Fibroblasts are an integral cell type of mammary gland stroma, which plays crucial roles in development, homeostasis, and tumorigenesis of mammary epithelium. Fibroblasts produce and remodel extracellular matrix proteins and secrete a plethora of paracrine signals, which instruct both epithelial and other stromal cells of the mammary gland through mechanisms, which have not been fully understood. To enable deciphering of the intricate fibroblast-epithelial interactions, we developed several 3D co-culture methods. In this chapter, we describe methods for establishment of various types of embedded 3D co-cultures of mammary fibroblasts with mammary epithelial organoids, mammary tumor organoids, or breast cancer spheroids to investigate the role of fibroblasts in mammary epithelial development, morphogenesis, and tumorigenesis. The co-culture types include dispersed, aggregated, and transwell cultures.
The vast majority of epithelial ovarian cancer arises from tissues that are embryologically derived from the Müllerian Duct. Here, we demonstrate that a DNA methylation signature in easy-to-access Müllerian Duct-derived cervical cells from women with and without ovarian cancer (i.e. referred to as the Women's risk IDentification for Ovarian Cancer index or WID-OC-index) is capable of identifying women with an ovarian cancer in the absence of tumour DNA with an AUC of 0.76 and women with an endometrial cancer with an AUC of 0.81. This and the observation that the cervical cell WID-OC-index mimics the epigenetic program of those cells at risk of becoming cancerous in BRCA1/2 germline mutation carriers (i.e. mammary epithelium, fallopian tube fimbriae, prostate) further suggest that the epigenetic misprogramming of cervical cells is an indicator for cancer predisposition. This concept has the potential to advance the field of risk-stratified cancer screening and prevention.
- MeSH
- cervix uteri cytologie metabolismus MeSH
- epigenom MeSH
- epitel metabolismus MeSH
- genetická predispozice k nemoci MeSH
- lidé MeSH
- metylace DNA * MeSH
- nádory vaječníků genetika metabolismus MeSH
- protein BRCA1 genetika metabolismus MeSH
- protein BRCA2 genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
Tooth formation requires complex signaling interactions both within the oral epithelium and between the epithelium and the underlying mesenchyme. Previous studies of the Wnt/β-catenin pathway have shown that tooth formation is partly inhibited in loss-of-function mutants, and gain-of-function mutants have perturbed tooth morphology. However, the stage at which Wnt signaling is first important in tooth formation remains unclear. Here, using an Fgf8-promoter-driven, and therefore early, deletion of β-catenin in mouse molar epithelium, we found that loss of Wnt/β-catenin signaling completely deletes the molar tooth, demonstrating that this pathway is central to the earliest stages of tooth formation. Early expression of a dominant-active β-catenin protein also perturbs tooth formation, producing a large domed evagination at early stages and supernumerary teeth later on. The early evaginations are associated with premature mesenchymal condensation marker, and are reduced by inhibition of condensation-associated collagen synthesis. We propose that invagination versus evagination morphogenesis is regulated by the relative timing of epithelial versus mesenchymal cell convergence regulated by canonical Wnt signaling. Together, these studies reveal new aspects of Wnt/β-catenin signaling in tooth formation and in epithelial morphogenesis more broadly.
- MeSH
- beta-katenin metabolismus MeSH
- epitel metabolismus MeSH
- epitelové buňky cytologie metabolismus MeSH
- mezoderm metabolismus MeSH
- moláry cytologie růst a vývoj metabolismus MeSH
- morfogeneze fyziologie MeSH
- myši MeSH
- odontogeneze genetika fyziologie MeSH
- proliferace buněk MeSH
- signální dráha Wnt fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
Many animal embryos pull and close an epithelial sheet around the ellipsoidal egg surface during a gastrulation process known as epiboly. The ovoidal geometry dictates that the epithelial sheet first expands and subsequently compacts. Moreover, the spreading epithelium is mechanically stressed and this stress needs to be released. Here we show that during extraembryonic tissue (serosa) epiboly in the insect Tribolium castaneum, the non-proliferative serosa becomes regionalized into a solid-like dorsal region with larger non-rearranging cells, and a more fluid-like ventral region surrounding the leading edge with smaller cells undergoing intercalations. Our results suggest that a heterogeneous actomyosin cable contributes to the fluidization of the leading edge by driving sequential eviction and intercalation of individual cells away from the serosa margin. Since this developmental solution utilized during epiboly resembles the mechanism of wound healing, we propose actomyosin cable-driven local tissue fluidization as a conserved morphogenetic module for closure of epithelial gaps.
- MeSH
- aktomyosin metabolismus MeSH
- biomechanika MeSH
- epitel embryologie metabolismus MeSH
- gastrulace fyziologie MeSH
- hmyz embryologie MeSH
- hmyzí proteiny metabolismus MeSH
- hojení ran MeSH
- morfogeneze MeSH
- pohyb buněk MeSH
- serózní membrána embryologie metabolismus MeSH
- Tribolium embryologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ear development requires the transcription factors ATOH1 for hair cell differentiation and NEUROD1 for sensory neuron development. In addition, NEUROD1 negatively regulates Atoh1 gene expression. As we previously showed that deletion of the Neurod1 gene in the cochlea results in axon guidance defects and excessive peripheral innervation of the sensory epithelium, we hypothesized that some of the innervation defects may be a result of abnormalities in NEUROD1 and ATOH1 interactions. To characterize the interdependency of ATOH1 and NEUROD1 in inner ear development, we generated a new Atoh1/Neurod1 double null conditional deletion mutant. Through careful comparison of the effects of single Atoh1 or Neurod1 gene deletion with combined double Atoh1 and Neurod1 deletion, we demonstrate that NEUROD1-ATOH1 interactions are not important for the Neurod1 null innervation phenotype. We report that neurons lacking Neurod1 can innervate the flat epithelium without any sensory hair cells or supporting cells left after Atoh1 deletion, indicating that neurons with Neurod1 deletion do not require the presence of hair cells for axon growth. Moreover, transcriptome analysis identified genes encoding axon guidance and neurite growth molecules that are dysregulated in the Neurod1 deletion mutant. Taken together, we demonstrate that much of the projections of NEUROD1-deprived inner ear sensory neurons are regulated cell-autonomously.
- MeSH
- apoptóza genetika MeSH
- axony metabolismus MeSH
- biologické modely MeSH
- buněčná diferenciace genetika MeSH
- Cortiho orgán patologie MeSH
- delece genu MeSH
- epitel metabolismus MeSH
- ganglion spirale metabolismus MeSH
- mutace genetika MeSH
- myši knockoutované MeSH
- nervová vlákna metabolismus MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- regulace genové exprese MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory bHLH genetika metabolismus MeSH
- transkripční faktory SOXB1 metabolismus MeSH
- vláskové buňky metabolismus patologie ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Inwardly rectifying potassium (Kir) channels play key roles in functions, including maintaining the resting membrane potential and regulating the action potential duration in excitable cells. Using in situ whole-cell recordings, we investigated Kir currents in mouse fungiform taste bud cells (TBCs) and immunologically identified the cell types (type I-III) expressing these currents. We demonstrated that Kir currents occur in a cell-type-independent manner. The activation potentials we measured were -80 to -90 mV, and the magnitude of the currents increased as the membrane potentials decreased, irrespective of the cell types. The maximum current densities at -120 mV showed no significant differences among cell types (p>0.05, one-way ANOVA). The density of Kir currents was not correlated with the density of either transient inward currents or outwardly rectifying currents, although there was significant correlation between transient inward and outwardly rectifying current densities (p<0.05, test for no correlation). RT-PCR studies employing total RNA extracted from peeled lingual epithelia detected mRNAs for Kir1, Kir2, Kir4, Kir6, and Kir7 families. These findings indicate that TBCs express several types of Kir channels functionally, which may contribute to regulation of the resting membrane potential and signal transduction of taste.
- MeSH
- akční potenciály MeSH
- chuťové pohárky metabolismus MeSH
- draslík metabolismus MeSH
- draslíkové kanály dovnitř usměrňující genetika metabolismus MeSH
- epitel metabolismus MeSH
- membránové potenciály MeSH
- messenger RNA genetika MeSH
- metoda terčíkového zámku metody MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The aim of this study was to determine the effect of autologous serum (AS) eye drops on the density of human leucocyte antigen (HLA)-DR-positive epithelial cells and Langerhans cells on the ocular surface of patients with bilateral severe dry eye disease (DED) due to graft-versus-host disease (GvHD) or Sjögren's syndrome (SS). The study was conducted on 24 patients (48 eyes). AS was applied 6-10 times daily for 3 months together with regular artificial tear therapy. HLA-DR-positive cells were detected by direct immunocytochemistry on upper bulbar conjunctiva imprints obtained before and after treatment. The application of AS drops led to a statistically significant increase in the mean density of aberrant HLA-DR-positive conjunctival epithelial cells (p < 0.05) and HLA-DR-positive Langerhans cells (p < 0.05) in the GvHD group. Aberrant HLA-DR-positive epithelial cells in the SS group were decreased non-significantly. All patients reported a significant decrease in the Ocular Surface Disease Index (p < 0.01), which indicates improvement of the patient's subjective feelings after therapy. There was an expected but non-significant decrease of aberrant HLA-DR-positive conjunctival epithelial cells in the SS group only. However, the increased density of HLA-DR-positive cells, indicating slight subclinical inflammation, does not outweigh the positive effect of AS in patients with DED from GvHD.
- MeSH
- dospělí MeSH
- epitel metabolismus MeSH
- epitelové buňky účinky léků metabolismus MeSH
- HLA-DR antigeny metabolismus MeSH
- imunohistochemie metody MeSH
- konjunktiva účinky léků metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- nemoc štěpu proti hostiteli farmakoterapie metabolismus MeSH
- oční roztoky terapeutické užití MeSH
- počet buněk metody MeSH
- senioři MeSH
- sérum metabolismus MeSH
- Sjögrenův syndrom farmakoterapie metabolismus MeSH
- syndromy suchého oka farmakoterapie metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
When patterns are set during embryogenesis, it is expected that they are straightly established rather than subsequently modified. The patterning of the three mouse molars is, however, far from straight, likely as a result of mouse evolutionary history. The first-formed tooth signaling centers, called MS and R2, disappear before driving tooth formation and are thought to be vestiges of the premolars found in mouse ancestors. Moreover, the mature signaling center of the first molar (M1) is formed from the fusion of two signaling centers (R2 and early M1). Here, we report that broad activation of Edar expression precedes its spatial restriction to tooth signaling centers. This reveals a hidden two-step patterning process for tooth signaling centers, which was modeled with a single activator-inhibitor pair subject to reaction-diffusion (RD). The study of Edar expression also unveiled successive phases of signaling center formation, erasing, recovering, and fusion. Our model, in which R2 signaling center is not intrinsically defective but erased by the broad activation preceding M1 signaling center formation, predicted the surprising rescue of R2 in Edar mutant mice, where activation is reduced. The importance of this R2-M1 interaction was confirmed by ex vivo cultures showing that R2 is capable of forming a tooth. Finally, by introducing chemotaxis as a secondary process to RD, we recapitulated in silico different conditions in which R2 and M1 centers fuse or not. In conclusion, pattern formation in the mouse molar field relies on basic mechanisms whose dynamics produce embryonic patterns that are plastic objects rather than fixed end points.
- MeSH
- biologické modely * MeSH
- chemotaxe MeSH
- epitel embryologie metabolismus MeSH
- mutantní kmeny myší MeSH
- myši MeSH
- receptor Edar genetika metabolismus MeSH
- rozvržení tělního plánu * MeSH
- signální transdukce * MeSH
- vlasy, chlupy embryologie MeSH
- vývojová regulace genové exprese MeSH
- zubní zárodek embryologie metabolismus MeSH
- zuby embryologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION AND HYPOTHESIS: Animal models are useful for investigating the genesis of pelvic floor dysfunction and for developing novel therapies for its treatment. There is a need for an alternative large-animal model to the nonhuman primate. Therefore we studied the effects of the first vaginal delivery, ovariectomy and systemic hormonal replacement therapy (HRT) on the biomechanical and structural properties of the ovine vagina. METHODS: We examined the gross anatomical properties of nulliparous, primiparous, ovariectomized multiparous, and ovariectomized hormone-replaced multiparous sheep (six animals per group). We also harvested mid-vaginal and distal vaginal tissue to determine smooth muscle contractility and passive biomechanical properties, for morphometric assessment of the vaginal wall layers, to determine collagen and elastin content, and for immunostaining for α-smooth muscle actin and estrogen receptor-α. RESULTS: There were no regional differences in the nulliparous vagina. One year after the first vaginal delivery, stiffness and contractility of the distal vagina were decreased, whereas the elastin content increased. The mid-vagina of ovariectomized sheep was stiff, and its epithelium was thin and lacked glycogen. HRT decreased the stiffness of the mid-vagina by 45% but had no measurable effect on contractility or elastin content, and increased epithelial thickness and glycogen content. HRT also increased the epithelial thickness and glycogen content of the distal vagina. At this location, there were no changes in morphology or stiffness. CONCLUSION: In sheep, life events including delivery and ovariectomy affect the biomechanical properties of the vagina in a region-specific way. Vaginal delivery mainly affects the distal region by decreasing stiffness and contractility. HRT can reverse the increase in stiffness of the mid-vagina observed after surgical induction of menopause. These observations are in line with scanty biomechanical measurements in comparable clinical specimens.
- MeSH
- aktiny metabolismus MeSH
- alfa receptor estrogenů metabolismus MeSH
- biomechanika MeSH
- elastin metabolismus MeSH
- epitel metabolismus patologie MeSH
- glykogen metabolismus MeSH
- hladké svalstvo patofyziologie MeSH
- hormonální substituční terapie MeSH
- kolagen metabolismus MeSH
- modely nemocí na zvířatech MeSH
- onemocnění dna pánevního etiologie MeSH
- ovarektomie škodlivé účinky MeSH
- ovce MeSH
- parita MeSH
- porod * MeSH
- svalová kontrakce MeSH
- vagina patologie patofyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND & AIMS: Plectin, a highly versatile cytolinker protein, controls intermediate filament cytoarchitecture and cellular stress response. In the present study, we investigate the role of plectin in the liver under basal conditions and in experimental cholestasis. METHODS: We generated liver-specific plectin knockout (PleΔalb) mice and analyzed them using two cholestatic liver injury models: bile duct ligation (BDL) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding. Primary hepatocytes and a cholangiocyte cell line were used to address the impact of plectin on keratin filament organization and stability in vitro. RESULTS: Plectin deficiency in hepatocytes and biliary epithelial cells led to aberrant keratin filament network organization, biliary tree malformations, and collapse of bile ducts and ductules. Further, plectin ablation significantly aggravated biliary damage upon cholestatic challenge. Coincidently, we observed a significant expansion of A6-positive progenitor cells in PleΔalb livers. After BDL, plectin-deficient bile ducts were prominently dilated with more frequent ruptures corresponding to an increased number of bile infarcts. In addition, more abundant keratin aggregates indicated less stable keratin filaments in PleΔalb hepatocytes. A transmission electron microscopy analysis revealed a compromised tight junction formation in plectin-deficient biliary epithelial cells. In addition, protein profiling showed increased expression of the adherens junction protein E-Cadherin, and inefficient upregulation of the desmosomal protein desmoplakin in response to BDL. In vitro analyses revealed a higher susceptibility of plectin-deficient keratin networks to stress-induced collapse, paralleled by elevated activation of p38 MAP kinase. CONCLUSION: Our study shows that by maintaining proper keratin network cytoarchitecture and biliary epithelial stability, plectin plays a critical role in protecting the liver from stress elicited by cholestasis. LAY SUMMARY: Plectin is a cytolinker protein capable of interconnecting all three cytoskeletal filament systems and linking them to plasma membrane-bound junctional complexes. In liver, the plectin-controlled cytoskeleton mechanically stabilizes epithelial cells and provides them with the capacity to adapt to increased bile pressure under cholestasis.
- MeSH
- cholestáza metabolismus patologie MeSH
- epitel metabolismus patologie MeSH
- hepatocyty metabolismus patologie MeSH
- játra abnormality metabolismus patologie MeSH
- keratiny metabolismus MeSH
- MAP kinasový signální systém MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- plektin nedostatek genetika metabolismus MeSH
- stabilita proteinů MeSH
- žlučové ústrojí abnormality metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH