The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
DP2 GM132931
NIGMS NIH HHS - United States
PubMed
35523414
PubMed Central
PMC9590281
DOI
10.1016/j.actbio.2022.04.046
PII: S1742-7061(22)00264-1
Knihovny.cz E-zdroje
- Klíčová slova
- Bionano interactions, Cellular uptake, Cytotoxicity, DNA nanotechnology, Nanotechnology, Protein corona,
- MeSH
- DNA chemie MeSH
- nanostruktury * chemie MeSH
- nanotechnologie metody MeSH
- systémy cílené aplikace léků metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
DNA nanotechnology has yielded remarkable advances in composite materials with diverse applications in biomedicine. The specificity and predictability of building 3D structures at the nanometer scale make DNA nanotechnology a promising tool for uses in biosensing, drug delivery, cell modulation, and bioimaging. However, for successful translation of DNA nanostructures to real-world applications, it is crucial to understand how they interact with living cells, and the consequences of such interactions. In this review, we summarize the current state of knowledge on the interactions of DNA nanostructures with cells. We identify key challenges, from a cell biology perspective, that influence progress towards the clinical translation of DNA nanostructures. We close by providing an outlook on what questions must be addressed to accelerate the clinical translation of DNA nanostructures. STATEMENT OF SIGNIFICANCE: Self-assembled DNA nanostructures (DNs) offers unique opportunities to overcome persistent challenges in the nanobiotechnology field. However, the interactions between engineered DNs and living cells are still not well defined. Critical systematization of current cellular models and biological responses triggered by DNs is a crucial foundation for the successful clinical translation of DNA nanostructures. Moreover, such an analysis will identify the pitfalls and challenges that are present in the field, and provide a basis for overcoming those challenges.
Zobrazit více v PubMed
Dawson KA, Yan Y, Current understanding of biological identity at the nanoscale and future prospects, Nat. Nanotechnol 16 (2021) 229–242. PubMed
Wang J, Li YY, Nie GJ, Multifunctional biomolecule nanostructures for cancer therapy, Nat. Rev. Mater 6 (2021) 766–783. PubMed PMC
Lammers T, Ferrari M, The success of nanomedicine, Nano Today 31 (2020) 100853. PubMed PMC
Seitkalieva MM, Samoylenko DE, Lotsman KA, Rodygin KS, Ananikov VP, Metal nanoparticles in ionic liquids: synthesis and catalytic applications, Coordin. Chem. Rev 445 (2021).
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R, Engineering precision nanoparticles for drug delivery, Nat. Rev. Drug Discov 20 (2021) 101–124. PubMed PMC
Shi JJ, Kantoff PW, Wooster R, Farokhzad OC, Cancer nanomedicine: progress, challenges and opportunities, Nat. Rev. Cancer 17 (2017) 20–37. PubMed PMC
Ahrens ET, Bulte JWM, Tracking immune cells in vivo using magnetic resonance imaging, Nat. Rev. Immunol 13 (2013) 755–763. PubMed PMC
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WC, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grunweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopecek J, Kotov NA, Krug HF, Lee DS, Lehr CM, Leong KW, Liang XJ, Ling Lim M, Liz–Marzan LM, Ma X, Macchiarini P, Meng H, Mohwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjoqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung HW, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang XE, Zhao Y, Zhou X, Parak WJ, Diverse applications of nanomedicine, ACS Nano 11 (2017) 2313–2381. PubMed PMC
Allen TM, Cullis PR, Drug delivery systems: entering the mainstream, Science 303 (2004) 1818–1822. PubMed
Blanco E, Shen H, Ferrari M, Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat. Biotechnol 33 (2015) 941–951. PubMed PMC
Davis ME, Chen Z, Shin DM, Nanoparticle therapeutics: an emerging treatment modality for cancer, Nat. Rev. Drug Discov 7 (2008) 771–782. PubMed
Lunov O, Uzhytchak M, Smolkova B, Lunova M, Jirsa M, Dempsey NM, Dias AL, Bonfim M, Hof M, Jurkiewicz P, Petrenko Y, Kubinova S, Dejneka A, Remote actuation of apoptosis in liver cancer cells via magneto-mechanical modulation of iron oxide nanoparticles, Cancers (Basel) 11 (2019) 1873. PubMed PMC
Anselmo AC, Mitragotri S, Nanoparticles in the clinic: an update, Bioeng. Transl. Med 4 (2019) e10143. PubMed PMC
Gabizon AA, Patil Y, La-Beck NM, New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy, Drug Resist Update 29 (2016) 90–106. PubMed
Anchordoquy TJ, Barenholz Y, Boraschi D, Chorny M, Decuzzi P, Dobrovolskaia MA, Farhangrazi ZS, Farrell D, Gabizon A, Ghandehari H, Godin B, La-Beck NM, Ljubimova J, Moghimi SM, Pagliaro L, Park JH, Peer D, Ruoslahti E, Serkova NJ, Simberg D, Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions, ACS Nano 11 (2017) 12–18. PubMed PMC
Sun DX, Zhou S, Gao W, What went wrong with anticancer nanomedicine design and how to make it right, ACS Nano 14 (2020) 12281–12290. PubMed
Moghimi SM, Farhangrazi ZS, Nanomedicine and the complement paradigm, Nanomed.-Nanotechnol 9 (2013) 458–460. PubMed
Cheng YH, He CL, Riviere JE, Monteiro-Riviere NA, Lin ZM, Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach, ACS Nano 14 (2020) 3075–3095. PubMed PMC
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW, Analysis of nanoparticle delivery to tumours, Nat. Rev. Mater 1 (2016) 16014 .
Park K, The beginning of the end of the nanomedicine hype, J. Control Release 305 (2019) 221–222. PubMed
Frtus A, Smolkova B, Uzhytchak M, Lunova M, Jirsa M, Kubinova S, Dejneka A, Lunov O, Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: a road from failure to success in clinical applications, J. Control Release 328 (2020) 59–77. PubMed
Gause KT, Wheatley AK, Cui JW, Yan Y, Kent SJ, Caruso F, Immunological principles guiding the rational design of particles for vaccine delivery, ACS Nano 11 (2017) 54–68. PubMed
Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, MacMillan P, Zhang YW, Rajesh NU, Hoang T, Wu JLY, Wilhelm S, Zilman A, Gadde S, Sulaiman A, Ouyang B, Lin Z, Wang LS, Egeblad M, Chan WCW, The entry of nanoparticles into solid tumours, Nat. Mater 19 (2020) 566–575. PubMed
Dey S, Fan C, Gothelf KV, Li J, Lin C, Liu L, Liu N, Nijenhuis MAD, Sacca B, Simmel FC, Yan H, Zhan P, D.N.A. origami, Nature Rev. Methods Primers 1 (2021) 13.
Abedini A, Bakar AAA, Larki F, Menon PS, Islam MS, Shaari S, Recent advances in shape-controlled synthesis of noble metal nanoparticles by radiolysis route, Nanoscale Res. Lett 11 (2016) 287. PubMed PMC
da Silva AGM, Rodrigues TS, Slater TJA, Lewis EA, Alves RS, Fajardo HV, Balzer R, da Silva AHM, de Freitas IC, Oliveira DC, Assaf JM, Probst LFD, Haigh SJ, Camargo PHC, Controlling size, morphology, and surface composition of AgAu nanodendrites in 15s for improved environmental catalysis under low metal loadings, ACS Appl. Mater. Inter 7 (2015) 25624–25632. PubMed
Jahanban-Esfahlan A, Seidi K, Jaymand M, Schmidt TL, Majdi H, Javaheri T, Jahanban-Esfahlan R, Zare P, Dynamic DNA nanostructures in biomedicine: beauty, utility and limits, J. Control Release 315 (2019) 166–185 . PubMed
Gangrade A, Stephanopoulos N, Bhatia D, Programmable, self-assembled DNA nanodevices for cellular programming and tissue engineering, Nanoscale 13 (2021) 16834–16846. PubMed
Stephanopoulos N, Hybrid nanostructures from the self-assembly of proteins and DNA, Chem-Us 6 (2020) 364–405.
Wang WT, Arias DS, Deserno M, Ren X, Taylor RE, Emerging applications at the interface of DNA nanotechnology and cellular membranes: perspectives from biology, engineering, and physics, Apl. Bioeng. 4 (2020) 041507. PubMed PMC
Ke YG, Castro C, Choi JH, Structural DNA nanotechnology: artificial nanostructures for biomedical research, Annu. Rev. Biomed. Eng 20 (2018) 375–401. PubMed
Henry SJW, Stephanopoulos N, Functionalizing DNA nanostructures for therapeutic applications, Wires Nanomed. Nanobio 13 (2021) e1729. PubMed PMC
Hong F, Zhang F, Liu Y, Yan H, origami DNA, Scaffolds for creating higher order structures, Chem. Rev 117 (2017) 12584–12640. PubMed
Keller A, Linko V, Challenges and perspectives of DNA nanostructures in biomedicine, Angew. Chem. Int. Edit 59 (2020) 15818–15833. PubMed PMC
Goodman RP, Berry RM, Turberfield AJ, The single-step synthesis of a DNA tetrahedron, Chem. Commun (2004) 1372–1373. PubMed
Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P, Högberg B, DNA rendering of polyhedral meshes at the nanoscale, Nature 523 (2015) 441–444. PubMed
Wang W, Chen S, An B, Huang K, Bai T, Xu M, Bellot G, Ke Y, Xiang Y, Wei B, Complex wireframe DNA nanostructures from simple building blocks, Nat. Commun 10 (2019) 1067. PubMed PMC
Rothemund PWK, Folding DNA to create nanoscale shapes and patterns, Nature 440 (2006) 297–302. PubMed
Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H, DNA origami with complex curvatures in three-dimensional space, Science 332 (2011) 342–346. PubMed
Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM, Self-assembly of DNA into nanoscale three-dimensional shapes, Nature 459 (2009) 414–418 . PubMed PMC
Ke Y, Ong LL, Shih WM, Yin P, Three-dimensional structures self-assembled from DNA bricks, Science 338 (2012) 1177–1183 . PubMed PMC
Dong YH, Yao C, Zhu Y, Yang L, Luo D, Yang DY, DNA functional materials assembled from branched DNA: design, synthesis, and applications, Chem. Rev 120 (2020) 9420–9481 . PubMed
Wang X, Chandrasekaran AR, Shen ZY, Ohayon YP, Wang T, Kizer ME, Sha RJ, Mao CD, Yan H, Zhang XP, Liao SP, Ding BQ, Chakraborty B, Jonoska N, Niu D, Gu HZ, Chao J, Gao X, Li YH, Ciengshin T, Seeman NC, Paranemic crossover DNA: there and back again, Chem. Rev 119 (2019) 6273–6289. PubMed
Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Golas MM, Sander B, Stark H, Oliveira CLP, Pedersen JS, Birkedal V, Besenbacher F, Gothelf KV, Kjems J, Self-assembly of a nanoscale DNA box with a controllable lid, Nature 459 (2009) 73–76. PubMed
Keum J-W, Bermudez H, DNA-based delivery vehicles: pH-controlled disassembly and cargo release, Chem. Commun 48 (2012) 12118–12120. PubMed PMC
Gerling T, Wagenbauer KF, Neuner AM, Dietz H, Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components, Science 347 (2015) 1446–1452. PubMed
Wickham SFJ, Auer A, Min J, Ponnuswamy N, Woehrstein JB, Schueder F, Strauss MT, Schnitzbauer J, Nathwani B, Zhao Z, Perrault SD, Hahn J, Lee S, Bastings MM, Helmig SW, Kodal AL, Yin P, Jungmann R, Shih WM, Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard, Nat. Commun 11 (2020) 5768. PubMed PMC
Li F, Lv ZY, Zhang X, Dong YH, Ding XH, Li ZM, Li S, Yao C, Yang DY, Supramolecular self-assembled DNA nanosystem for synergistic chemical and gene regulations on cancer cells, Angew. Chem. Int. Edit 60 (2021) 25557–25566. PubMed
Wang Y, Santos A, Evdokiou A, Losic D, An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy, J. Mater. Chem. B 3 (2015) 7153–7172. PubMed
Khanna P, Ong C, Bay BH, Baeg GH, Nanotoxicity: an interplay of oxidative stress, inflammation and cell death, Nanomaterials-Basel 5 (2015) 1163–1180. PubMed PMC
Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Shih WM, Self-assembly of DNA into nanoscale three-dimensional shapes, Nature 459 (2009) 414–418. PubMed PMC
Simmons CR, MacCulloch T, Zhang F, Liu Y, Stephanopoulos N, Yan H, A self-assembled rhombohedral DNA crystal scaffold with tunable cavity sizes and high-resolution structural detail, Angew. Chem. Int. Edit 59 (2020) 18619–18626. PubMed
Mechanism matters, Nat. Med 16 (2010) 347. PubMed
Ehrenstein MR, Mauri C, If the treatment works, do we need to know why?: the promise of immunotherapy for experimental medicine, J. Exp. Med 204 (2007) 2249–2252 . PubMed PMC
Schenone M, Dancik V, Wagner BK, Clemons PA, Target identification and mechanism of action in chemical biology and drug discovery, Nat. Chem. Biol 9 (2013) 232–240. PubMed PMC
Liebler DC, Guengerich FP, Elucidating mechanisms of drug-induced toxicity, Nat. Rev. Drug Discov 4 (2005) 410–420. PubMed
Smolkova B, Frtus A, Uzhytchak M, Lunova M, Kubinova S, Dejneka A, Lunov O, Critical analysis of non-thermal plasma-driven modulation of immune cells from clinical perspective, Int. J. Mol. Sci 21 (2020) 6226. PubMed PMC
Ke PC, Lin S, Parak WJ, Davis TP, Caruso F, A decade of the protein corona, ACS Nano 11 (2017) 11773–11776. PubMed
Del Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ, Protein corona formation around nanoparticles - from the past to the future, Mater. Horiz 1 (2014) 301–313.
Cai R, Chen CY, The crown and the scepter: roles of the protein corona in nanomedicine, Adv. Mater 31 (2019) e1805740. PubMed
Chandrasekaran AR, Nuclease resistance of DNA nanostructures, Nat. Rev. Chem 5 (2021) 225–239. PubMed PMC
Ge CC, Tian J, Zhao YL, Chen CY, Zhou RH, Chai ZF, Towards understanding of nanoparticle-protein corona, Arch. Toxicol 89 (2015) 519–539. PubMed
Kharazian B, Hadipour NL, Ejtehadi MR, Understanding the nanoparticle-protein corona complexes using computational and experimental methods, Int. J. Biochem. Cell B 75 (2016) 162–174. PubMed
Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M, Understanding biophysicochemical interactions at the nano-bio interface, Nat. Mater 8 (2009) 543–557. PubMed
Lunova M, Prokhorov A, Jirsa M, Hof M, Olzynska A, Jurkiewicz P, Kubinova S, Lunov O, Dejneka A, Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines, Sci. Rep.-UK 7 (2017) 16049. PubMed PMC
Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Aberg C, Mahon E, Dawson KA, Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface, Nat. Nanotechnol 8 (2013) 137–143. PubMed
Hamad-Schifferli K, Exploiting the novel properties of protein coronas: emerging applications in nanomedicine, Nanomedicine-UK 10 (2015) 1663–1674. PubMed
Auvinen H, Zhang HB, Kopilow Nonappa A, Niemela EH, Nummelin S, Correia A, Santos HA, Linko V, Kostiainen MA, Protein coating of DNA nanostructures for enhanced stability and immunocompatibility, Adv. Healthc. Mater 6 (2017) 1700692. PubMed
Estrich NA, Hernandez-Garcia A, de Vries R, LaBean TH, Engineered diblock polypeptides improve DNA and gold solubility during molecular assembly, ACS Nano 11 (2017) 831–842. PubMed
Hernandez-Garcia A, Estrich NA, Werten MW, Van Der Maarel JR, LaBean TH, de Wolf FA, Cohen Stuart MA, de Vries R, Precise coating of a wide range of DNA templates by a protein polymer with a DNA binding domain, ACS Nano 11 (2017) 144–152. PubMed
Ponnuswamy N, Bastings MMC, Nathwani B, Ryu JH, Chou LYT, Vinther M, Li WA, Anastassacos FM, Mooney DJ, Shih WM, Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation, Nat. Commun 8 (2017) 15654. PubMed PMC
Kozma GT, Shimizu T, Ishida T, Szebeni J, Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals, Adv. Drug Deliv. Rev 154 (2020) 163–175. PubMed
Kozma GT, Meszaros T, Vashegyi I, Fulop T, Orfi E, Dezsi L, Rosivall L, Bavli Y, Urbanics R, Mollnes TE, Barenholz Y, Szebeni J, Pseudo-anaphylaxis to polyethylene glycol (PEG)-coated liposomes: roles of anti-PEG IgM and complement activation in a porcine model of human infusion reactions, ACS Nano 13 (2019) 9315–9324. PubMed
Shiraishi K, Yokoyama M, Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review, Sci. Technol. Adv. Mat 20 (2019) 324–336. PubMed PMC
Wang PF, Meyer TA, Pan V, Dutta PK, Ke YG, The beauty and utility of DNA origami, Chem-Us 2 (2017) 359–382.
Smolkova B, MacCulloch T, Rockwood TF, Liu MH, Henry SJW, Frtus A, Uzhytchak M, Lunova M, Hof M, Jurkiewicz P, Dejneka A, Stephanopoulos N, Lunov O, Protein corona inhibits endosomal escape of functionalized DNA nanostructures in living cells, ACS Appl. Mater. Inter 13 (2021) 46375–46390. PubMed PMC
Li M, Tao Y, Shu YL, LaRochelle JR, Steinauer A, Thompson D, Schepartz A, Chen ZY, Liu DR, Discovery and characterization of a peptide that enhances endosomal escape of delivered proteins in vitro and in vivo, J. Am. Chem. Soc 137 (2015) 14084–14093. PubMed
Wymann MP, Schneiter R, Lipid signalling in disease, Nat. Rev. Mol. Cell Bio 9 (2008) 162–176. PubMed
Kholodenko BN, Cell-signalling dynamics in time and space, Nat. Rev. Mol. Cell Bio 7 (2006) 165–176. PubMed PMC
Yang NJ, Hinner MJ, Getting across the cell membrane: an overview for small molecules, peptides, and proteins, Methods Mol. Biol 1266 (2015) 29–53. PubMed PMC
Lunov O, Syrovets T, Loos C, Nienhaus GU, Mailander V, Landfester K, Rouis M, Simmet T, Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages, ACS Nano 5 (2011) 9648–9657 . PubMed
Walsh AS, Yin HF, Erben CM, Wood MJA, Turberfield AJ, DNA cage delivery to mammalian cells, ACS Nano 5 (2011) 5427–5432. PubMed
Tian XH, Angioletti-Uberti S, Battaglia G, On the design of precision nanomedicines, Sci. Adv 6 (2020) eaat0919. PubMed PMC
Yong KW, Yuen D, Chen MZ, Porter CJH, Johnston APR, Pointing in the right direction: controlling the orientation of proteins on nanoparticles improves targeting efficiency, Nano Lett. 19 (2019) 1827–1831. PubMed
Yong KW, Yuen D, Chen MZ, Johnston APR, Engineering the orientation, density, and flexibility of single-domain antibodies on nanoparticles to improve cell targeting, ACS Appl. Mater. Inter 12 (2020) 5593–5600. PubMed
Johnston APR, Kamphuis MMJ, Such GK, Scott AM, Nice EC, Heath JK, Caruso F, Targeting cancer cells: controlling the binding and internalization of antibody-functionalized capsules, ACS Nano 6 (2012) 6667–6674 . PubMed
Colombo M, Fiandra L, Alessio G, Mazzucchelli S, Nebuloni M, De Palma C, Kantner K, Pelaz B, Rotem R, Corsi F, Parak WJ, Prosperi D, Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies, Nat. Commun 7 (2016) 13818. PubMed PMC
Zhang QY, Reinhard BM, Ligand density and nanoparticle clustering cooperate in the multivalent amplification of epidermal growth factor receptor activation, ACS Nano 12 (2018) 10473–10485. PubMed PMC
Shimoni O, Yan Y, Wang YJ, Caruso F, Shape-dependent cellular processing of polyelectrolyte capsules, ACS Nano 7 (2013) 522–530. PubMed
Dasgupta S, Auth T, Gompper G, Shape and orientation matter for the cellular uptake of nonspherical particles, Nano Lett. 14 (2014) 687–693. PubMed
Shang L, Nienhaus K, Nienhaus GU, Engineered nanoparticles interacting with cells: size matters, J. Nanobiotechnol 12 (2014) 5. PubMed PMC
Barua S, Yoo JW, Kolhar P, Wakankar A, Gokarn YR, Mitragotri S, Particle shape enhances specificity of antibody-displaying nanoparticles, Proc. Natl. Acad. Sci. USA 110 (2013) 3270–3275 . PubMed PMC
Chithrani BD, Ghazani AA, Chan WCW, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano Lett. 6 (2006) 662–668. PubMed
Shaw A, Lundin V, Petrova E, Fordos F, Benson E, Al-Amin A, Herland A, Blokzijl A, Hogberg B, Teixeira AI, Spatial control of membrane receptor function using ligand nanocalipers, Nat. Methods 11 (2014) 841–846. PubMed
Kwon PS, Ren S, Kwon SJ, Kizer ME, Kuo L, Xie M, Zhu D, Zhou F, Zhang FM, Kim D, Fraser K, Kramer LD, Seeman NC, Dordick JS, Linhardt RJ, Chao J, Wang X, Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition, Nat. Chem 12 (2020) 26–35. PubMed PMC
Cremers GAO, Rosier BJHM, Meijs A, Tito NB, van Duijnhoven SMJ, van Eenennaam H, Albertazzi L, de Greef TFA, Determinants of ligand-functionalized DNA nanostructure-cell interactions, J. Am. Chem. Soc 143 (2021) 10131–10142. PubMed PMC
Castro CE, Kilchherr F, Kim DN, Shiao EL, Wauer T, Wortmann P, Bathe M, Dietz H, A primer to scaffolded DNA origami, Nat. Methods 8 (2011) 221–229. PubMed
P J, Sobczak J, Martin TG, Gerling T, Dietz H, Rapid folding of DNA into nanoscale shapes at constant temperature, Science 338 (2012) 1458–1461. PubMed
Verheyen T, Fang T, Lindenhofer D, Wang Y, Akopyan K, Lindqvist A, Hogberg A, Teixeira AI, Spatial organization-dependent EphA2 transcriptional responses revealed by ligand nanocalipers, Nucleic. Acids. Res 48 (2020) 5777–5787. PubMed PMC
Veneziano R, Moyer TJ, Stone MB, Wamhoff EC, Read BJ, Mukherjee S, Shepherd TR, Das J, Schief WR, Irvine DJ, Bathe M, Role of nanoscale antigen organization on B-cell activation probed using DNA origami, Nat. Nanotechnol 15 (2020) 716–723. PubMed PMC
Rosier BJHM, Markvoort AJ, Audenis BG, Roodhuizen JAL, den Hamer A, Brunsveld L, de Greef TFA, Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome, Nat. Catal 3 (2020) 295–306. PubMed PMC
Shaw A, Hoffecker IT, Smyrlaki I, Rosa J, Grevys A, Bratlie D, Sandlie I, Michaelsen TE, Andersen JT, Hogberg B, Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies, Nat. Nanotechnol 14 (2019) 184–190. PubMed PMC
Berger RML, Weck JM, Kempe SM, Hill O, Liedl T, Radler JO, Monzel C, Heuer-Jungemann A, Nanoscale FasL organization on DNA origami to decipher apoptosis signal activation in cells, Small 17 (2021) 2101678 . PubMed
Graves JD, Kordich JJ, Huang TH, Piasecki J, Bush TL, Sullivan T, Foltz IN, Chang W, Douangpanya H, Dang T, O’Neil JW, Mallari R, Zhao XN, Branstetter DG, Rossi JM, Long AM, Huang X, Holland PM, Apo2L/TRAIL and the death receptor 5 agonist antibody AMG 655 cooperate to promote receptor clustering and antitumor activity, Cancer Cell 26 (2014) 177–189. PubMed
Wang Y, Baars I, Fordos F, Hogberg B, Clustering of death receptor for apoptosis using nanoscale patterns of peptides, ACS Nano 15 (2021) 9614–9626. PubMed PMC
Xu F, Xia Q, Wang PF, Rationally designed DNA nanostructures for drug delivery, Front. Chem 8 (2020) 751. PubMed PMC
Harman C, The fallacy of ‘alternative’ medicine, Nat. Rev. Nephrol 5 (2009) 361 . PubMed
Singh S, Ernst E, Trick Or treatment? : Alternative Medicine On Trial, Transworld, London, 2009.
https://blogs.bmj.com/bmj/2012/08/15/edzard-ernst-the-natural-equals-safe-fallacy/.
Volik S, Alcaide M, Morin RD, Collins C, Cell-free DNA (cfDNA): clinical significance and utility in cancer shaped by emerging technologies, Mol. Cancer Res 14 (2016) 898–908 . PubMed
Bartoloni E, Ludovini V, Alunno A, Pistola L, Bistoni O, Crino L, Gerli R, Increased levels of circulating DNA in patients with systemic autoimmune diseases: a possible marker of disease activity in Sjogren’s syndrome, Lupus 20 (2011) 928–935. PubMed
Atamaniuk J, Kopecky C, Skoupy S, Saemann MD, Weichhart T, Apoptotic cell-free DNA promotes inflammation in haemodialysis patients, Nephrol. Dial. Transpl 27 (2012) 902–905 . PubMed
Dholakia S, De Vlaminck I, Khush KK, Adding insult on injury: immunogenic role for donor-derived cell-free DNA? Transplantation 104 (2020) 2266–2271. PubMed PMC
Verhoeven J, Peeters A, De Jonge E, Von der Thusen J, Baan C, van Schaik R, Hesselink D, Manintveld O, Boer K, Donor-derived cell-free DNA for the detection of heart allograft injury: impact of rejection severity and timing of the liquid biopsy, Transpl. Int 34 (2021) 32–33. PubMed PMC
Oellerich M, Sherwood K, Keown P, Schutz E, Beck J, Stegbauer J, Rump LC, Watson PD, Liquid biopsies: donor-derived cell-free DNA for the detection of kidney allograft injury, Nat. Rev. Nephrol 17 (2021) 591–603. PubMed
Peneder P, Stuetz AM, Surdez D, Krumbholz M, Semper S, Chicard M, Sheffield NC, Pierron G, Lapouble E, Toetzl M, Erguener B, Barreca D, Rendeiro AF, Agaimy A, Boztug H, Engstler G, Dworzak M, Bernkopf M, Taschner-Mandl S, Ambros IM, Myklebost O, Marec-Berard P, Burchill SA, Brennan B, Strauss SJ, Whelan J, Schleiermacher G, Schaefer C, Dirksen U, Hutter A, Boye K, Ambros PF, Delattre O, Metzler M, Bock C, Tomazou EM, Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden, Nat. Commun 12 (2021) 3230 . PubMed PMC
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ, Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature 464 (2010) 104–107. PubMed PMC
Matzinger P, Tolerance, danger, and the extended family, Annu. Rev. Immunol 12 (1994) 991–1045. PubMed
Bae JH, Jo S, Kim SJ, Lee JM, Jeong JH, Kang JS, Cho NJ, Kim SS, Lee EY, Moon JS, Circulating cell-free mtDNA contributes to AIM2 inflammasome–mediated chronic inflammation in patients with type 2 diabetes, Cells-Basel 8 (2019) 328. PubMed PMC
Messaoudi S, Greschner AA, Gauthier MA, Progress toward absorption, distribution, metabolism, elimination, and toxicity of DNA nanostructures, Adv. Ther.-Germany 2 (2019) 1900144.
https://www.epa.gov/pesticide-labels/criteria-biodegradability-claims-products-registered-under-fifra.
Zimmermann L, Dombrowski A, Völker C, Wagner M, Are bioplastics and plant-based materials safer than conventional plastics? In vitro toxicity and chemical composition 145 (2020) 106066 Environment International. PubMed
Levis JW, Barlaz MA, Is biodegradability a desirable attribute for discarded solid waste? Perspectives from a national landfill greenhouse gas inventory model, Environ. Sci. Technol 45 (2011) 5470–5476 . PubMed
Andrade RJ, Chalasani N, Bjornsson ES, Suzuki A, Kullak-Ublick GA, Watkins PB, Devarbhavi H, Merz M, Lucena MI, Kaplowitz N, Aithal GP, Drug-induced liver injury, Nat. Rev. Dis. Primers 5 (2019) 58. PubMed
Fernandez-Checa JC, Bagnaninchi P, Ye H, Sancho-Bru P, Falcon-Perez JM, Royo F, Garcia-Ruiz C, Konu O, Miranda J, Lunov O, Dejneka A, Elfick A, McDonald A, Sullivan GJ, Aithal GP, Lucena MI, Andrade RJ, Fromenty B, Kranendonk M, Cubero FJ, Nelson LJ, Advanced preclinical models for evaluation of drug-induced liver injury - consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET], J. Hepatol 75 (2021) 935–959. PubMed
Chen MJ, Borlak J, Tong WD, High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury, Hepatology 58 (2013) 388–396. PubMed
Roberts TC, Langer R, Wood MJA, Advances in oligonucleotide drug delivery, Nat. Rev. Drug Discov 19 (2020) 673–694. PubMed PMC
Alyamkina EA, Nikolin VP, Popova NA, Minkevich AM, Kozel AV, Dolgova DV, Efremov YR, Bayborodin SI, Andrushkevich OM, Taranov OS, Omigov VV, Rogachev VA, Proskurina AS, Vereschagin EI, Kiseleva EV, Zhukova MV, Ostanin AA, Chernykh ER, Bogachev SS, Shurdov MA, Combination of cyclophosphamide and double-stranded DNA demonstrates synergistic toxicity against established xenografts, Cancer Cell Int. 15 (2015) 32. PubMed PMC
Guiducci C, Tripodo C, Gong M, Sangaletti S, Colombo MP, Coffman RL, Barrat DJ, Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9, J. Exp. Med 207 (2010) 2931–2942. PubMed PMC
Pisetsky DS, Ullal AJ, The blood nucleome in the pathogenesis of SLE, Au- toimmun. Rev 10 (2010) 35–37. PubMed PMC
Almqvist N, Winkler TH, Mårtensson I-L, Autoantibodies: focus on anti-DNA antibodies, Self Nonself 2 (2011) 11–18. PubMed PMC
Rhodes A, Wort SJ, Thomas H, Collinson P, Bennett ED, Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients, Crit. Care 10 (2006) R60. PubMed PMC
Kung CT, Hsiao SY, Tsai TC, Su CM, Chang WN, Huang CR, Wang HC, Lin WC, Chang HW, Lin YJ, Cheng BC, Su BYJ, Tsai NW, Lu CH, Plasma nuclear and mitochondrial DNA levels as predictors of outcome in severe sepsis patients in the emergency room, J. Transl. Med 10 (2012) 130. PubMed PMC
Bourrinet P, Bengele HH, Bonnemain B, Dencausse A, Idee JM, Jacobs PM, Lewis JM, Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent, Invest. Radiol 41 (2006) 313–324. PubMed
Fadeel B, Farcal L, Hardy B, Vazquez-Campos S, Hristozov D, Marcomini A, Lynch H, Valsami-Jones E, Alenius H, Savolainen K, Advanced tools for the safety assessment of nanomaterials, Nat. Nanotechnol 13 (2018) 537–543. PubMed
Hirai T, Yoshioka Y, Izumi N, Ichihashi K, Handa T, Nishijima N, Uemura E, Sagami K, Takahashi H, Yamaguchi M, Nagano K, Mukai Y, Kamada H, Tsunoda S, Ishii KJ, Higashisaka K, Tsutsumi Y, Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice, Nat. Nanotechnol 11 (2016) 808–816. PubMed
Lombi E, Donner E, Dusinska M, Wickson F, A One Health approach to managing the applications and implications of nanotechnologies in agriculture, Nat. Nanotechnol 14 (2019) 523–531. PubMed
Levada K, Pshenichnikov S, Omelyanchik A, Rodionova V, Nikitin A, Savchenko A, Schetinin I, Zhukov D, Abakumov M, Majouga A, Lunova M, Jirsa M, Smolkova B, Uzhytchak M, Dejneka A, Lunov O, Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis, Nano Converg. 7 (2020) 17. PubMed PMC
Tsang MP, Kikuchi-Uehara E, Sonnemann GW, Aymonier C, Hirao M, Evaluating nanotechnology opportunities and risks through integration of life-cycle and risk assessment, Nat. Nanotechnol 12 (2017) 734–739. PubMed
Liu YY, Yu NY, Fang WD, Tan QG, Ji R, Yang LY, Wei S, Zhang XW, Miao AJ, Photodegradation of carbon dots cause cytotoxicity, Nat. Commun 12 (2021) 812. PubMed PMC
Ben-David U, Siranosian B, Ha G, Tang H, Oren Y, Hinohara K, Strathdee CA, Dempster J, Lyons NJ, Burns R, Nag A, Kugener G, Cimini B, Tsvetkov P, Maruvka YE, O’Rourke R, Garrity A, Tubelli AA, Bandopadhayay P, Tsherniak A, Vazquez F, Wong B, Birger C, Ghandi M, Thorner AR, Bittker HA, Meyerson M, Getz G, Beroukhim R, Golub TR, Genetic and transcriptional evolution alters cancer cell line drug response, Nature 560 (2018) 325–330. PubMed PMC
Liu YS, Mi Y, Mueller T, Kreibich S, Williams EG, Van Drogen A, Borel C, Franks M, Germain PL, Bludau I, Mehnert M, Seifert M, Emmenlauer M, Sorg I, Bezrukov F, Bena FS, Zhou H, Dehio C, Testa G, Saez-Rodriguez J, Antonarakis SE, Hardt WD, Aebersold R, Multi-omic measurements of heterogeneity in HeLa cells across laboratories, Nat. Biotechnol 37 (2019) 314–322 . PubMed
Marx V, Cell-line authentication demystified, Nat. Methods 11 (2014) 483–488. PubMed
Masters JR, HeLa cells 50 years on: the good, the bad and the ugly, Nat. Rev. Cancer 2 (2002) 315–319. PubMed
Horbach SPJM, Halffman W, The ghosts of HeLa: how cell line misidentification contaminates the scientific literature, PLoS One 12 (2017) e0186281. PubMed PMC
Geraghty RJ, Capes-Davis A, Davis JM, Downward J, Freshney RI, Knezevic I, Lovell-Badge R, Masters JRW, Meredith J, Stacey GN, Thraves P, Vias M, Guidelines for the use of cell lines in biomedical research, Brit. J. Cancer 111 (2014) 1021–1046. PubMed PMC
Lorsch JR, Collins FS, Lippincott-Schwartz J, Fixing problems with cell lines, Science 346 (2014) 1452–1453. PubMed PMC
Richter M, Piwocka O, Musielak M, Piotrowski I, Suchorska WM, Trzeciak T, From donor to the lab: a fascinating journey of primary cell lines, Front. Cell Dev. Biol 9 (2021) 711381. PubMed PMC
Schwende H, Fitzke E, Ambs P, Dieter P, Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin d-3, J. Leukocyte Biol 59 (1996) 555–561. PubMed
Kohro T, Tanaka T, Murakami T, Wada Y, Aburatani H, Hamakubo T, Kodama T, A comparison of differences in the gene expression profiles of phorbol 12-myristate 13-acetate differentiated THP-1 cells and human monocyte-derived macrophage, J. Atheroscler. Thromb 11 (2004) 88–97. PubMed
Lunov O, Syrovets T, Loos C, Beil J, Delecher M, Tron K, Nienhaus GU, Musyanovych A, Mailander V, Landfester K, Simmet T, Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line, ACS Nano 5 (2011) 1657–1669. PubMed
Lunov O, Syrovets T, Buchele B, Jiang XE, Rocker C, Tron K, Nienhaus GU, Walther P, Mailander V, Landfester K, Simmet T, The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages, Biomaterials 31 (2010) 5063–5071 . PubMed
Lunov O, Syrovets T, Rocker C, Tron K, Nienhaus GU, Rasche V, Mailander V, Landfester K, Simmet T, Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes, Biomaterials 31 (2010) 9015–9022. PubMed
Uzhytchak M, Smolkova B, Lunova M, Jirsa M, Frtus A, Kubinova S, Dejneka A, Lunov O, Iron oxide nanoparticle-induced autophagic flux is regulated by interplay between p53-mTOR axis and Bcl-2 signaling in hepatic cells, Cells-Basel 9 (2020) 1015. PubMed PMC
Chandrasekaran AR, Punnoose JA, Zhou LF, Dey P, Dey BK, Halvorsen K, DNA nanotechnology approaches for microRNA detection and diagnosis, Nucleic. Acids. Res 47 (2019) 10489–10505. PubMed PMC
Coleridge EL, Dunn KE, Assessing the cost-effectiveness of DNA origami nanostructures for targeted delivery of anti-cancer drugs to tumours, Biomed. Phys. Eng. Expr 6 (2020) 065030. PubMed
Aldaye FA, Senapedis WT, Silver PA, Way JC, A structurally tunable DNA-based extracellular matrix, J. Am. Chem. Soc 132 (2010) 14727–14729. PubMed PMC
Jungmann R, Avendano MS, Woehrstein JB, Dai MJ, Shih WM, Yin P, Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT, Nat. Methods 11 (2014) 313–318. PubMed PMC
Mo FL, Jiang K, Zhao D, Wang YQ, Song J, Tan WH, DNA hydrogel-based gene editing and drug delivery systems, Adv. Drug Deliv. Rev 168 (2021) 79–98 . PubMed
Gacanin J, Synatschke CV, Weil T, Biomedical applications of DNA-based hydrogels, Adv. Funct. Mater 30 (2020) 1906253.
Guo XC, Li F, Liu CX, Zhu Y, Xiao NN, Gu Z, Luo D, Jiang JH, Yang DY, Construction of organelle-like architecture by dynamic DNA assembly in living cells, Angew. Chem. Int. Edit 59 (2020) 20651–20658. PubMed
Li FY, Lyu DY, Liu S, Guo WW, DNA hydrogels and microgels for biosensing and biomedical applications, Adv. Mater 32 (2020) 1806538. PubMed
Yao C, Tang H, Wu WJ, Tang JP, Guo WW, Luo D, Yang DY, Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing, J. Am. Chem. Soc 142 (2020) 3422–3429. PubMed
Yao C, Zhu CX, Tang JP, Ou JH, Zhang R, Yang DY, T lymphocyte-captured DNA network for localized immunotherapy, J. Am. Chem. Soc 143 (2021) 19330–19340. PubMed
Umeki Y, Saito M, Kusamori K, Tsujimura M, Nishimura M, Takahashi Y, Takakura Y, Nishikawa M, Combined encapsulation of a tumor antigen and immune cells using a self-assembling immunostimulatory DNA hydrogel to enhance antigen-specific tumor immunity, J. Control Release 288 (2018) 189–198. PubMed
Shimomura S, Nishimura T, Ogura Y, Tanida J, Photothermal fabrication of microscale patterned DNA hydrogels, R. Soc. Open Sci 5 (2018) 171779. PubMed PMC
Dawidczyk CM, Russell LM, Searson PC, Recommendations for benchmarking preclinical studies of nanomedicines, Cancer Res. 75 (2015) 4016–4020. PubMed PMC
Morgan RA, Human tumor xenografts: the good, the bad, and the ugly, Mol. Ther 20 (2012) 882–884. PubMed PMC
Bjornmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F, Bridging bio–nano science and cancer nanomedicine, ACS Nano 11 (2017) 9594–9613. PubMed
Lee J, Kotliarova S, Kotliarov Y, Li AG, Su Q, Donin NM, Pastorino S, Purow AW, Christopher N, Zhang W, Park JK, Fine HA, Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines, Cancer Cell 9 (2006) 391–403. PubMed
Faria M, Bjornmalm M, Thurecht KJ, Kent SJ, Parton RG, Kavallaris M, Johnston APR, Gooding JJ, Corrie SR, Boyd BJ, Thordarson P, Whittaker AK, Stevens MM, Prestidge CA, Porter CJH, Parak WJ, Davis TP, Crampin EJ, Caruso F, Minimum information reporting in bio-nano experimental literature, Nat. Nanotechnol 13 (2018) 777–785. PubMed PMC
Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu WH, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao WZ, Tompkins RG, Injury IHR, Genomic responses in mouse models poorly mimic human inflammatory diseases, Proc. Natl. Acad. Sci. USA 110 (2013) 3507–3512. PubMed PMC
Of men, not mice, Nat. Med 19 (2013) 379 . PubMed
Mestas J, Hughes CCW, Of mice and not men: differences between mouse and human immunology, J. Immunol 172 (2004) 2731–2738. PubMed
https://www.science.org/content/article/us-epa-eliminate-all-mammal-testing-2035.
Harrison SP, Baumgarten SF, Verma R, Lunov O, Dejneka A, Sullivan GJ, Liver organoids: recent developments, limitations and potential, Front. Med.-Lausanne 8 (2021) 574047. PubMed PMC
Huch M, Knoblich JA, Lutolf MP, Martinez-Arias A, The hope and the hype of organoid research, Development 144 (2017) 938–941. PubMed
Xu HX, Jiao Y, Qin S, Zhao WH, Chu Q, Wu KM, Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine, Exp. Hematol. Oncol 7 (2018) 30 . PubMed PMC
Mahapatra C, Lee R, Paul MK, Emerging role and promise of nanomaterials in organoid research, Drug Discov. Today (2021), doi:10.1016/j.drudis.2021.11.007. PubMed DOI
Prasad M, Kumar R, Buragohain L, Kumari A, Ghosh M, Organoid technology: a reliable developmental biology tool for organ-specific nanotoxicity evaluation, Front. Cell Dev. Biol 9 (2021) 696668. PubMed PMC
Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW, Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination, J. Control Release 240 (2016) 332–348 . PubMed
Ouyang B, Poon W, Zhang YN, Lin ZP, Kingston BR, Tavares AJ, Zhang YW, Chen J, Valic MS, Syed AM, MacMillan P, Couture-Senecal J, Zheng D, Chan WCW, The dose threshold for nanoparticle tumour delivery, Nat. Mater 19 (2020) 1362–1371. PubMed
Easo SL, Mohanan PV, Hepatotoxicity evaluation of dextran stabilized iron oxide nanoparticles in Wistar rats, Int. J. Pharmaceut 509 (2016) 28–34. PubMed
Mirshafiee V, Sun BB, Chang CH, Liao YP, Jiang W, Jiang JH, Liu XS, Wang X, Xia T, Nel AE, Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in Kupffer cells and macrophages versus apoptosis in hepatocytes, ACS Nano 12 (2018) 3836–3852. PubMed PMC
Couto D, Freitas M, Costa VM, Chiste RC, Almeida A, Lopez-Quintela MA, Rivas J, Freitas P, Silva P, Carvalho F, Fernandes E, Biodistribution of polyacrylic acid-coated iron oxide nanoparticles is associated with proinflammatory activation and liver toxicity, J. Appl. Toxicol 36 (2016) 1321–1331. PubMed
Kazemipour N, Nazifi S, Poor MHH, Esmailnezhad Z, Najafabadi RE, Esmaeili A, Hepatotoxicity and nephrotoxicity of quercetin, iron oxide nanoparticles, and quercetin conjugated with nanoparticles in rats, Comp. Clin. Path 27 (2018) 1621–1628.
Wei B, Dai M, Yin P, Complex shapes self-assembled from single-stranded DNA tiles, Nature 485 (2012) 623–626. PubMed PMC
Arulkumaran N, Lanphere C, Gaupp C, Burns JR, Singer M, Howorka S, DNA nanodevices with selective immune cell interaction and function, ACS Nano 15 (2021) 4394–4404. PubMed
Zhao S, Duan FY, Liu SL, Wu TT, Shang YX, Tian R, Liu JB, Wang ZG, Jiang Q, Ding BQ, Efficient intracellular delivery of RNase A using DNA origami carriers, ACS Appl. Mater. Inter 11 (2019) 11112–11118 . PubMed
Abbas M, Baig MMFA, Zhang YL, Yang YS, Wu SY, Hu YQ, Wang ZC, Zhu DL, A DNA-based nanocarrier for efficient cancer therapy, J. Pharm. Anal 11 (2021) 330–339. PubMed
Jorge AF, Avino A, Pais AACC, Eritja R, Fabrega C, DNA-based nanoscaffolds as vehicles for 5-fluoro-2 ’-deoxyuridine oligomers in colorectal cancer therapy, Nanoscale 10 (2018) 7238–7249. PubMed
Jones SF, Joshi H, Terry SJ, Burns JR, Aksimentiev A, Eggert US, Howorka S, Hydrophobic interactions between DNA duplexes and synthetic and biological membranes, J. Am. Chem. Soc 143 (2021) 8305–8313. PubMed PMC
Wu FS, Jin X, Guan Z, Lin JP, Cai CH, Wang LQ, Li YS, Lin SL, Xu PF, Gao L, Membrane nanopores induced by nanotoroids via an insertion and pore-forming pathway, Nano Lett. 21 (2021) 8545–8553. PubMed
Burns JR, Al-Juffali N, Janes SM, Howorka S, Membrane-spanning DNA nanopores with cytotoxic effect, Angew. Chem. Int. Edit 53 (2014) 12466–12470. PubMed PMC
Lv C, Gu XY, Li HW, Zhao YM, Yang DL, Yu WF, Han D, Li J, Tan WH, Molecular transport through a biomimetic DNA channel on live cell membranes, ACS Nano 14 (2020) 14616–14626 . PubMed
Liu K, Xu C, Liu JY, Regulation of cell binding and entry by DNA origami mediated spatial distribution of aptamers, J. Mater. Chem. B 8 (2020) 6802–6809. PubMed
Liang L, Li J, Li Q, Huang Q, Shi JY, Yan H, Fan CH, Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells, Angew. Chem. Int. Edit 53 (2014) 7745–7750. PubMed
Peng XY, Fang SB, Ji B, Li M, Song J, Qiu LP, Tan WH, DNA nanostructure-programmed cell entry via corner angle-mediated molecular interaction with membrane receptors, Nano Lett. 21 (2021) 6946–6951. PubMed
Wang PF, Rahman MA, Zhao ZX, Weiss K, Zhang C, Chen ZJ, Hurwitz SJ, Chen ZG, Shin DM, Ke YG, Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells, J. Am. Chem. Soc 140 (2018) 2478–2484. PubMed PMC
Bastings MMC, Anastassacos FM, Ponnuswamy N, Leifer FG, Cuneo G, Lin AX, Ingber DE, Ryu JH, Shih WM, Modulation of the cellular uptake of DNA origami through control over mass and shape, Nano Lett. 18 (2018) 3557–3564. PubMed
Leung K, Chakraborty K, Saminathan A, Krishnan Y, A DNA nanomachine chemically resolves lysosomes in live cells, Nat. Nanotechnol 14 (2019) 176–183. PubMed PMC
Whitehouse WL, Noble JE, Ryadnov MG, Howorka S, Cholesterol anchors enable efficient binding and intracellular uptake of DNA nanostructures, Bioconjugate Chem. 30 (2019) 1836–1844. PubMed
Fu MF, Dai LR, Jiang Q, Tang YQ, Zhang XM, Ding BQ, Li JB, Observation of intracellular interactions between DNA origami and lysosomes by the fluorescence localization method, Chem. Commun 52 (2016) 9240–9242. PubMed
Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake
Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells
Impact of mechanical cues on key cell functions and cell-nanoparticle interactions