-
Je něco špatně v tomto záznamu ?
Regionalized tissue fluidization is required for epithelial gap closure during insect gastrulation
A. Jain, V. Ulman, A. Mukherjee, M. Prakash, MB. Cuenca, LG. Pimpale, S. Münster, R. Haase, KA. Panfilio, F. Jug, SW. Grill, P. Tomancak, A. Pavlopoulos,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Howard Hughes Medical Institute - United States
NLK
Directory of Open Access Journals
od 2015
Free Medical Journals
od 2010
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2019-01-01
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
Medline Complete (EBSCOhost)
od 2012-11-01
Health & Medicine (ProQuest)
od 2019-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
Springer Nature OA/Free Journals
od 2010-12-01
Springer Nature - nature.com Journals - Fully Open Access
od 2010-12-01
- MeSH
- aktomyosin metabolismus MeSH
- biomechanika MeSH
- epitel embryologie metabolismus MeSH
- gastrulace fyziologie MeSH
- hmyz embryologie MeSH
- hmyzí proteiny metabolismus MeSH
- hojení ran MeSH
- morfogeneze MeSH
- pohyb buněk MeSH
- serózní membrána embryologie metabolismus MeSH
- Tribolium embryologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many animal embryos pull and close an epithelial sheet around the ellipsoidal egg surface during a gastrulation process known as epiboly. The ovoidal geometry dictates that the epithelial sheet first expands and subsequently compacts. Moreover, the spreading epithelium is mechanically stressed and this stress needs to be released. Here we show that during extraembryonic tissue (serosa) epiboly in the insect Tribolium castaneum, the non-proliferative serosa becomes regionalized into a solid-like dorsal region with larger non-rearranging cells, and a more fluid-like ventral region surrounding the leading edge with smaller cells undergoing intercalations. Our results suggest that a heterogeneous actomyosin cable contributes to the fluidization of the leading edge by driving sequential eviction and intercalation of individual cells away from the serosa margin. Since this developmental solution utilized during epiboly resembles the mechanism of wound healing, we propose actomyosin cable-driven local tissue fluidization as a conserved morphogenetic module for closure of epithelial gaps.
Max Planck Institute for the Physics of Complex Systems Dresden Germany
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20027652
- 003
- CZ-PrNML
- 005
- 20210114152204.0
- 007
- ta
- 008
- 210105s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-020-19356-x $2 doi
- 035 __
- $a (PubMed)33154375
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Jain, Akanksha $u Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany. Technische Universität Dresden, Dresden, Germany.
- 245 10
- $a Regionalized tissue fluidization is required for epithelial gap closure during insect gastrulation / $c A. Jain, V. Ulman, A. Mukherjee, M. Prakash, MB. Cuenca, LG. Pimpale, S. Münster, R. Haase, KA. Panfilio, F. Jug, SW. Grill, P. Tomancak, A. Pavlopoulos,
- 520 9_
- $a Many animal embryos pull and close an epithelial sheet around the ellipsoidal egg surface during a gastrulation process known as epiboly. The ovoidal geometry dictates that the epithelial sheet first expands and subsequently compacts. Moreover, the spreading epithelium is mechanically stressed and this stress needs to be released. Here we show that during extraembryonic tissue (serosa) epiboly in the insect Tribolium castaneum, the non-proliferative serosa becomes regionalized into a solid-like dorsal region with larger non-rearranging cells, and a more fluid-like ventral region surrounding the leading edge with smaller cells undergoing intercalations. Our results suggest that a heterogeneous actomyosin cable contributes to the fluidization of the leading edge by driving sequential eviction and intercalation of individual cells away from the serosa margin. Since this developmental solution utilized during epiboly resembles the mechanism of wound healing, we propose actomyosin cable-driven local tissue fluidization as a conserved morphogenetic module for closure of epithelial gaps.
- 650 _2
- $a aktomyosin $x metabolismus $7 D000205
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a biomechanika $7 D001696
- 650 _2
- $a pohyb buněk $7 D002465
- 650 _2
- $a epitel $x embryologie $x metabolismus $7 D004848
- 650 _2
- $a gastrulace $x fyziologie $7 D054262
- 650 _2
- $a hmyzí proteiny $x metabolismus $7 D019476
- 650 _2
- $a hmyz $x embryologie $7 D007313
- 650 _2
- $a morfogeneze $7 D009024
- 650 _2
- $a serózní membrána $x embryologie $x metabolismus $7 D012704
- 650 _2
- $a Tribolium $x embryologie $7 D014231
- 650 _2
- $a hojení ran $7 D014945
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Ulman, Vladimir $u Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany. IT4Innovations, Technical University of Ostrava, Ostrava, Czech Republic.
- 700 1_
- $a Mukherjee, Arghyadip $u Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany.
- 700 1_
- $a Prakash, Mangal $u Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany. Center for Systems Biology, Dresden, Germany.
- 700 1_
- $a Cuenca, Marina B $u Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- 700 1_
- $a Pimpale, Lokesh G $u Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany. Biotechnology Center, TU Dresden, Dresden, Germany.
- 700 1_
- $a Münster, Stefan $u Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany. Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany. Center for Systems Biology, Dresden, Germany. Biotechnology Center, TU Dresden, Dresden, Germany.
- 700 1_
- $a Haase, Robert $u Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany. Center for Systems Biology, Dresden, Germany.
- 700 1_
- $a Panfilio, Kristen A $u Institute for Zoology: Developmental Biology, University of Cologne, Cologne, Germany. School of Life Sciences, University of Warwick, Coventry, UK.
- 700 1_
- $a Jug, Florian $u Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany. Center for Systems Biology, Dresden, Germany.
- 700 1_
- $a Grill, Stephan W $u Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany. Center for Systems Biology, Dresden, Germany. Biotechnology Center, TU Dresden, Dresden, Germany. Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- 700 1_
- $a Tomancak, Pavel $u Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany. tomancak@mpi-cbg.de. IT4Innovations, Technical University of Ostrava, Ostrava, Czech Republic. tomancak@mpi-cbg.de.
- 700 1_
- $a Pavlopoulos, Anastasios $u Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. a.pavlopoulos@imbb.forth.gr. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece. a.pavlopoulos@imbb.forth.gr.
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 11, č. 1 (2020), s. 5604
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33154375 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114152202 $b ABA008
- 999 __
- $a ok $b bmc $g 1607987 $s 1118832
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 11 $c 1 $d 5604 $e 20201105 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- GRA __
- $p Howard Hughes Medical Institute $2 United States
- LZP __
- $a Pubmed-20210105