Multifunctional Fe3O4-Au Nanoparticles for the MRI Diagnosis and Potential Treatment of Liver Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
№ 18-33-01232
Russian Foundation for Basic Research
Increase Competitiveness Program of NUST «MISiS» (№ K2-2019-011)
Ministry of Science and High Education of the Russian Federation
5 top 100 Russian Academic Excellence Project
Immanuel Kant Baltic Federal University
No. SOLID21 - CZ.02.1.01/0.0/0.0/16_019/0000760
European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports
PubMed
32825748
PubMed Central
PMC7558883
DOI
10.3390/nano10091646
PII: nano10091646
Knihovny.cz E-zdroje
- Klíčová slova
- MRI contrast agent, liver cancer, magnetic-plasmonic nanoparticles, nano-heterostructures, theranostic,
- Publikační typ
- časopisecké články MeSH
Heterodimeric nanoparticles comprising materials with different functionalities are of great interest for fundamental research and biomedical/industrial applications. In this work, Fe3O4-Au nano-heterostructures were synthesized by a one-step thermal decomposition method. The hybrid nanoparticles comprise a highly crystalline 12 nm magnetite octahedron decorated with a single noble metal sphere of 6 nm diameter. Detailed analysis of the nanoparticles was performed by UV-visible spectroscopy, magnetometry, calorimetry and relaxometry studies. The cytotoxic effect of the nanoparticles in the human hepatic cell line Huh7 and PLC/PRF/5-Alexander was also assessed. These Fe3O4-Au bifunctional nanoparticles showed no significant cytotoxicity in these two cell lines. The nanoparticles showed a good theranostic potential for liver cancer treatment, since the r2 relaxivity (166.5 mM-1·s-1 and 99.5 mM-1·s-1 in water and HepG2 cells, respectively) is higher than the corresponding values for commercial T2 contrast agents and the Specific Absorption Rate (SAR) value obtained (227 W/gFe) is enough to make them suitable as heat mediators for Magnetic Fluid Hyperthermia. The gold counterpart can further allow the conjugation with different biomolecules and the optical sensing.
Department of Chemistry Lomonosov Moscow State University 119991 Moscow Russia
Institute for Clinical and Experimental Medicine 14021 Prague Czech Republic
Institute of Chemistry of Organometallic Compounds C N R 50019 Sesto Fiorentino Italy
Institute of Physics of the Czech Academy of Sciences 18200 Prague Czech Republic
INSTM and Dept of Chemistry University of Florence 50019 Sesto Fiorentino Italy
Zobrazit více v PubMed
Yu H., Chen M., Rice P.M., Wang S.X., White R.L., Sun S. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005;5:379–382. doi: 10.1021/nl047955q. PubMed DOI
Frey N.A., Phan M.H., Srikanth H., Srinath S., Wang C., Sun S. Interparticle interactions in coupled Au-Fe3O4 nanoparticles. J. Appl. Phys. 2009;105:07B502. doi: 10.1063/1.3056582. DOI
Leung K.C.F., Xuan S., Zhu X., Wang D., Chak C.P., Lee S.F., Ho W.K.W., Chung B.C.T. Gold and iron oxide hybrid nanocomposite materials. Chem. Soc. Rev. 2012;41:1911–1928. doi: 10.1039/C1CS15213K. PubMed DOI
Liu S., Guo S., Sun S., You X.Z. Dumbbell-like Au-Fe3O4 nanoparticles: A new nanostructure for supercapacitors. Nanoscale. 2015;7:4890–4893. doi: 10.1039/C5NR00135H. PubMed DOI
Fantechi E., Roca A.G., Sepúlveda B., Torruella P., Estradé S., Peiró F., Coy E., Jurga S., Bastús N.G., Nogués J., et al. Seeded Growth Synthesis of Au-Fe3O4 Heterostructured Nanocrystals: Rational Design and Mechanistic Insights. Chem. Mater. 2017;29:4022–4035. doi: 10.1021/acs.chemmater.7b00608. DOI
Jiang W., Huang Y., An Y., Kim B.Y.S. Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles. ACS Nano. 2015;9:8689–8696. doi: 10.1021/acsnano.5b02028. PubMed DOI
Sotiriou G.A., Starsich F., Dasargyri A., Wurnig M.C., Krumeich F., Boss A., Leroux J.C., Pratsinis S.E. Photothermal killing of cancer cells by the controlled plasmonic coupling of silica-coated Au/Fe2O3 nanoaggregates. Adv. Funct. Mater. 2014;24:2818–2827. doi: 10.1002/adfm.201303416. DOI
Espinosa A., Bugnet M., Radtke G., Neveu S., Botton G.A., Wilhelm C., Abou-Hassan A. Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia? Nanoscale. 2015;7:18872–18877. doi: 10.1039/C5NR06168G. PubMed DOI
Bao J., Chen W., Liu T., Zhu Y., Jin P., Wang L., Liu J., Wei Y., Li Y. Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano. 2007;1:293–298. doi: 10.1021/nn700189h. PubMed DOI
Xu C., Wang B., Sun S. Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery. J. Am. Chem. Soc. 2009;131:4216–4217. doi: 10.1021/ja900790v. PubMed DOI PMC
Zhang X., Dong S. Synthesis and Application of Au-Fe3O4 Dumbbell-Like Nanoparticles. Elsevier Inc.; Amsterdam, The Netherlands: 2018.
Lee J.H., Huh Y.M., Jun Y.W., Seo J.W., Jang J.T., Song H.T., Kim S., Cho E.J., Yoon H.G., Suh J.S., et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007;13:95–99. doi: 10.1038/nm1467. PubMed DOI
McDonagh B.H., Singh G., Hak S., Bandyopadhyay S., Augestad I.L., Peddis D., Sandvig I., Sandvig A., Glomm W.R. L -DOPA-Coated Manganese Oxide Nanoparticles as Dual MRI Contrast Agents and Drug-Delivery Vehicles. Small. 2016;12:301–306. doi: 10.1002/smll.201502545. PubMed DOI
Haun J.B., Yoon T.J., Lee H., Weissleder R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:291–304. doi: 10.1002/wnan.84. PubMed DOI
Pariti A., Desai P., Maddirala S.K.Y., Ercal N., Katti K.V., Liang X., Nath M. Superparamagnetic Au-Fe3O4 nanoparticles: One-pot synthesis, biofunctionalization and toxicity evaluation. Mater. Res. Express. 2014;1 doi: 10.1088/2053-1591/1/3/035023. DOI
Xie H., Zhu Y., Jiang W., Zhou Q., Yang H., Gu N., Zhang Y., Xu H., Xu H., Yang X. Lactoferrin-conjugated superparamagnetic iron oxide nanoparticles as a specific MRI contrast agent for detection of brain glioma in vivo. Biomaterials. 2011;32:495–502. doi: 10.1016/j.biomaterials.2010.09.024. PubMed DOI
Panchapakesan B., Wickstrom E. Nanotechnology for Sensing, Imaging, and Treating Cancer. Surg. Oncol. Clin. N. Am. 2007;16:293–305. doi: 10.1016/j.soc.2007.03.002. PubMed DOI
Socoliuc V., Peddis D., Petrenko V.I., Avdeev M.V., Susan-resiga D., Szabó T., Turcu R., Tombácz E., Vékás L. Magnetic Nanoparticle Systems for Nanomedicine—A Materials Science Perspective. Magetochemistry. 2019;6:2. doi: 10.3390/magnetochemistry6010002. DOI
Stoeva S.I., Huo F., Lee J.S., Mirkin C.A. Three-layer composite magnetic nanoparticle probes for DNA. J. Am. Chem. Soc. 2005;127:15362–15363. doi: 10.1021/ja055056d. PubMed DOI
Laurent S., Dutz S., Häfeli U.O., Mahmoudi M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 2011;166:8–23. doi: 10.1016/j.cis.2011.04.003. PubMed DOI
Guisasola E., Asín L., Beola L., de la Fuente J.M., Baeza A., Vallet-Regí M. Beyond traditional hyperthermia: In vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers. ACS Appl. Mater. Interfaces. 2018;10:12518–12525. doi: 10.1021/acsami.8b02398. PubMed DOI
Williams H.M. The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases. Biosci. Horiz. Int. J. Stud. Res. 2017;10 doi: 10.1093/biohorizons/hzx009. DOI
Blanco-Andujar C., Teran F.J., Ortega D. Iron Oxide Nanoparticles for Biomedical Applications. Elsevier; Amsterdam, The Netherlands: 2018. Current Outlook and Perspectives on Nanoparticle-Mediated Magnetic Hyperthermia; pp. 197–245.
Martinkova P., Brtnicky M., Kynicky J., Pohanka M. Iron Oxide Nanoparticles: Innovative Tool in Cancer Diagnosis and Therapy. Adv. Healthc. Mater. 2018;7 doi: 10.1002/adhm.201700932. PubMed DOI
Panchapakesan B., Book-Newell B., Sethu P., Rao M., Irudayaraj J. Gold nanoprobes for theranostics. Nanomedicine. 2011;6:1787–1811. doi: 10.2217/nnm.11.155. PubMed DOI PMC
Kumar D., Soni R.K., Ghai D.P. Pulsed photoacoustic and photothermal response of gold nanoparticles. Nanotechnology. 2019;31:35704. doi: 10.1088/1361-6528/ab47ae. PubMed DOI
Xi D., Dong S., Meng X., Lu Q., Meng L., Ye J. Gold nanoparticles as computerized tomography (CT) contrast agents. Rsc. Adv. 2012;2:12515–12524. doi: 10.1039/c2ra21263c. DOI
Mahan M.M., Doiron A.L. Gold Nanoparticles as X-Ray, CT, and Multimodal Imaging Contrast Agents: Formulation, Targeting, and Methodology. J. Nanomater. 2018 doi: 10.1155/2018/5837276. DOI
Hamdy M.E., Del Carlo M., Hussein H.A., Salah T.A., El-Deeb A.H., Emara M.M., Pezzoni G., Compagnone D. Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. J. Nanobiotechnol. 2018;16:48. doi: 10.1186/s12951-018-0374-x. PubMed DOI PMC
Zhu Z. Gold nanoparticle based biosensors. New Dev. Gold Nanomater. Res. 2016;43:95–116.
Thompson D.T. Using gold nanoparticles for catalysis. Nano Today. 2007;2:40–43. doi: 10.1016/S1748-0132(07)70116-0. DOI
Grisel R., Weststrate K.J., Gluhoi A., Nieuwenhuys B.E. Catalysis by gold nanoparticles. Gold Bull. 2002;35:39–45. doi: 10.1007/BF03214836. DOI
Nguyen T.T., Mammeri F., Ammar S. Iron oxide and gold based magneto-plasmonic nanostructures for medical applications: A review. Nanomaterials. 2018;8:149. doi: 10.3390/nano8030149. PubMed DOI PMC
Tran V.T., Kim J., Tufa L.T., Oh S., Kwon J., Lee J. Magnetoplasmonic Nanomaterials for Biosensing/Imaging and in Vitro/in Vivo Biousability. Anal. Chem. 2018;90:225–239. doi: 10.1021/acs.analchem.7b04255. PubMed DOI
Moghadam F.F. Using nanoparticles in medicine for liver cancer imaging. Oman Med. J. 2017;32:269–274. doi: 10.5001/omj.2017.54. PubMed DOI PMC
Taghizadeh S., Alimardani V., Roudbali P.L., Ghasemi Y., Kaviani E. Gold nanoparticles application in liver cancer. Photodiagnosis Photodyn. Ther. 2019;25:389–400. doi: 10.1016/j.pdpdt.2019.01.027. PubMed DOI
Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016;1 doi: 10.1038/natrevmats.2016.14. DOI
Efremova M.V., Naumenko V.A., Spasova M., Garanina A.S., Abakumov M.A., Blokhina A.D., Melnikov P.A., Prelovskaya A.O., Heidelmann M., Li Z.A., et al. Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics. Sci. Rep. 2018;8:11295. doi: 10.1038/s41598-018-29618-w. PubMed DOI PMC
Efremova M.V., Nalench Y.A., Myrovali E., Garanina A.S., Grebennikov I.S., Gifer P.K., Abakumov M.A., Spasova M., Angelakeris M., Savchenko A.G., et al. Size-selected Fe3O4-Au hybrid nanoparticles for improved magnetism-based theranostics. Beilstein J. Nanotechnol. 2018;9:2684–2699. doi: 10.3762/bjnano.9.251. PubMed DOI PMC
Levada K., Pshenichnikov S., Omelyanchik A., Rodionova V., Nikitin A., Savchenko A., Schetinin I., Zhukov D., Abakumov M., Majouga A., et al. Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. Nano Converg. 2020;7:17. doi: 10.1186/s40580-020-00228-5. PubMed DOI PMC
Patil R.M., Thorat N.D., Shete P.B., Bedge P.A., Gavde S., Joshi M.G., Tofail S.A.M., Bohara R.A. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem. Biophys. Rep. 2018;13:63–72. doi: 10.1016/j.bbrep.2017.12.002. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Hergt R., Dutz S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007;311:187–192. doi: 10.1016/j.jmmm.2006.10.1156. DOI
Muscas G., Jovanović S., Vukomanović M., Spreitzer M., Peddis D. Zn-doped cobalt ferrite: Tuning the interactions by chemical composition. J. Alloys Compd. 2019;796:203–209. doi: 10.1016/j.jallcom.2019.04.308. DOI
Muro-Cruces J., Roca A.G., López-Ortega A., Fantechi E., Del-Pozo-Bueno D., Estradé S., Peiró F., Sepúlveda B., Pineider F., Sangregorio C., et al. Precise Size Control of the Growth of Fe3O4 Nanocubes over a Wide Size Range Using a Rationally Designed One-Pot Synthesis. ACS Nano. 2019 doi: 10.1021/acsnano.9b01281. PubMed DOI
López-Ortega A., Lottini E., Fernández C.D.J., Sangregorio C. Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet. Chem. Mater. 2015;27:4048–4056. doi: 10.1021/acs.chemmater.5b01034. DOI
Chen C.-J., Chiang R.-K., Wang J.-S., Wang S.-L. Synthesis and magnetic properties of octahedral magnetite nanoparticles in 20–110 nm range. J. Nanopart. Res. 2013;15:1845. doi: 10.1007/s11051-013-1845-5. DOI
Han C.W., Choksi T., Milligan C., Majumdar P., Manto M., Cui Y., Sang X., Unocic R.R., Zemlyanov D., Wang C., et al. A Discovery of Strong Metal-Support Bonding in Nanoengineered Au-Fe3O4 Dumbbell-like Nanoparticles by in Situ Transmission Electron Microscopy. Nano Lett. 2017;17:4576–4582. doi: 10.1021/acs.nanolett.7b00827. PubMed DOI
Nalench Y.A., Shchetinin I.V., Skorikov A.S., Mogilnikov P.S., Farle M., Savchenko A.G., Majouga A.G., Abakumov M.A., Wiedwald U. Unravelling the nucleation, growth, and faceting of magnetite-gold nanohybrids. J. Mater. Chem. B. 2020;8:3886–3895. doi: 10.1039/C9TB02721A. PubMed DOI
Schieber M.M. Experimental Magnetochemistry: Nonmetallic Magnetic Materials. Volume 8 North-Holland Publishing Company; Amsterdam, The Netherlands: 1967.
Omelyanchik A., Salvador M., D’Orazio F., Mameli V., Cannas C., Fiorani D., Musinu A., Rivas M., Rodionova V., Varvaro G., et al. Magnetocrystalline and Surface Anisotropy in CoFe2O4 Nanoparticles. Nanomaterials. 2020;10:1288. doi: 10.3390/nano10071288. PubMed DOI PMC
Muscas G., Peddis D., Cobianchi M., Lascialfari A., Cannas C., Musinu A., Omelyanchik A., Rodionova V., Fiorani D., Mameli V. Magnetic Interactions Versus Magnetic Anisotropy in Spinel Ferrite Nanoparticles. IEEE Magn. Lett. 2019;10:1–5. doi: 10.1109/LMAG.2019.2956908. DOI
Walz F. The Verwey transition—A topical review. J. Phys. Condens. Matter. 2002;14 doi: 10.1088/0953-8984/14/12/203. DOI
Peddis D., Cannas C., Musinu A., Ardu A., Orrù F., Fiorani D., Laureti S., Rinaldi D., Muscas G., Concas G., et al. Beyond the Effect of Particle Size: Influence of CoFe2O4 Nanoparticle Arrangements on Magnetic Properties. Chem. Mater. 2013;25:2005–2013. doi: 10.1021/cm303352r. DOI
Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. WILEY-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 1998.
Omelyanchik A., Efremova M., Myslitskaya N., Zybin A., Carey B.J., Sickel J., Kohl H., Bratschitsch R., Abakumov M., Majouga A., et al. Magnetic and Optical Properties of Gold-Coated Iron Oxide Nanoparticles. J. Nanosci. Nanotechnol. 2019;19:4987–4993. doi: 10.1166/jnn.2019.16797. PubMed DOI
Fantechi E., Innocenti C., Bertoni G., Sangregorio C., Pineider F. Modulation of the magnetic properties of gold-spinel ferrite heterostructured nanocrystals. Nano Res. 2020;13:785–794. doi: 10.1007/s12274-020-2696-x. DOI
Lartigue L., Innocenti C., Kalaivani T., Awwad A., Duque M.D.M.S., Guari Y., Larionova J., Gueírin C., Montero J.L.G., Barragan-Montero V., et al. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. J. Am. Chem. Soc. 2011;133:10459–10472. doi: 10.1021/ja111448t. PubMed DOI
Guardia P., Di Corato R., Lartigue L., Wilhelm C., Espinosa A., Garcia-Hernandez M., Gazeau F., Manna L., Pellegrino T. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 2012;6:3080–3091. doi: 10.1021/nn2048137. PubMed DOI
Smolková B., Lunova M., Lynnyk A., Uzhytchak M., Churpita O., Jirsa M., Kubinová Š., Lunov O., Dejneka A. Non-thermal plasma, as a new physicochemical source, to induce redox imbalance and subsequent cell death in liver cancer cell lines. Cell. Physiol. Biochem. 2019;52:119–140. doi: 10.33594/000000009. PubMed DOI
Basini M., Guerrini A., Cobianchi M., Orsini F., Bettega D., Avolio M., Innocenti C., Sangregorio C., Lascialfari A., Arosio P. Tailoring the magnetic core of organic-coated iron oxides nanoparticles to influence their contrast efficiency for Magnetic Resonance Imaging. J. Alloys Compd. 2019;770:58–66. doi: 10.1016/j.jallcom.2018.08.120. DOI
Xu C., Xie J., Ho D., Wang C., Kohler N., Walsh E.G., Morgan J.R., Chin Y.E., Sun S. Au-Fe3O4 dumbbell nanoparticles as dual-functional. Angew. Chem. Int. Ed. 2008;47:173–176. doi: 10.1002/anie.200704392. PubMed DOI PMC
Maniglio D., Benetti F., Minati L., Jovicich J., Valentini A., Speranza G., Migliaresi C. Theranostic gold-magnetite hybrid nanoparticles for MRI-guided radiosensitization. Nanotechnology. 2018;29:315101. doi: 10.1088/1361-6528/aac4ce. PubMed DOI
Li J., Zheng L., Cai H., Sun W., Shen M., Zhang G., Shi X. Facile one-pot synthesis of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging applications. ACS Appl. Mater. Interfaces. 2013;5:10357–10366. doi: 10.1021/am4034526. PubMed DOI
Zhao H.Y., Liu S., He J., Pan C.C., Li H., Zhou Z.Y., Ding Y., Huo D., Hu Y. Synthesis and application of strawberry-like Fe3O4-Au nanoparticles as CT-MR dual-modality contrast agents in accurate detection of the progressive liver disease. Biomaterials. 2015;51:194–207. doi: 10.1016/j.biomaterials.2015.02.019. PubMed DOI
Wang W., Hao C., Sun M., Xu L., Xu C., Kuang H. Spiky Fe3O4@Au Supraparticles for Multimodal In Vivo Imaging. Adv. Funct. Mater. 2018;28:1800310. doi: 10.1002/adfm.201800310. DOI
Ge Y., Zhong Y., Ji G., Lu Q., Dai X., Guo Z., Zhang P., Peng G., Zhang K., Li Y. Preparation and characterization of Fe3O4@Au-C225 composite targeted nanoparticles for MRI of human glioma. PLoS ONE. 2018;13:e0195703. doi: 10.1371/journal.pone.0195703. PubMed DOI PMC
Smolensky E.D., Park H.-Y.E., Zhou Y., Rolla G.A., Marjańska M., Botta M., Pierre V.C. Scaling laws at the nanosize: The effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. J. Mater. Chem. B. 2013;1:2818–2828. doi: 10.1039/c3tb00369h. PubMed DOI PMC