Multifunctional Fe3O4-Au Nanoparticles for the MRI Diagnosis and Potential Treatment of Liver Cancer

. 2020 Aug 21 ; 10 (9) : . [epub] 20200821

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32825748

Grantová podpora
№ 18-33-01232 Russian Foundation for Basic Research
Increase Competitiveness Program of NUST «MISiS» (№ K2-2019-011) Ministry of Science and High Education of the Russian Federation
5 top 100 Russian Academic Excellence Project Immanuel Kant Baltic Federal University
No. SOLID21 - CZ.02.1.01/0.0/0.0/16_019/0000760 European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports

Heterodimeric nanoparticles comprising materials with different functionalities are of great interest for fundamental research and biomedical/industrial applications. In this work, Fe3O4-Au nano-heterostructures were synthesized by a one-step thermal decomposition method. The hybrid nanoparticles comprise a highly crystalline 12 nm magnetite octahedron decorated with a single noble metal sphere of 6 nm diameter. Detailed analysis of the nanoparticles was performed by UV-visible spectroscopy, magnetometry, calorimetry and relaxometry studies. The cytotoxic effect of the nanoparticles in the human hepatic cell line Huh7 and PLC/PRF/5-Alexander was also assessed. These Fe3O4-Au bifunctional nanoparticles showed no significant cytotoxicity in these two cell lines. The nanoparticles showed a good theranostic potential for liver cancer treatment, since the r2 relaxivity (166.5 mM-1·s-1 and 99.5 mM-1·s-1 in water and HepG2 cells, respectively) is higher than the corresponding values for commercial T2 contrast agents and the Specific Absorption Rate (SAR) value obtained (227 W/gFe) is enough to make them suitable as heat mediators for Magnetic Fluid Hyperthermia. The gold counterpart can further allow the conjugation with different biomolecules and the optical sensing.

Zobrazit více v PubMed

Yu H., Chen M., Rice P.M., Wang S.X., White R.L., Sun S. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005;5:379–382. doi: 10.1021/nl047955q. PubMed DOI

Frey N.A., Phan M.H., Srikanth H., Srinath S., Wang C., Sun S. Interparticle interactions in coupled Au-Fe3O4 nanoparticles. J. Appl. Phys. 2009;105:07B502. doi: 10.1063/1.3056582. DOI

Leung K.C.F., Xuan S., Zhu X., Wang D., Chak C.P., Lee S.F., Ho W.K.W., Chung B.C.T. Gold and iron oxide hybrid nanocomposite materials. Chem. Soc. Rev. 2012;41:1911–1928. doi: 10.1039/C1CS15213K. PubMed DOI

Liu S., Guo S., Sun S., You X.Z. Dumbbell-like Au-Fe3O4 nanoparticles: A new nanostructure for supercapacitors. Nanoscale. 2015;7:4890–4893. doi: 10.1039/C5NR00135H. PubMed DOI

Fantechi E., Roca A.G., Sepúlveda B., Torruella P., Estradé S., Peiró F., Coy E., Jurga S., Bastús N.G., Nogués J., et al. Seeded Growth Synthesis of Au-Fe3O4 Heterostructured Nanocrystals: Rational Design and Mechanistic Insights. Chem. Mater. 2017;29:4022–4035. doi: 10.1021/acs.chemmater.7b00608. DOI

Jiang W., Huang Y., An Y., Kim B.Y.S. Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles. ACS Nano. 2015;9:8689–8696. doi: 10.1021/acsnano.5b02028. PubMed DOI

Sotiriou G.A., Starsich F., Dasargyri A., Wurnig M.C., Krumeich F., Boss A., Leroux J.C., Pratsinis S.E. Photothermal killing of cancer cells by the controlled plasmonic coupling of silica-coated Au/Fe2O3 nanoaggregates. Adv. Funct. Mater. 2014;24:2818–2827. doi: 10.1002/adfm.201303416. DOI

Espinosa A., Bugnet M., Radtke G., Neveu S., Botton G.A., Wilhelm C., Abou-Hassan A. Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia? Nanoscale. 2015;7:18872–18877. doi: 10.1039/C5NR06168G. PubMed DOI

Bao J., Chen W., Liu T., Zhu Y., Jin P., Wang L., Liu J., Wei Y., Li Y. Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano. 2007;1:293–298. doi: 10.1021/nn700189h. PubMed DOI

Xu C., Wang B., Sun S. Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery. J. Am. Chem. Soc. 2009;131:4216–4217. doi: 10.1021/ja900790v. PubMed DOI PMC

Zhang X., Dong S. Synthesis and Application of Au-Fe3O4 Dumbbell-Like Nanoparticles. Elsevier Inc.; Amsterdam, The Netherlands: 2018.

Lee J.H., Huh Y.M., Jun Y.W., Seo J.W., Jang J.T., Song H.T., Kim S., Cho E.J., Yoon H.G., Suh J.S., et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007;13:95–99. doi: 10.1038/nm1467. PubMed DOI

McDonagh B.H., Singh G., Hak S., Bandyopadhyay S., Augestad I.L., Peddis D., Sandvig I., Sandvig A., Glomm W.R. L -DOPA-Coated Manganese Oxide Nanoparticles as Dual MRI Contrast Agents and Drug-Delivery Vehicles. Small. 2016;12:301–306. doi: 10.1002/smll.201502545. PubMed DOI

Haun J.B., Yoon T.J., Lee H., Weissleder R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:291–304. doi: 10.1002/wnan.84. PubMed DOI

Pariti A., Desai P., Maddirala S.K.Y., Ercal N., Katti K.V., Liang X., Nath M. Superparamagnetic Au-Fe3O4 nanoparticles: One-pot synthesis, biofunctionalization and toxicity evaluation. Mater. Res. Express. 2014;1 doi: 10.1088/2053-1591/1/3/035023. DOI

Xie H., Zhu Y., Jiang W., Zhou Q., Yang H., Gu N., Zhang Y., Xu H., Xu H., Yang X. Lactoferrin-conjugated superparamagnetic iron oxide nanoparticles as a specific MRI contrast agent for detection of brain glioma in vivo. Biomaterials. 2011;32:495–502. doi: 10.1016/j.biomaterials.2010.09.024. PubMed DOI

Panchapakesan B., Wickstrom E. Nanotechnology for Sensing, Imaging, and Treating Cancer. Surg. Oncol. Clin. N. Am. 2007;16:293–305. doi: 10.1016/j.soc.2007.03.002. PubMed DOI

Socoliuc V., Peddis D., Petrenko V.I., Avdeev M.V., Susan-resiga D., Szabó T., Turcu R., Tombácz E., Vékás L. Magnetic Nanoparticle Systems for Nanomedicine—A Materials Science Perspective. Magetochemistry. 2019;6:2. doi: 10.3390/magnetochemistry6010002. DOI

Stoeva S.I., Huo F., Lee J.S., Mirkin C.A. Three-layer composite magnetic nanoparticle probes for DNA. J. Am. Chem. Soc. 2005;127:15362–15363. doi: 10.1021/ja055056d. PubMed DOI

Laurent S., Dutz S., Häfeli U.O., Mahmoudi M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 2011;166:8–23. doi: 10.1016/j.cis.2011.04.003. PubMed DOI

Guisasola E., Asín L., Beola L., de la Fuente J.M., Baeza A., Vallet-Regí M. Beyond traditional hyperthermia: In vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers. ACS Appl. Mater. Interfaces. 2018;10:12518–12525. doi: 10.1021/acsami.8b02398. PubMed DOI

Williams H.M. The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases. Biosci. Horiz. Int. J. Stud. Res. 2017;10 doi: 10.1093/biohorizons/hzx009. DOI

Blanco-Andujar C., Teran F.J., Ortega D. Iron Oxide Nanoparticles for Biomedical Applications. Elsevier; Amsterdam, The Netherlands: 2018. Current Outlook and Perspectives on Nanoparticle-Mediated Magnetic Hyperthermia; pp. 197–245.

Martinkova P., Brtnicky M., Kynicky J., Pohanka M. Iron Oxide Nanoparticles: Innovative Tool in Cancer Diagnosis and Therapy. Adv. Healthc. Mater. 2018;7 doi: 10.1002/adhm.201700932. PubMed DOI

Panchapakesan B., Book-Newell B., Sethu P., Rao M., Irudayaraj J. Gold nanoprobes for theranostics. Nanomedicine. 2011;6:1787–1811. doi: 10.2217/nnm.11.155. PubMed DOI PMC

Kumar D., Soni R.K., Ghai D.P. Pulsed photoacoustic and photothermal response of gold nanoparticles. Nanotechnology. 2019;31:35704. doi: 10.1088/1361-6528/ab47ae. PubMed DOI

Xi D., Dong S., Meng X., Lu Q., Meng L., Ye J. Gold nanoparticles as computerized tomography (CT) contrast agents. Rsc. Adv. 2012;2:12515–12524. doi: 10.1039/c2ra21263c. DOI

Mahan M.M., Doiron A.L. Gold Nanoparticles as X-Ray, CT, and Multimodal Imaging Contrast Agents: Formulation, Targeting, and Methodology. J. Nanomater. 2018 doi: 10.1155/2018/5837276. DOI

Hamdy M.E., Del Carlo M., Hussein H.A., Salah T.A., El-Deeb A.H., Emara M.M., Pezzoni G., Compagnone D. Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. J. Nanobiotechnol. 2018;16:48. doi: 10.1186/s12951-018-0374-x. PubMed DOI PMC

Zhu Z. Gold nanoparticle based biosensors. New Dev. Gold Nanomater. Res. 2016;43:95–116.

Thompson D.T. Using gold nanoparticles for catalysis. Nano Today. 2007;2:40–43. doi: 10.1016/S1748-0132(07)70116-0. DOI

Grisel R., Weststrate K.J., Gluhoi A., Nieuwenhuys B.E. Catalysis by gold nanoparticles. Gold Bull. 2002;35:39–45. doi: 10.1007/BF03214836. DOI

Nguyen T.T., Mammeri F., Ammar S. Iron oxide and gold based magneto-plasmonic nanostructures for medical applications: A review. Nanomaterials. 2018;8:149. doi: 10.3390/nano8030149. PubMed DOI PMC

Tran V.T., Kim J., Tufa L.T., Oh S., Kwon J., Lee J. Magnetoplasmonic Nanomaterials for Biosensing/Imaging and in Vitro/in Vivo Biousability. Anal. Chem. 2018;90:225–239. doi: 10.1021/acs.analchem.7b04255. PubMed DOI

Moghadam F.F. Using nanoparticles in medicine for liver cancer imaging. Oman Med. J. 2017;32:269–274. doi: 10.5001/omj.2017.54. PubMed DOI PMC

Taghizadeh S., Alimardani V., Roudbali P.L., Ghasemi Y., Kaviani E. Gold nanoparticles application in liver cancer. Photodiagnosis Photodyn. Ther. 2019;25:389–400. doi: 10.1016/j.pdpdt.2019.01.027. PubMed DOI

Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016;1 doi: 10.1038/natrevmats.2016.14. DOI

Efremova M.V., Naumenko V.A., Spasova M., Garanina A.S., Abakumov M.A., Blokhina A.D., Melnikov P.A., Prelovskaya A.O., Heidelmann M., Li Z.A., et al. Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics. Sci. Rep. 2018;8:11295. doi: 10.1038/s41598-018-29618-w. PubMed DOI PMC

Efremova M.V., Nalench Y.A., Myrovali E., Garanina A.S., Grebennikov I.S., Gifer P.K., Abakumov M.A., Spasova M., Angelakeris M., Savchenko A.G., et al. Size-selected Fe3O4-Au hybrid nanoparticles for improved magnetism-based theranostics. Beilstein J. Nanotechnol. 2018;9:2684–2699. doi: 10.3762/bjnano.9.251. PubMed DOI PMC

Levada K., Pshenichnikov S., Omelyanchik A., Rodionova V., Nikitin A., Savchenko A., Schetinin I., Zhukov D., Abakumov M., Majouga A., et al. Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. Nano Converg. 2020;7:17. doi: 10.1186/s40580-020-00228-5. PubMed DOI PMC

Patil R.M., Thorat N.D., Shete P.B., Bedge P.A., Gavde S., Joshi M.G., Tofail S.A.M., Bohara R.A. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem. Biophys. Rep. 2018;13:63–72. doi: 10.1016/j.bbrep.2017.12.002. PubMed DOI PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Hergt R., Dutz S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007;311:187–192. doi: 10.1016/j.jmmm.2006.10.1156. DOI

Muscas G., Jovanović S., Vukomanović M., Spreitzer M., Peddis D. Zn-doped cobalt ferrite: Tuning the interactions by chemical composition. J. Alloys Compd. 2019;796:203–209. doi: 10.1016/j.jallcom.2019.04.308. DOI

Muro-Cruces J., Roca A.G., López-Ortega A., Fantechi E., Del-Pozo-Bueno D., Estradé S., Peiró F., Sepúlveda B., Pineider F., Sangregorio C., et al. Precise Size Control of the Growth of Fe3O4 Nanocubes over a Wide Size Range Using a Rationally Designed One-Pot Synthesis. ACS Nano. 2019 doi: 10.1021/acsnano.9b01281. PubMed DOI

López-Ortega A., Lottini E., Fernández C.D.J., Sangregorio C. Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet. Chem. Mater. 2015;27:4048–4056. doi: 10.1021/acs.chemmater.5b01034. DOI

Chen C.-J., Chiang R.-K., Wang J.-S., Wang S.-L. Synthesis and magnetic properties of octahedral magnetite nanoparticles in 20–110 nm range. J. Nanopart. Res. 2013;15:1845. doi: 10.1007/s11051-013-1845-5. DOI

Han C.W., Choksi T., Milligan C., Majumdar P., Manto M., Cui Y., Sang X., Unocic R.R., Zemlyanov D., Wang C., et al. A Discovery of Strong Metal-Support Bonding in Nanoengineered Au-Fe3O4 Dumbbell-like Nanoparticles by in Situ Transmission Electron Microscopy. Nano Lett. 2017;17:4576–4582. doi: 10.1021/acs.nanolett.7b00827. PubMed DOI

Nalench Y.A., Shchetinin I.V., Skorikov A.S., Mogilnikov P.S., Farle M., Savchenko A.G., Majouga A.G., Abakumov M.A., Wiedwald U. Unravelling the nucleation, growth, and faceting of magnetite-gold nanohybrids. J. Mater. Chem. B. 2020;8:3886–3895. doi: 10.1039/C9TB02721A. PubMed DOI

Schieber M.M. Experimental Magnetochemistry: Nonmetallic Magnetic Materials. Volume 8 North-Holland Publishing Company; Amsterdam, The Netherlands: 1967.

Omelyanchik A., Salvador M., D’Orazio F., Mameli V., Cannas C., Fiorani D., Musinu A., Rivas M., Rodionova V., Varvaro G., et al. Magnetocrystalline and Surface Anisotropy in CoFe2O4 Nanoparticles. Nanomaterials. 2020;10:1288. doi: 10.3390/nano10071288. PubMed DOI PMC

Muscas G., Peddis D., Cobianchi M., Lascialfari A., Cannas C., Musinu A., Omelyanchik A., Rodionova V., Fiorani D., Mameli V. Magnetic Interactions Versus Magnetic Anisotropy in Spinel Ferrite Nanoparticles. IEEE Magn. Lett. 2019;10:1–5. doi: 10.1109/LMAG.2019.2956908. DOI

Walz F. The Verwey transition—A topical review. J. Phys. Condens. Matter. 2002;14 doi: 10.1088/0953-8984/14/12/203. DOI

Peddis D., Cannas C., Musinu A., Ardu A., Orrù F., Fiorani D., Laureti S., Rinaldi D., Muscas G., Concas G., et al. Beyond the Effect of Particle Size: Influence of CoFe2O4 Nanoparticle Arrangements on Magnetic Properties. Chem. Mater. 2013;25:2005–2013. doi: 10.1021/cm303352r. DOI

Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. WILEY-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 1998.

Omelyanchik A., Efremova M., Myslitskaya N., Zybin A., Carey B.J., Sickel J., Kohl H., Bratschitsch R., Abakumov M., Majouga A., et al. Magnetic and Optical Properties of Gold-Coated Iron Oxide Nanoparticles. J. Nanosci. Nanotechnol. 2019;19:4987–4993. doi: 10.1166/jnn.2019.16797. PubMed DOI

Fantechi E., Innocenti C., Bertoni G., Sangregorio C., Pineider F. Modulation of the magnetic properties of gold-spinel ferrite heterostructured nanocrystals. Nano Res. 2020;13:785–794. doi: 10.1007/s12274-020-2696-x. DOI

Lartigue L., Innocenti C., Kalaivani T., Awwad A., Duque M.D.M.S., Guari Y., Larionova J., Gueírin C., Montero J.L.G., Barragan-Montero V., et al. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. J. Am. Chem. Soc. 2011;133:10459–10472. doi: 10.1021/ja111448t. PubMed DOI

Guardia P., Di Corato R., Lartigue L., Wilhelm C., Espinosa A., Garcia-Hernandez M., Gazeau F., Manna L., Pellegrino T. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 2012;6:3080–3091. doi: 10.1021/nn2048137. PubMed DOI

Smolková B., Lunova M., Lynnyk A., Uzhytchak M., Churpita O., Jirsa M., Kubinová Š., Lunov O., Dejneka A. Non-thermal plasma, as a new physicochemical source, to induce redox imbalance and subsequent cell death in liver cancer cell lines. Cell. Physiol. Biochem. 2019;52:119–140. doi: 10.33594/000000009. PubMed DOI

Basini M., Guerrini A., Cobianchi M., Orsini F., Bettega D., Avolio M., Innocenti C., Sangregorio C., Lascialfari A., Arosio P. Tailoring the magnetic core of organic-coated iron oxides nanoparticles to influence their contrast efficiency for Magnetic Resonance Imaging. J. Alloys Compd. 2019;770:58–66. doi: 10.1016/j.jallcom.2018.08.120. DOI

Xu C., Xie J., Ho D., Wang C., Kohler N., Walsh E.G., Morgan J.R., Chin Y.E., Sun S. Au-Fe3O4 dumbbell nanoparticles as dual-functional. Angew. Chem. Int. Ed. 2008;47:173–176. doi: 10.1002/anie.200704392. PubMed DOI PMC

Maniglio D., Benetti F., Minati L., Jovicich J., Valentini A., Speranza G., Migliaresi C. Theranostic gold-magnetite hybrid nanoparticles for MRI-guided radiosensitization. Nanotechnology. 2018;29:315101. doi: 10.1088/1361-6528/aac4ce. PubMed DOI

Li J., Zheng L., Cai H., Sun W., Shen M., Zhang G., Shi X. Facile one-pot synthesis of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging applications. ACS Appl. Mater. Interfaces. 2013;5:10357–10366. doi: 10.1021/am4034526. PubMed DOI

Zhao H.Y., Liu S., He J., Pan C.C., Li H., Zhou Z.Y., Ding Y., Huo D., Hu Y. Synthesis and application of strawberry-like Fe3O4-Au nanoparticles as CT-MR dual-modality contrast agents in accurate detection of the progressive liver disease. Biomaterials. 2015;51:194–207. doi: 10.1016/j.biomaterials.2015.02.019. PubMed DOI

Wang W., Hao C., Sun M., Xu L., Xu C., Kuang H. Spiky Fe3O4@Au Supraparticles for Multimodal In Vivo Imaging. Adv. Funct. Mater. 2018;28:1800310. doi: 10.1002/adfm.201800310. DOI

Ge Y., Zhong Y., Ji G., Lu Q., Dai X., Guo Z., Zhang P., Peng G., Zhang K., Li Y. Preparation and characterization of Fe3O4@Au-C225 composite targeted nanoparticles for MRI of human glioma. PLoS ONE. 2018;13:e0195703. doi: 10.1371/journal.pone.0195703. PubMed DOI PMC

Smolensky E.D., Park H.-Y.E., Zhou Y., Rolla G.A., Marjańska M., Botta M., Pierre V.C. Scaling laws at the nanosize: The effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. J. Mater. Chem. B. 2013;1:2818–2828. doi: 10.1039/c3tb00369h. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...