Wang J., Geng W.J., Jiang L.Z., Li Q.L., Zhou X.Q., Sun Z.W. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int. J. Nanomed. 2014;9:5131–5141. doi: 10.2147/IJN.S71074. PubMed DOI PMC

Shrivastava R., Raza S., Yadav A., Kushwaha P., Flora S.J.S. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem. Toxicol. 2014;37:336–347. doi: 10.3109/01480545.2013.866134. PubMed DOI

Park E.J., Yi J., Chung Y.H., Ryu D.Y., Choi J., Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett. 2008;180:222–229. doi: 10.1016/j.toxlet.2008.06.869. PubMed DOI

González-Esquivel A.E., Charles-Niño C.L., Pacheco-Moisés F.P., Ortiz G.G., Jaramillo-Juárez F., Rincón-Sánchez A.R. Beneficial effects of quercetin on oxidative stress in liver and kidney induced by titanium dioxide (TiO) nanoparticles in rats. Toxicol. Mech. Methods. 2015;25:166–175. doi: 10.3109/15376516.2015.1006491. PubMed DOI

Roy R., Parashar V., Chauhan L.K.S., Shanker R., Das M., Tripathi A., Dwivedi P.D. Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling. Toxicol. Vitr. 2014;28:457–467. doi: 10.1016/j.tiv.2013.12.004. PubMed DOI

Fukui H., Horie M., Endoh S., Kato H., Fujita K., Nishio K., Komaba L.K., Maru J., Miyauhi A., Nakamura A., et al. Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem.-Biol. Interact. 2012;198:29–37. doi: 10.1016/j.cbi.2012.04.007. PubMed DOI

Wu W.D., Samet J.M., Peden D.B., Bromberg P.A. Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells. Environ. Health Perspect. 2010;118:982–987. doi: 10.1289/ehp.0901635. PubMed DOI PMC

Elblová P., Lunova M., Dejneka A., Jirsa M., Lunov O. Impact of mechanical cues on key cell functions and cell-nanoparticle interactions. Discov. Nano. 2024;19:106. doi: 10.1186/s11671-024-04052-2. PubMed DOI PMC

Karlsson H.L., Gliga A.R., Calléja F.M.G.R., Gonçalves C.S.A.G., Wallinder I.O., Vrieling H., Fadeel B., Hendriks G. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines. Part. Fibre Toxicol. 2014;11:41. doi: 10.1186/s12989-014-0041-9. PubMed DOI PMC

Gliga A.R., Skoglund S., Wallinder I.O., Fadeel B., Karlsson H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014;11:11. doi: 10.1186/1743-8977-11-11. PubMed DOI PMC

Wolfram J., Zhu M.T., Yang Y., Shen J.L., Gentile E., Paolino D., Fresta M., Nie G.J., Chen C.Y., Shen H.F., et al. Safety of nanoparticles in medicine. Curr. Drug Targets. 2015;16:1671–1681. doi: 10.2174/1389450115666140804124808. PubMed DOI PMC

Chen Y.C., Su Y.C., Roffler S.R. Polyethylene glycol immunogenicity in nanomedicine. Nat. Rev. Bioeng. 2025:1–19. doi: 10.1038/s44222-025-00321-6. DOI

Fröhlich E. Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. Curr. Drug Metab. 2013;14:976–988. doi: 10.2174/1389200211314090004. PubMed DOI PMC

Kozenkova E., Levada K., Efremova M.V., Omelyanchik A., Nalench Y.A., Garanina A.S., Pshenichnikov S., Zhukov D.G., Lunov O., Lunova M., et al. Multifunctional Fe3O4-Au nanoparticles for the MRI diagnosis and potential treatment of liver cancer. Nanomaterials. 2020;10:1646. doi: 10.3390/nano10091646. PubMed DOI PMC

Awasthi S., Srivastava A., Kumar D., Pandey S.K., Mubarak N.M., Dehghani M.H., Ansari K. An insight into the toxicological impacts of carbon nanotubes (CNTs) on human health: A review. Environ. Adv. 2024;18:100601. doi: 10.1016/j.envadv.2024.100601. DOI

Bhattacharya K., Andón F.T., El-Sayed R., Fadeel B. Mechanisms of carbon nanotube-induced toxicity: Focus on pulmonary inflammation. Adv. Drug Deliv. Rev. 2013;65:2087–2097. doi: 10.1016/j.addr.2013.05.012. PubMed DOI

Seabra A.B., Durán N. Nanotoxicology of metal oxide nanoparticles. Metals. 2015;5:934–975. doi: 10.3390/met5020934. DOI

Andón F.T., Fadeel B. Programmed cell death: Molecular mechanisms and implications for safety assessment of nanomaterials. Acc. Chem. Res. 2013;46:733–742. doi: 10.1021/ar300020b. PubMed DOI

Witika B.A., Makoni P.A., Matafwali S.K., Chabalenge B., Mwila C., Kalungia A.C., Nkanga C.I., Bapolisi A.M., Walker R.B. Biocompatibility of biomaterials for nanoencapsulation: Current approaches. Nanomaterials. 2020;10:1649. doi: 10.3390/nano10091649. PubMed DOI PMC

Setyawati M.I., Tay C.Y., Leong D.T. The gap between endothelial cells: Key to the quick escape of nanomaterials? Nanomedicine. 2014;9:1591–1594. doi: 10.2217/nnm.14.104. PubMed DOI

Faria M., Björnmalm M., Thurecht K.J., Kent S.J., Parton R.G., Kavallaris M., Johnston A.P.R., Gooding J.J., Corrie S.R., Boyd B.J., et al. Minimum information reporting in bio-nano experimental literature. Nat. Nanotechnol. 2018;13:777–785. doi: 10.1038/s41565-018-0246-4. PubMed DOI PMC

Islas P., Platnich C.M., Gidi Y., Karimi R., Ginot L., Saliba D., Luo X., Cosa G., Sleiman H.F. Automated synthesis of DNA nanostructures. Adv. Mater. 2024;36:2403477. doi: 10.1002/adma.202403477. PubMed DOI

Luo X., Saliba D., Yang T.X., Gentile S., Mori K., Islas P., Das T., Bagheri N., Porchetta A., Guarne A., et al. Minimalist design of wireframe DNA nanotubes: Tunable geometry, size, chirality, and dynamics. Angew. Chem.-Int. Edit. 2023;62:e202309869. doi: 10.1002/anie.202309869. PubMed DOI

Wang J., Xie M., Ouyang L., Li J., Wang L., Fan C., Chao J. Artificial molecular communication network based on DNA nanostructures recognition. Nat. Commun. 2025;16:244. doi: 10.1038/s41467-024-55527-w. PubMed DOI PMC

Liu X., Shi B., Gao Y., Zhu S.T., Yan Q.L., Liu X.G., Shi J.Y., Li Q., Wang L.H., Li J., et al. Ultrabright near-infrared fluorescent DNA frameworks for near-single-cell cancer imaging. Nat. Photonics. 2024;19:79–88. doi: 10.1038/s41566-024-01543-7. DOI

Knappe G.A., Wamhoff E.C., Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. Nat. Rev. Mater. 2023;8:123–138. doi: 10.1038/s41578-022-00517-x. PubMed DOI PMC

Stephanopoulos N. Hybrid nanostructures from the self-assembly of proteins and DNA. Chem. 2020;6:364–405. doi: 10.1016/j.chempr.2020.01.012. DOI

Elblová P., Andelová H., Lunova M., Anthi J., Henry S.J.W., Tu X.Y., Dejneka A., Jirsa M., Stephanopoulos N., Lunov O. Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake. J. Mater. Chem. B. 2025;13:2335–2351. doi: 10.1039/D5TB00074B. PubMed DOI PMC

Frtus A., Smolkova B., Uzhytchak M., Lunova M., Jirsa M., Henry S.J.W., Dejneka A., Stephanopoulos N., Lunov O. The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomater. 2022;146:10–22. doi: 10.1016/j.actbio.2022.04.046. PubMed DOI PMC

Lacroix A., Sleiman H.F. DNA nanostructures: Current challenges and opportunities for cellular delivery. ACS Nano. 2021;15:3631–3645. doi: 10.1021/acsnano.0c06136. PubMed DOI

Elblová P., Lunova M., Henry S.J.W., Tu X.Y., Calé A., Dejneka A., Havelková J., Petrenko Y., Jirsa M., Stephanopoulos N., et al. Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells. Chem. Eng. J. 2024;498:155633. doi: 10.1016/j.cej.2024.155633. PubMed DOI PMC

Veneziano R., Moyer T.J., Stone M.B., Wamhoff E.C., Read B.J., Mukherjee S., Shepherd T.R., Das J., Schief W.R., Irvine D.J., et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat. Nanotechnol. 2020;15:716–723. doi: 10.1038/s41565-020-0719-0. PubMed DOI PMC

Hellmeier J., Platzer R., Eklund A.S., Schlichthaerle T., Karner A., Motsch V., Schneider M.C., Kurz E., Bamieh V., Brameshuber M., et al. DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens. Proc. Natl. Acad. Sci. USA. 2021;118:e2016857118. doi: 10.1073/pnas.2016857118. PubMed DOI PMC

Fang T., Alvelid J., Spratt J., Ambrosetti E., Testa I., Teixeira A. Spatial regulation of T-Cell signaling by programmed death-ligand 1 on wireframe DNA origami flat sheets. ACS Nano. 2021;15:3441–3452. doi: 10.1021/acsnano.0c10632. PubMed DOI PMC

Dong R., Aksel T., Chan W., Germain R.N., Vale R.D., Douglas S.M. DNA origami patterning of synthetic T cell receptors reveals spatial control of the sensitivity and kinetics of signal activation. Proc. Natl. Acad. Sci. USA. 2021;118:e2109057118. doi: 10.1073/pnas.2109057118. PubMed DOI PMC

Rosier B.J.H.M., Markvoort A.J., Audenis B.G., Roodhuizen J.A.L., den Hamer A., Brunsveld L., de Greef T.F.A. Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome. Nat. Catal. 2020;3:295–306. doi: 10.1038/s41929-019-0403-7. PubMed DOI PMC

Klein W.P., Thomsen R.P., Turner K.B., Walper S.A., Vranish J., Kjems J., Ancona M.G., Medintz I.L. Enhanced catalysis from multienzyme cascades assembled on a DNA origami triangle. ACS Nano. 2019;13:13677–13689. doi: 10.1021/acsnano.9b05746. PubMed DOI

Shaw A., Hoffecker I.T., Smyrlaki I., Rosa J., Grevys A., Bratlie D., Sandlie I., Michaelsen T.E., Andersen J.T., Högberg B. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol. 2019;14:184–190. doi: 10.1038/s41565-018-0336-3. PubMed DOI PMC

Li F., Liu Y.J., Dong Y.H., Chu Y.W., Song N.C., Yang D.Y. Dynamic assembly of DNA nanostructures in living cells for mitochondrial interference. J. Am. Chem. Soc. 2022;144:4667–4677. doi: 10.1021/jacs.2c00823. PubMed DOI

Dong Y.H., Li F., Lv Z.Y., Li S., Yuan M.H., Song N.C., Liu J.Q., Yang D.Y. Lysosome interference enabled by proton-driven dynamic assembly of DNA nanoframeworks inside cells. Angew. Chem.-Int. Edit. 2022;61:e202207770. doi: 10.1002/anie.202207770. PubMed DOI

Yang S., Cheng Y., Liu M.X., Tang J.P., Li S.Q., Huang Y., Kou X.H., Yao C., Yang D.Y. Sequential assembly of DNA nanoparticles inside cells enables lysosome interference and cell behavior regulation. Nano Today. 2024;56:102224. doi: 10.1016/j.nantod.2024.102224. DOI

Yuan M.H., Dong Y.H., Lv Z.Y., Liu J.Q., Liu M.X., Xu M.D., Guo X.C., Yao C., Yang D.Y. Controlled sequential assembly of DNA nanoparticles inside cells enabling mitochondrial interference. Adv. Funct. Mater. 2024;34:2312880. doi: 10.1002/adfm.202312880. DOI

Elblová P., Anthi J., Liu M.H., Lunova M., Jirsa M., Stephanopoulos N., Lunov O. DNA nanostructures for rational regulation of cellular organelles. JACS Au. 2025;5:1591–1616. doi: 10.1021/jacsau.5c00117. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...