Sophisticated adaptations of Gregarina cuneata (Apicomplexa) feeding stages for epicellular parasitism
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22900033
PubMed Central
PMC3416826
DOI
10.1371/journal.pone.0042606
PII: PONE-D-12-12246
Knihovny.cz E-zdroje
- MeSH
- aktiny metabolismus MeSH
- Apicomplexa cytologie fyziologie ultrastruktura MeSH
- epitel metabolismus parazitologie ultrastruktura MeSH
- epitelové buňky metabolismus parazitologie ultrastruktura MeSH
- fyziologická adaptace * MeSH
- interakce hostitele a patogenu MeSH
- myosiny metabolismus MeSH
- symbióza * MeSH
- Tenebrio parazitologie MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- myosiny MeSH
BACKGROUND: Gregarines represent a very diverse group of early emerging apicomplexans, parasitising numerous invertebrates and urochordates, and are considered of little practical significance. Recently, they have gained more attention since some analyses showed that cryptosporidia are more closely related to the gregarines than to coccidia. METHODOLOGY/PRINCIPAL FINDINGS: Using a combined microscopic approach, this study points out the spectacular strategy of Gregarina cuneata for attachment to host tissue and nutrient acquisition while parasitising the intestine of yellow mealworm larvae, and reveals the unusual dynamics of cellular interactions between the host epithelium and parasite feeding stages. Trophozoites of G. cuneata develop epicellularly, attached to the luminal side of the host epithelial cell by an epimerite exhibiting a high degree of morphological variability. The presence of contractile elements in the apical region of feeding stages indicates that trophozoite detachment from host tissue is an active process self-regulated by the parasite. A detailed discussion is provided on the possibility of reversible retraction and protraction of the eugregarine apical end, facilitating eventual reattachment to another host cell in better physiological conditions. The gamonts, found in contact with host tissue via a modified protomerite top, indicate further adaptation of parasite for nutrient acquisition via epicellular parasitism while keeping their host healthy. The presence of eugregarines in mealworm larvae even seems to increase the host growth rate and to reduce the death rate despite often heavy parasitisation. CONCLUSIONS/SIGNIFICANCE: Improved knowledge about the formation of host-parasite interactions in deep-branching apicomplexans, including gregarines, would offer significant insights into the fascinating biology and evolutionary strategy of Apicomplexa. Gregarines exhibit an enormous diversity in cell architecture and dimensions, depending on their parasitic strategy and the surrounding environment. They seem to be a perfect example of a coevolution between a group of parasites and their hosts.
Zobrazit více v PubMed
Perkins FO, Barta JR, Clopton RE, Peirce MA, Upton SJ (2000) Phylum Apicomplexa Levine, 1970. In: Lee JJ, Leedale GF, Bradbury P, editor. An Illustrated Guide to the Protozoa. Second Edition, Vol. 1, Society of Protozoologists, Lawrence, Kansas, USA, pp. 190–369.
Carreno RA, Martin DS, Barta JR (1999) Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences. Parasitology Research 85: 899–904. PubMed
Templeton TJ, Enomoto S, Chen WJ, Huang CG, Lancto CA, et al. (2010) A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a gregarine and Cryptosporidium . Molecular Biology and Evolution 27: 235–248. PubMed PMC
Valigurova A, Hofmannova L, Koudela B, Vavra J (2007) An ultrastructural comparison of the attachment sites between Gregarina steini and Cryptosporidium muris . Journal of Eukaryotic Microbiology 54: 495–510. PubMed
Valigurova A, Jirku M, Koudela B, Gelnar M, Modry D, et al. (2008) Cryptosporidia: Epicellular parasites embraced by the host cell membrane. International Journal for Parasitology 38: 913–922. PubMed
Valigurova A, Koudela B (2005) Fine structure of trophozoites of the gregarine Leidyana ephestiae (Apicomplexa : Eugregarinida) parasitic in Ephestia kuehniella larvae (Lepidoptera). European Journal of Protistology 41: 209–218.
Valigurova A, Koudela B (2008) Morphological analysis of the cellular interactions between the eugregarine Gregarina garnhami (Apicomplexa) and the epithelium of its host, the desert locust Schistocerca gregaria . European Journal of Protistology 44 197–207. PubMed
Valigurova A, Michalkova V, Koudela B (2009) Eugregarine trophozoite detachment from the host epithelium via epimerite retraction: Fiction or fact? International Journal for Parasitology 39: 1235–1242. PubMed
Schrevel J, Philippe M (1993) The gregarines. In: Kreier JP, editor. Parasitic Protozoa Second edition, Vol. 4, Academic Press, pp. 133–245.
Tronchin G, Schrevel J (1977) Chronology of ultrastructural changes during growth of Gregarina blaberae . Journal of Protozoology 24: 67–82. PubMed
Lucarotti CJ (2000) Cytology of Leidyana canadensis (Apicomplexa : Eugregarinida) in Lambdina fiscellaria fiscellaria larvae (Lepidoptera : Geometridae). Journal of Invertebrate Pathology 75: 117–125. PubMed
Hildebrand HF (1976) Electron-microscopic investigation on evolution stages of trophozoite of Didymophyes gigantea (Sporozoa, Gregarinida). 1. Fine structure of protomerite and epimerite and relationship between host and parasite. Zeitschrift Fur Parasitenkunde-Parasitology Research 49: 193–215. PubMed
Ormieres R (1977) Pyxinia firmus (Leger, 1892), eugregarine parasite of Coleoptera Dermestes frischi Kugel - Ultrastructural study. Zeitschrift fur Parasitenkunde-Parasitology Research 53: 13–22.
Baudoin J (1969) Sur l'ultrastructure de la région antérieure de la grégarine Ancyrophora puytoraci . Protistologica 5: 431–439.
Schrevel J, Vivier E (1966) Étude de l'ultrastructure et du role de la région antérieure (mucron et épimérite) de grégarines parasites d'annélides polychètes. Protistologica 2: 17–28.
Talluri MV, Dallai R (1983) Freeze-fracture study of the gregarine trophozoite: II. Evidence of “rosette" organization on cytomembranes in relation with micropore structure. Bolletino di zoologia 50: 247–256.
Dyakin AY, Simdyanov TG (2005) The cortical zone of skittle-like cells of Urospora chiridotae, a gregarine from an apode holothuria Chiridota laevis . Protistology 4: 97–105.
Vivier E, Devauchelle G, Petitprez A, Porchet-Hennere E, Prensier G, et al. (1970) Observations on comparative cytology in sporozoans. Part 1. The sperficial structures in vegetative forms. Protistologica 6: 127–150.
Schrevel J (1972) Polysaccharides of cell-surface of gregarines (Protozoa Parasites). 1. Ultrastructure and cytochemistry. Journal of Microscopy-Oxford 15: 21–40.
Ghazali M, Philippe M, Deguercy A, Gounon P, Gallo JM, et al. (1989) Actin and spectrin-like (Mr = 260–240 000) proteins in gregarines. Biology of the Cell 67: 173–184.
Ghazali M, Schrevel J (1993) Myosin-like protein (M(r)175,000) in Gregarina blaberae . Journal of Eukaryotic Microbiology 40: 345–354. PubMed
Tronchin G, Philippe M, Mocquard JP, Schrevel J (1986) Life cycle of Gregarina blaberae - Description, chronology, study of the growth, influence of the cycle of the host Blaberus craniifer . Protistologica 22: 127–142.
Ruhnke TR, Janovy J (1990) Life history differences between 2 species of Gregarina in Tenebrio molitor larvae. Journal of Parasitology 76: 519–522.
Devauchelle G (1968) Étude ultrastructurale du développement des grégarines du Tenebrio molitor L. Protistologica 4: 313–332.
Ruhnke TR, Janovy J (1989) The site specificity of 2 species of Gregarina in Tenebrio molitor larvae. Journal of Protozoology 36: 428–430.
Schrevel J, Caigneaux E, Gros D, Philippe M (1983) The 3 cortical membranes of the gregarines. 1. Ultrastructural organization of Gregarina blaberae . Journal of Cell Science 61: 151–174. PubMed
Thomas D, Gouranto J (1973) Durée de formation des cristaux protéiques intranucléaires de l'intestin moyen de Tenebrio molitor . Journal of Insect Physiology 19: 515–522.
Harry OG (1965) Studies on early development of eugregarine Gregarina garnhami . Journal of Protozoology 12: 296–305. PubMed
Harry OG (1970) Gregarines: their effect on the growth of the desert locust (Schistocerca gregaria). Nature 225: 964–966. PubMed
Heintzelman MB (2004) Actin and myosin in Gregarina polymorpha . Cell Motility and the Cytoskeleton 58: 83–95. PubMed
Heintzelman MB, Mateer MJ (2008) GpMyoF, a WD40 repeat-containing myosin associated with the myonemes of Gregarina polymorpha. Journal of Parasitology 94: 158–168. PubMed
Schrevel J, Vivier E (1966) Etude au microscope électronique de la région antérieure des Grégarines: le mucron de Lecudina pellucida (Koll.) Mingazzini et l'épimérite de Sycia inopinata Léger. Protistologica 2: 17–28.
MacMillan WG (1973) Gregarine attachment organelles - structure and permeability of an interspecific cell junction. Parasitology 66: 207–214.
Desportes I, Theodorides J (1986) Cygnicollum lankesteri n.sp., grégarine (Apicomplexa, Lecudinidae) parasite des annélides polychètes Laetmonice hystrix et L. producta; particularités cytologiques de l'appareil de fixation et implications taxonomiques. Protistologica 22: 47–60.
Cook TJP, Janovy J, Clopton RE (2001) Epimerite-host epithelium relationships among eugregarines parasitizing the damselflies Enallagma civile and Ischnura verticalis . Journal of Parasitology 87: 988–996. PubMed
Leander BS, Lloyd SAJ, Marshall W, Landers SC (2006) Phylogeny of marine gregarines (Apicomplexa) - Pterospora, Lithopystis and Lankesteria - and the origin(s) of coelomic parasitism. Protist 157: 45–60. PubMed
Leander BS (2008) Marine gregarines: evolutionary prelude to the apicomplexan radiation? Trends in Parasitology 24: 60–67. PubMed
Henry JE (1981) Natural and applied control of insects by protozoa. Annual Review of Entomology 26: 49–73.
Lipa JJ (1967) Studies on gregarines (Gregarinomorpha) of arthropods in Poland. Acta Protozoologica 5: 97–179.
Tanada Y, Kaya HK (1993) Insect pathology. Academic Press, San Diego, CA, USA.
Harry OG (1967) The effect of a eugregarine Gregarina polymorpha (Hammerschmidt) on the mealworm larva of Tenebrio molitor (L.). Journal of Eukaryotic Microbiology 14: 539–547. PubMed
Sumner R (1932) Influence of gregarines on growth in the mealworm. Science 78: 1. PubMed
Dykstra MJ (1993) A manual of applied techniques for biological electron microscopy. Plenum Press, New York, N.Y, USA.