Sequential Induction of Drug Resistance and Characterization of an Initial Candida albicans Drug-Sensitive Isolate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38786702
PubMed Central
PMC11122215
DOI
10.3390/jof10050347
PII: jof10050347
Knihovny.cz E-zdroje
- Klíčová slova
- biofilm, chitin, drug resistance, ergosterol, whole-genome sequencing,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The pathogenic fungus Candida albicans is a leading agent of death in immunocompromised individuals with a growing trend of antifungal resistance. METHODS: The purpose is to induce resistance to drugs in a sensitive C. albicans strain followed by whole-genome sequencing to determine mechanisms of resistance. Strains will be assayed for pathogenicity attributes such as ergosterol and chitin content, growth rate, virulence, and biofilm formation. RESULTS: We observed sequential increases in ergosterol and chitin content in fluconazole-resistant isolates by 78% and 44%. Surface thickening prevents the entry of the drug, resulting in resistance. Resistance imposed a fitness trade-off that led to reduced growth rates, biofilm formation, and virulence in our isolates. Sequencing revealed mutations in genes involved in resistance and pathogenicity such as ERG11, CHS3, GSC2, CDR2, CRZ2, and MSH2. We observed an increase in the number of mutations in key genes with a sequential increase in drug-selective pressures as the organism increased its odds of adapting to inhospitable environments. In ALS4, we observed two mutations in the susceptible strain and five mutations in the resistant strain. CONCLUSION: This is the first study to induce resistance followed by genotypic and phenotypic analysis of isolates to determine mechanisms of drug resistance.
Biomedical Center Faculty of Medicine Charles University 32300 Pilsen Czech Republic
Department of Biology Saint George University of Beirut Beirut 1100 2807 Lebanon
Department of Natural Sciences Lebanese American University Byblos P O Box 36 Lebanon
Zobrazit více v PubMed
Fattouh N., Hdayed D., Geukgeuzian G., Tokajian S., Khalaf R.A. Molecular mechanism of fluconazole resistance and pathogenicity attributes of Lebanese Candida albicans hospital isolates. Fungal Genet. Biol. 2021;153:103575. doi: 10.1016/j.fgb.2021.103575. PubMed DOI
Mora Carpio A.L., Climaco A. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2023. [(accessed on 1 February 2024)]. Fungemia Candidiasis. Available online: http://www.ncbi.nlm.nih.gov/books/NBK436012/
Villa S., Hamideh M., Weinstock A., Qasim M.N., Hazbun T.R., Sellam A., Hernday A.D., Thangamani S. Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Res. 2020;20:foaa005. doi: 10.1093/femsyr/foaa005. PubMed DOI PMC
Kadosh D. Regulatory Mechanisms Controlling Morphology and Pathogenesis in Candida albicans. Curr. Opin. Microbiol. 2019;52:27–34. doi: 10.1016/j.mib.2019.04.005. PubMed DOI PMC
Hall R.A., Gow N.A.R. Mannosylation in Candida albicans: Role in cell wall function and immune recognition. Mol. Microbiol. 2013;90:1147–1161. doi: 10.1111/mmi.12426. PubMed DOI PMC
Robbins N., Wright G.D., Cowen L.E. Antifungal Drugs: The Current Armamentarium and Development of New Agents. Microbiol. Spectr. 2016;4 doi: 10.1128/microbiolspec.FUNK-0002-2016. PubMed DOI
Lakhani P., Patil A., Majumdar S. Challenges in the Polyene- and Azole-Based Pharmacotherapy of Ocular Fungal Infections. J. Ocul. Pharmacol. Ther. 2019;35:6–22. doi: 10.1089/jop.2018.0089. PubMed DOI PMC
Sucher A.J., Chahine E.B., Balcer H.E. Echinocandins: The newest class of antifungals. Ann. Pharmacother. 2009;43:1647–1657. doi: 10.1345/aph.1M237. PubMed DOI
Cowen L.E., Sanglard D., Howard S.J., Rogers P.D., Perlin D.S. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med. 2015;5:a019752. doi: 10.1101/cshperspect.a019752. PubMed DOI PMC
Suchodolski J., Muraszko J., Korba A., Bernat P., Krasowska A. Lipid composition and cell surface hydrophobicity of Candida albicans influence the efficacy of fluconazole–gentamicin treatment. Yeast. 2020;37:117–129. doi: 10.1002/yea.3455. PubMed DOI PMC
Sardari A., Zarrinfar H., Mohammadi R. Detection of ERG11 point mutations in Iranian fluconazole-resistant Candida albicans isolates. Curr. Med. Mycol. 2019;5:7–14. doi: 10.18502/cmm.5.1.531. PubMed DOI PMC
Pham C.D., Iqbal N., Bolden C.B., Kuykendall R.J., Harrison L.H., Farley M.M., Schaffner W., Beldavs Z.G., Chiller T.M., Park B.J., et al. Role of FKS Mutations in Candida glabrata: MIC Values, Echinocandin Resistance, and Multidrug Resistance. Antimicrob. Agents Chemother. 2014;58:4690–4696. doi: 10.1128/AAC.03255-14. PubMed DOI PMC
Toutounji M., Tokajian S., Khalaf R.A. Genotypic and phenotypic characterization of Candida albicans Lebanese hospital isolates resistant and sensitive to caspofungin. Fungal Genet. Biol. 2019;127:12–22. doi: 10.1016/j.fgb.2019.02.008. PubMed DOI
Hickman R.A., Leangapichart T., Lunha K., Jiwakanon J., Angkititrakul S., Magnusson U., Sunde M., Järhult J.D. Exploring the Antibiotic Resistance Burden in Livestock, Livestock Handlers and Their Non-Livestock Handling Contacts: A One Health Perspective. Front. Microbiol. 2021;12:651461. doi: 10.3389/fmicb.2021.651461. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Ter-Hovhannisyan V., Lomsadze A., Chernoff Y.O., Borodovsky M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 2008;18:1979–1990. doi: 10.1101/gr.081612.108. PubMed DOI PMC
Jones P., Binns D., Chang H.-Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G., et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
Blachowicz A., Chiang A.J., Elsaesser A., Kalkum M., Ehrenfreund P., Stajich J.E., Torok T., Wang C.C.C., Venkateswaran K. Proteomic and Metabolomic Characteristics of Extremophilic Fungi under Simulated Mars Conditions. Front. Microbiol. 2019;10:1013. doi: 10.3389/fmicb.2019.01013. PubMed DOI PMC
Vasquez-Gross H., Kaur S., Epstein L., Dubcovsky J. A haplotype-phased genome of wheat stripe rust pathogen Puccinia striiformis f. sp. tritici, race PST-130 from the Western USA. PLoS ONE. 2020;15:e0238611. doi: 10.1371/journal.pone.0238611. PubMed DOI PMC
Huerta-Cepas J., Forslund K., Coelho L.P., Szklarczyk D., Jensen L.J., von Mering C., Bork P. Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Mol. Biol. Evol. 2017;34:2115–2122. doi: 10.1093/molbev/msx148. PubMed DOI PMC
Buchfink B., Xie C., Huson D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI
Almagro Armenteros J.J., Tsirigos K.D., Sønderby C.K., Petersen T.N., Winther O., Brunak S., von Heijne G., Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019;37:420–423. doi: 10.1038/s41587-019-0036-z. PubMed DOI
Manni M., Berkeley M.R., Seppey M., Zdobnov E.M. BUSCO: Assessing Genomic Data Quality and Beyond. Curr. Protoc. 2021;1:e323. doi: 10.1002/cpz1.323. PubMed DOI
Arthington-Skaggs B.A., Jradi H., Desai T., Morrison C.J. Quantitation of Ergosterol Content: Novel Method for Determination of Fluconazole Susceptibility of Candida albicans. J. Clin. Microbiol. 1999;37:3332–3337. doi: 10.1128/jcm.37.10.3332-3337.1999. PubMed DOI PMC
Peeters E., Nelis H.J., Coenye T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods. 2008;72:157–165. doi: 10.1016/j.mimet.2007.11.010. PubMed DOI
Kapteyn J.C., Hoyer L.L., Hecht J.E., Müller W.H., Andel A., Verkleij A.J., Makarow M., Van Den Ende H., Klis F.M. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol. Microbiol. 2000;35:601–611. doi: 10.1046/j.1365-2958.2000.01729.x. PubMed DOI
Chaffin W.L. Candida albicans Cell Wall Proteins. Microbiol. Mol. Biol. Rev. MMBR. 2008;72:495–544. doi: 10.1128/MMBR.00032-07. PubMed DOI PMC
Akins R.A. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med. Mycol. 2005;43:285–318. doi: 10.1080/13693780500138971. PubMed DOI
Yu P.K., Moron-Espiritu L.S., Lao A.R. Mathematical Modeling of Fluconazole Resistance in the Ergosterol Pathway of Candida albicans. mSystems. 2022;7:e0069122. doi: 10.1128/msystems.00691-22. PubMed DOI PMC
Peron I.H., Reichert-Lima F., Busso-Lopes A.F., Nagasako C.K., Lyra L., Moretti M.L., Schreiber A.Z. Resistance Surveillance in Candida albicans: A Five-Year Antifungal Susceptibility Evaluation in a Brazilian University Hospital. PLoS ONE. 2016;11:e0158126. doi: 10.1371/journal.pone.0158126. PubMed DOI PMC
Knafler H.C., Smaczynska-de Rooij I.I., Walker L.A., Lee K.K., Gow N.A., Ayscough K.R. AP-2-dependent endocytic recycling of the chitin synthase Chs3 regulates polarized growth in Candida albicans. MBio. 2019;10:e02421-18. doi: 10.1128/mbio.02421-18. PubMed DOI PMC
Bruzual I., Riggle P., Hadley S., Kumamoto C.A. Biofilm formation by fluconazole-resistant Candida albicans strains is inhibited by fluconazole. J. Antimicrob. Chemother. 2007;59:441–450. doi: 10.1093/jac/dkl521. PubMed DOI
Iyer K.R., Robbins N., Cowen L.E. The role of Candida albicans stress response pathways in antifungal tolerance and resistance. iScience. 2022;25:103953. doi: 10.1016/j.isci.2022.103953. PubMed DOI PMC