• Je něco špatně v tomto záznamu ?

Plectin controls biliary tree architecture and stability in cholestasis

M. Jirouskova, K. Nepomucka, G. Oyman-Eyrilmez, A. Kalendova, H. Havelkova, L. Sarnova, K. Chalupsky, B. Schuster, O. Benada, P. Miksatkova, M. Kuchar, O. Fabian, R. Sedlacek, G. Wiche, M. Gregor,

. 2018 ; 68 (5) : 1006-1017. [pub] 20171220

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035461

BACKGROUND & AIMS: Plectin, a highly versatile cytolinker protein, controls intermediate filament cytoarchitecture and cellular stress response. In the present study, we investigate the role of plectin in the liver under basal conditions and in experimental cholestasis. METHODS: We generated liver-specific plectin knockout (PleΔalb) mice and analyzed them using two cholestatic liver injury models: bile duct ligation (BDL) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding. Primary hepatocytes and a cholangiocyte cell line were used to address the impact of plectin on keratin filament organization and stability in vitro. RESULTS: Plectin deficiency in hepatocytes and biliary epithelial cells led to aberrant keratin filament network organization, biliary tree malformations, and collapse of bile ducts and ductules. Further, plectin ablation significantly aggravated biliary damage upon cholestatic challenge. Coincidently, we observed a significant expansion of A6-positive progenitor cells in PleΔalb livers. After BDL, plectin-deficient bile ducts were prominently dilated with more frequent ruptures corresponding to an increased number of bile infarcts. In addition, more abundant keratin aggregates indicated less stable keratin filaments in PleΔalb hepatocytes. A transmission electron microscopy analysis revealed a compromised tight junction formation in plectin-deficient biliary epithelial cells. In addition, protein profiling showed increased expression of the adherens junction protein E-Cadherin, and inefficient upregulation of the desmosomal protein desmoplakin in response to BDL. In vitro analyses revealed a higher susceptibility of plectin-deficient keratin networks to stress-induced collapse, paralleled by elevated activation of p38 MAP kinase. CONCLUSION: Our study shows that by maintaining proper keratin network cytoarchitecture and biliary epithelial stability, plectin plays a critical role in protecting the liver from stress elicited by cholestasis. LAY SUMMARY: Plectin is a cytolinker protein capable of interconnecting all three cytoskeletal filament systems and linking them to plasma membrane-bound junctional complexes. In liver, the plectin-controlled cytoskeleton mechanically stabilizes epithelial cells and provides them with the capacity to adapt to increased bile pressure under cholestasis.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035461
003      
CZ-PrNML
005      
20191014131403.0
007      
ta
008      
191007s2018 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jhep.2017.12.011 $2 doi
035    __
$a (PubMed)29273475
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Jirouskova, Marketa $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
245    10
$a Plectin controls biliary tree architecture and stability in cholestasis / $c M. Jirouskova, K. Nepomucka, G. Oyman-Eyrilmez, A. Kalendova, H. Havelkova, L. Sarnova, K. Chalupsky, B. Schuster, O. Benada, P. Miksatkova, M. Kuchar, O. Fabian, R. Sedlacek, G. Wiche, M. Gregor,
520    9_
$a BACKGROUND & AIMS: Plectin, a highly versatile cytolinker protein, controls intermediate filament cytoarchitecture and cellular stress response. In the present study, we investigate the role of plectin in the liver under basal conditions and in experimental cholestasis. METHODS: We generated liver-specific plectin knockout (PleΔalb) mice and analyzed them using two cholestatic liver injury models: bile duct ligation (BDL) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding. Primary hepatocytes and a cholangiocyte cell line were used to address the impact of plectin on keratin filament organization and stability in vitro. RESULTS: Plectin deficiency in hepatocytes and biliary epithelial cells led to aberrant keratin filament network organization, biliary tree malformations, and collapse of bile ducts and ductules. Further, plectin ablation significantly aggravated biliary damage upon cholestatic challenge. Coincidently, we observed a significant expansion of A6-positive progenitor cells in PleΔalb livers. After BDL, plectin-deficient bile ducts were prominently dilated with more frequent ruptures corresponding to an increased number of bile infarcts. In addition, more abundant keratin aggregates indicated less stable keratin filaments in PleΔalb hepatocytes. A transmission electron microscopy analysis revealed a compromised tight junction formation in plectin-deficient biliary epithelial cells. In addition, protein profiling showed increased expression of the adherens junction protein E-Cadherin, and inefficient upregulation of the desmosomal protein desmoplakin in response to BDL. In vitro analyses revealed a higher susceptibility of plectin-deficient keratin networks to stress-induced collapse, paralleled by elevated activation of p38 MAP kinase. CONCLUSION: Our study shows that by maintaining proper keratin network cytoarchitecture and biliary epithelial stability, plectin plays a critical role in protecting the liver from stress elicited by cholestasis. LAY SUMMARY: Plectin is a cytolinker protein capable of interconnecting all three cytoskeletal filament systems and linking them to plasma membrane-bound junctional complexes. In liver, the plectin-controlled cytoskeleton mechanically stabilizes epithelial cells and provides them with the capacity to adapt to increased bile pressure under cholestasis.
650    _2
$a zvířata $7 D000818
650    _2
$a žlučové ústrojí $x abnormality $x metabolismus $x patologie $7 D001659
650    _2
$a cholestáza $x metabolismus $x patologie $7 D002779
650    _2
$a epitel $x metabolismus $x patologie $7 D004848
650    _2
$a hepatocyty $x metabolismus $x patologie $7 D022781
650    _2
$a keratiny $x metabolismus $7 D007633
650    _2
$a játra $x abnormality $x metabolismus $x patologie $7 D008099
650    _2
$a MAP kinasový signální systém $7 D020935
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši $7 D051379
650    _2
$a myši knockoutované $7 D018345
650    _2
$a plektin $x nedostatek $x genetika $x metabolismus $7 D051190
650    _2
$a stabilita proteinů $7 D055550
650    _2
$a mitogenem aktivované proteinkinasy p38 $x metabolismus $7 D048051
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Nepomucka, Katerina $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
700    1_
$a Oyman-Eyrilmez, Gizem $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Kalendova, Alzbeta $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Havelkova, Helena $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Sarnova, Lenka $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Chalupsky, Karel $u Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Schuster, Bjoern $u Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Benada, Oldrich $u Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Miksatkova, Petra $u Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic.
700    1_
$a Kuchar, Martin $u Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic.
700    1_
$a Fabian, Ondrej $u Department of Pathology and Molecular Medicine, Charles University, Prague, and University Hospital Motol, Prague, Czech Republic.
700    1_
$a Sedlacek, Radislav $u Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Wiche, Gerhard $u Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Austria.
700    1_
$a Gregor, Martin $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic. Electronic address: martin.gregor@img.cas.cz.
773    0_
$w MED00010017 $t Journal of hepatology $x 1600-0641 $g Roč. 68, č. 5 (2018), s. 1006-1017
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29273475 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191014131827 $b ABA008
999    __
$a ok $b bmc $g 1452121 $s 1074011
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 68 $c 5 $d 1006-1017 $e 20171220 $i 1600-0641 $m Journal of hepatology $n J Hepatol $x MED00010017
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...