Inhibition of caspase-8 cascade restrains the osteoclastogenic fate of bone marrow cells
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38833170
DOI
10.1007/s00424-024-02977-2
PII: 10.1007/s00424-024-02977-2
Knihovny.cz E-zdroje
- Klíčová slova
- Caspases, Differentiation, Inhibition, Non-apoptotic, Osteoclasts, TRAP,
- MeSH
- buněčná diferenciace * MeSH
- buňky kostní dřeně * metabolismus MeSH
- inhibitory kaspas * farmakologie MeSH
- kaspasa 3 metabolismus MeSH
- kaspasa 6 metabolismus MeSH
- kaspasa 8 metabolismus MeSH
- kultivované buňky MeSH
- kyselá fosfatasa rezistentní k tartarátu metabolismus MeSH
- ligand RANK * metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- osteoklasty * metabolismus MeSH
- resorpce kosti metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Acp5 protein, mouse MeSH Prohlížeč
- Casp8 protein, mouse MeSH Prohlížeč
- inhibitory kaspas * MeSH
- kaspasa 3 MeSH
- kaspasa 6 MeSH
- kaspasa 8 MeSH
- kyselá fosfatasa rezistentní k tartarátu MeSH
- ligand RANK * MeSH
Osteoclasts are multinucleated cells of hematopoietic origin, with a pivotal role in bone development and remodeling. Failure in osteoclast differentiation and activation leads to various bone disorders; thus, attention has focused on a search of molecules involved in osteoclast regulatory pathways. Caspase-8 appears to be an interesting candidate for further exploration, due to its potential function in bone development and homeostasis. Mouse bone marrow cells were differentiated into osteoclasts by RANKL stimulation. Increased activation of caspase-8 and its downstream executioner caspases (caspase-3 and caspase-6) was found during osteoclastogenesis. Subsequent inhibition of caspase-8, caspase-3, or caspase-6, respectively, during osteoclast differentiation showed distinct changes in the formation of TRAP-positive multinucleated cells and reduced expression of osteoclast markers including Acp5, Ctsk, Dcstamp, and Mmp9. Analysis of bone matrix resorption confirmed significantly reduced osteoclast function after caspase inhibition. The results clearly showed the role of caspases in the proper development of osteoclasts and contributed new knowledge about non-apoptotic function of caspases.
Centre for Craniofacial and Regenerative Biology King's College London London UK
Department of Physiology University of Veterinary Sciences Brno Brno Czech Republic
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Alfaqeeh S, Oralova V, Foxworthy M, Matalova E, Grigoriadis AE, Tucker AS (2015) Root and eruption defects in c-Fos mice are driven by loss of osteoclasts. J Dent Res 94:1724–1731. https://doi.org/10.1177/0022034515608828 PubMed DOI
Ballanti P, Minisola S, Pacitti MT, Scarnecchia L, Rosso R, Mazzuoli GF, Bonucci E (1997) Tartrate-resistant acid phosphate activity as osteoclastic marker: sensitivity of cytochemical assessment and serum assay in comparison with standardized osteoclast histomorphometry. Osteoporos Int 7:39–43. https://doi.org/10.1007/BF01623458 PubMed DOI
Benford HL, McGowan NW, Helfrich MH, Nuttall ME, Rogers MJ (2001) Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone 28:465–473. https://doi.org/10.1016/s8756-3282(01)00412-4 PubMed DOI
Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. https://doi.org/10.1038/nature01658 PubMed DOI
Caserta TM, Smith AN, Gultice AD, Reedy MA, Brown TL (2003) Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 8:345–352. https://doi.org/10.1023/a:1024116916932 PubMed DOI
Choi E-B, Agidigbi TS, Kang I-S, Kim C (2022) ERK inhibition increases RANKL-induced osteoclast differentiation in RAW 264.7 cells by stimulating AMPK activation and RANK expression and inhibiting anti-osteoclastogenic factor expression. Int J Mol Sci 23:13512. https://doi.org/10.3390/ijms232113512 PubMed DOI PMC
Christensen J, Shastri VP (2015) Matrix-metalloproteinase-9 is cleaved and activated by cathepsin K. BMC Res Notes 8:1–8. https://doi.org/10.1186/s13104-015-1284-8 DOI
Chwieralski CE, Welte T, Bühling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149. https://doi.org/10.1007/s10495-006-3486-y PubMed DOI
Cui W, Ke JZ, Zhang Q, Ke HZ, Chalouni C, Vignery A (2006) The intracellular domain of CD44 promotes the fusion of macrophages. Blood 107:796–805. https://doi.org/10.1182/blood-2005-05-1902 PubMed DOI PMC
Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G (2020) Cathepsin K: the action in and beyond bone. Front Cell Dev Biol 8:1–13. https://doi.org/10.3389/fcell.2020.00433 DOI
Drake MT, Clarke BL, Oursler MJ, Khosla S (2017) Cathepsin K inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocr Rev 38:325–350. https://doi.org/10.1210/er.2015-1114 PubMed DOI PMC
Falzoni S, Chiozzi P, Ferrari D, Buell G, Di Virgilio F (2000) P2X(7) receptor and polykarion formation. Mol Biol Cell 11:3169–3176. https://doi.org/10.1091/mbc.11.9.3169 PubMed DOI PMC
Finlay D, Vuori K (2007) Novel noncatalytic role for caspase-8 in promoting SRC-mediated adhesion and Erk signaling in neuroblastoma cells. Cancer Res 67:11704–11711. https://doi.org/10.1158/0008-5472.CAN-07-1906 PubMed DOI
Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238. https://doi.org/10.1126/science.273.5279.1236 PubMed DOI
Ghayor C, Correro RM, Lange K, Karfeld-Sulzer LS, Grätz KW, Weber FE (2011) Inhibition of osteoclast differentiation and bone resorption by N-methylpyrrolidone. J Biol Chem 286:24458–24466. https://doi.org/10.1074/jbc.M111.223297 PubMed DOI PMC
Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266:443–448. https://doi.org/10.1126/science.7939685 PubMed DOI
Han X, Sterling H, Chen Y, Saginario C, Brown EJ, Frazier WA, Lindberg FP, Vignery A (2000) CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J Biol Chem 275:37984–37992. https://doi.org/10.1074/jbc.M002334200 PubMed DOI
He Y, Staser K, Rhodes SD, Liu Y, Wu X, Park S-J, Yuan J, Yang X, Li X, Jiang L, Chen S, Yang F-C (2011) Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One 6:e24780. https://doi.org/10.1371/journal.pone.0024780 PubMed DOI PMC
Kang T-B, Ben-Moshe T, Varfolomeev EE, Pewzner-Jung Y, Yogev N, Jurewicz A, Waisman A, Brenner O, Haffner R, Gustafsson E, Ramakrishnan P, Lapidot T, Wallach D (2004) Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173:2976–2984. https://doi.org/10.4049/jimmunol.173.5.2976 PubMed DOI
Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406. https://doi.org/10.1016/S1534-5807(02)00157-0 PubMed DOI
Kim JH, Kim N (2014) Regulation of NFATc1 in osteoclast differentiation. J Bone Metab 21:233. https://doi.org/10.11005/jbm.2014.21.4.233 PubMed DOI PMC
Lampiasi N, Russo R, Kireev I, Strelkova O, Zhironkina O, Zito F (2021) Osteoclasts differentiation from murine RAW 264.7 cells stimulated by RANKL: Timing and behavior. Biology (Basel) 10:117. https://doi.org/10.3390/biology10020117
Miura M, Chen X, Allen M, Bi Y, Gronthos S, Seo B, Lakhani S, Flavell R, Feng X, Robey P, Young M, Shi S (2004) A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 114:1704–1713. https://doi.org/10.1172/JCI20427 PubMed DOI PMC
Mogi M, Togari A (2003) Activation of caspases is required for osteoblastic differentiation. J Biol Chem 278:47477–47482. https://doi.org/10.1074/jbc.M307055200 PubMed DOI
Mun SH, Park PSU, Park-Min K-H (2020) The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 52:1239–1254. https://doi.org/10.1038/s12276-020-0484-z PubMed DOI PMC
Ono T, Nakashima T (2018) Recent advances in osteoclast biology. Histochem Cell Biol 149:325–341. https://doi.org/10.1007/s00418-018-1636-2 PubMed DOI
Park JH, Lee NK, Lee SY (2017) Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells 40:706–713. https://doi.org/10.14348/molcells.2017.0225 PubMed DOI PMC
Ramesova A, Vesela B, Svandova E, Lesot H, Matalova E (2022) Caspase-9 inhibition decreases expression of Mmp9 during chondrogenesis. Histochem Cell Biol:1–11. https://doi.org/10.1007/s00418-021-02067-9
Reponen P, Sahlberg C, Munaut C, Thesleff I, Tryggvason K (1994) High expression of 92-kD type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development. J Cell Biol 124:1091–1102. https://doi.org/10.1083/jcb.124.6.1091 PubMed DOI
Russo R, Mallia S, Zito F, Lampiasi N (2019) Gene expression profiling of NFATc1-knockdown in RAW 264.7 cells: an alternative pathway for macrophage differentiation. Cells 8:131. https://doi.org/10.3390/cells8020131 PubMed DOI PMC
Solier S, Fontenay M, Vainchenker W, Droin N, Solary E (2017) Non-apoptotic functions of caspases in myeloid cell differentiation. Cell Death Differ 24:1337–1347. https://doi.org/10.1038/cdd.2017.19 PubMed DOI PMC
Soysa NS, Alles N (2019) Positive and negative regulators of osteoclast apoptosis. Bone Reports 11. https://doi.org/10.1016/j.bonr.2019.100225
Svandova E, Vesela B, Tucker A, Matalova E (2018) Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front Physiol 9:312644. https://doi.org/10.3389/FPHYS.2018.00174 DOI
Szymczyk K, Freeman T, Adams C, Srinivas V, Steinbeck M (2006) Active caspase-3 is required for osteoclast differentiation. J Cell Physiol 209:836–844. https://doi.org/10.1002/JCP.20770 PubMed DOI
Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue JI, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901. https://doi.org/10.1016/S1534-5807(02)00369-6 PubMed DOI
Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P, Wallach D (1998) Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9:267–276. https://doi.org/10.1016/s1074-7613(00)80609-3 PubMed DOI
Vesela B, Killinger M, Rihova K, Benes P, Svandová E, Kratochvilová A, Trcka F, Kleparnik K, Matalova E (2022) Caspase-8 deficient osteoblastic cells display alterations in non-apoptotic pathways. Front Cell Dev Biol 10:1–11. https://doi.org/10.3389/fcell.2022.794407 DOI
Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A 105:12815–12819. https://doi.org/10.1073/pnas.0707715105 PubMed DOI PMC
Wu X, McKenna MA, Feng XU, Nagy TR, McDonald JM (2003) Osteoclast apoptosis: the role of Fas in vivo and in vitro. Endocrinology 144:5545–5555. https://doi.org/10.1210/en.2003-0296 PubMed DOI
Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202:345–351. https://doi.org/10.1084/jem.20050645 PubMed DOI PMC
Yi TG, Kim HJ, Cho JY, Woo KM, Ryoo HM, Kim GS, Baek JH (2006) Tetraspanin CD9 regulates osteoclastogenesis via regulation of p44/42 MAPK activity. Biochem Biophys Res Commun 347:178–184. https://doi.org/10.1016/j.bbrc.2006.06.061 PubMed DOI