Inhibition of caspase-8 cascade restrains the osteoclastogenic fate of bone marrow cells

. 2024 Aug ; 476 (8) : 1289-1302. [epub] 20240604

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38833170
Odkazy

PubMed 38833170
DOI 10.1007/s00424-024-02977-2
PII: 10.1007/s00424-024-02977-2
Knihovny.cz E-zdroje

Osteoclasts are multinucleated cells of hematopoietic origin, with a pivotal role in bone development and remodeling. Failure in osteoclast differentiation and activation leads to various bone disorders; thus, attention has focused on a search of molecules involved in osteoclast regulatory pathways. Caspase-8 appears to be an interesting candidate for further exploration, due to its potential function in bone development and homeostasis. Mouse bone marrow cells were differentiated into osteoclasts by RANKL stimulation. Increased activation of caspase-8 and its downstream executioner caspases (caspase-3 and caspase-6) was found during osteoclastogenesis. Subsequent inhibition of caspase-8, caspase-3, or caspase-6, respectively, during osteoclast differentiation showed distinct changes in the formation of TRAP-positive multinucleated cells and reduced expression of osteoclast markers including Acp5, Ctsk, Dcstamp, and Mmp9. Analysis of bone matrix resorption confirmed significantly reduced osteoclast function after caspase inhibition. The results clearly showed the role of caspases in the proper development of osteoclasts and contributed new knowledge about non-apoptotic function of caspases.

Zobrazit více v PubMed

Alfaqeeh S, Oralova V, Foxworthy M, Matalova E, Grigoriadis AE, Tucker AS (2015) Root and eruption defects in c-Fos mice are driven by loss of osteoclasts. J Dent Res 94:1724–1731. https://doi.org/10.1177/0022034515608828 PubMed DOI

Ballanti P, Minisola S, Pacitti MT, Scarnecchia L, Rosso R, Mazzuoli GF, Bonucci E (1997) Tartrate-resistant acid phosphate activity as osteoclastic marker: sensitivity of cytochemical assessment and serum assay in comparison with standardized osteoclast histomorphometry. Osteoporos Int 7:39–43. https://doi.org/10.1007/BF01623458 PubMed DOI

Benford HL, McGowan NW, Helfrich MH, Nuttall ME, Rogers MJ (2001) Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone 28:465–473. https://doi.org/10.1016/s8756-3282(01)00412-4 PubMed DOI

Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. https://doi.org/10.1038/nature01658 PubMed DOI

Caserta TM, Smith AN, Gultice AD, Reedy MA, Brown TL (2003) Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 8:345–352. https://doi.org/10.1023/a:1024116916932 PubMed DOI

Choi E-B, Agidigbi TS, Kang I-S, Kim C (2022) ERK inhibition increases RANKL-induced osteoclast differentiation in RAW 264.7 cells by stimulating AMPK activation and RANK expression and inhibiting anti-osteoclastogenic factor expression. Int J Mol Sci 23:13512. https://doi.org/10.3390/ijms232113512 PubMed DOI PMC

Christensen J, Shastri VP (2015) Matrix-metalloproteinase-9 is cleaved and activated by cathepsin K. BMC Res Notes 8:1–8. https://doi.org/10.1186/s13104-015-1284-8 DOI

Chwieralski CE, Welte T, Bühling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149. https://doi.org/10.1007/s10495-006-3486-y PubMed DOI

Cui W, Ke JZ, Zhang Q, Ke HZ, Chalouni C, Vignery A (2006) The intracellular domain of CD44 promotes the fusion of macrophages. Blood 107:796–805. https://doi.org/10.1182/blood-2005-05-1902 PubMed DOI PMC

Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G (2020) Cathepsin K: the action in and beyond bone. Front Cell Dev Biol 8:1–13. https://doi.org/10.3389/fcell.2020.00433 DOI

Drake MT, Clarke BL, Oursler MJ, Khosla S (2017) Cathepsin K inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocr Rev 38:325–350. https://doi.org/10.1210/er.2015-1114 PubMed DOI PMC

Falzoni S, Chiozzi P, Ferrari D, Buell G, Di Virgilio F (2000) P2X(7) receptor and polykarion formation. Mol Biol Cell 11:3169–3176. https://doi.org/10.1091/mbc.11.9.3169 PubMed DOI PMC

Finlay D, Vuori K (2007) Novel noncatalytic role for caspase-8 in promoting SRC-mediated adhesion and Erk signaling in neuroblastoma cells. Cancer Res 67:11704–11711. https://doi.org/10.1158/0008-5472.CAN-07-1906 PubMed DOI

Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238. https://doi.org/10.1126/science.273.5279.1236 PubMed DOI

Ghayor C, Correro RM, Lange K, Karfeld-Sulzer LS, Grätz KW, Weber FE (2011) Inhibition of osteoclast differentiation and bone resorption by N-methylpyrrolidone. J Biol Chem 286:24458–24466. https://doi.org/10.1074/jbc.M111.223297 PubMed DOI PMC

Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266:443–448. https://doi.org/10.1126/science.7939685 PubMed DOI

Han X, Sterling H, Chen Y, Saginario C, Brown EJ, Frazier WA, Lindberg FP, Vignery A (2000) CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J Biol Chem 275:37984–37992. https://doi.org/10.1074/jbc.M002334200 PubMed DOI

He Y, Staser K, Rhodes SD, Liu Y, Wu X, Park S-J, Yuan J, Yang X, Li X, Jiang L, Chen S, Yang F-C (2011) Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One 6:e24780. https://doi.org/10.1371/journal.pone.0024780 PubMed DOI PMC

Kang T-B, Ben-Moshe T, Varfolomeev EE, Pewzner-Jung Y, Yogev N, Jurewicz A, Waisman A, Brenner O, Haffner R, Gustafsson E, Ramakrishnan P, Lapidot T, Wallach D (2004) Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173:2976–2984. https://doi.org/10.4049/jimmunol.173.5.2976 PubMed DOI

Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406. https://doi.org/10.1016/S1534-5807(02)00157-0 PubMed DOI

Kim JH, Kim N (2014) Regulation of NFATc1 in osteoclast differentiation. J Bone Metab 21:233. https://doi.org/10.11005/jbm.2014.21.4.233 PubMed DOI PMC

Lampiasi N, Russo R, Kireev I, Strelkova O, Zhironkina O, Zito F (2021) Osteoclasts differentiation from murine RAW 264.7 cells stimulated by RANKL: Timing and behavior. Biology (Basel) 10:117. https://doi.org/10.3390/biology10020117

Miura M, Chen X, Allen M, Bi Y, Gronthos S, Seo B, Lakhani S, Flavell R, Feng X, Robey P, Young M, Shi S (2004) A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 114:1704–1713. https://doi.org/10.1172/JCI20427 PubMed DOI PMC

Mogi M, Togari A (2003) Activation of caspases is required for osteoblastic differentiation. J Biol Chem 278:47477–47482. https://doi.org/10.1074/jbc.M307055200 PubMed DOI

Mun SH, Park PSU, Park-Min K-H (2020) The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 52:1239–1254. https://doi.org/10.1038/s12276-020-0484-z PubMed DOI PMC

Ono T, Nakashima T (2018) Recent advances in osteoclast biology. Histochem Cell Biol 149:325–341. https://doi.org/10.1007/s00418-018-1636-2 PubMed DOI

Park JH, Lee NK, Lee SY (2017) Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells 40:706–713. https://doi.org/10.14348/molcells.2017.0225 PubMed DOI PMC

Ramesova A, Vesela B, Svandova E, Lesot H, Matalova E (2022) Caspase-9 inhibition decreases expression of Mmp9 during chondrogenesis. Histochem Cell Biol:1–11. https://doi.org/10.1007/s00418-021-02067-9

Reponen P, Sahlberg C, Munaut C, Thesleff I, Tryggvason K (1994) High expression of 92-kD type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development. J Cell Biol 124:1091–1102. https://doi.org/10.1083/jcb.124.6.1091 PubMed DOI

Russo R, Mallia S, Zito F, Lampiasi N (2019) Gene expression profiling of NFATc1-knockdown in RAW 264.7 cells: an alternative pathway for macrophage differentiation. Cells 8:131. https://doi.org/10.3390/cells8020131 PubMed DOI PMC

Solier S, Fontenay M, Vainchenker W, Droin N, Solary E (2017) Non-apoptotic functions of caspases in myeloid cell differentiation. Cell Death Differ 24:1337–1347. https://doi.org/10.1038/cdd.2017.19 PubMed DOI PMC

Soysa NS, Alles N (2019) Positive and negative regulators of osteoclast apoptosis. Bone Reports 11. https://doi.org/10.1016/j.bonr.2019.100225

Svandova E, Vesela B, Tucker A, Matalova E (2018) Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front Physiol 9:312644. https://doi.org/10.3389/FPHYS.2018.00174 DOI

Szymczyk K, Freeman T, Adams C, Srinivas V, Steinbeck M (2006) Active caspase-3 is required for osteoclast differentiation. J Cell Physiol 209:836–844. https://doi.org/10.1002/JCP.20770 PubMed DOI

Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue JI, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901. https://doi.org/10.1016/S1534-5807(02)00369-6 PubMed DOI

Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P, Wallach D (1998) Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9:267–276. https://doi.org/10.1016/s1074-7613(00)80609-3 PubMed DOI

Vesela B, Killinger M, Rihova K, Benes P, Svandová E, Kratochvilová A, Trcka F, Kleparnik K, Matalova E (2022) Caspase-8 deficient osteoblastic cells display alterations in non-apoptotic pathways. Front Cell Dev Biol 10:1–11. https://doi.org/10.3389/fcell.2022.794407 DOI

Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A 105:12815–12819. https://doi.org/10.1073/pnas.0707715105 PubMed DOI PMC

Wu X, McKenna MA, Feng XU, Nagy TR, McDonald JM (2003) Osteoclast apoptosis: the role of Fas in vivo and in vitro. Endocrinology 144:5545–5555. https://doi.org/10.1210/en.2003-0296 PubMed DOI

Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202:345–351. https://doi.org/10.1084/jem.20050645 PubMed DOI PMC

Yi TG, Kim HJ, Cho JY, Woo KM, Ryoo HM, Kim GS, Baek JH (2006) Tetraspanin CD9 regulates osteoclastogenesis via regulation of p44/42 MAPK activity. Biochem Biophys Res Commun 347:178–184. https://doi.org/10.1016/j.bbrc.2006.06.061 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...