Phenotypic and genotypic characterization of Candida parapsilosis complex isolates from a Lebanese hospital
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39924528
PubMed Central
PMC11808099
DOI
10.1038/s41598-024-84535-5
PII: 10.1038/s41598-024-84535-5
Knihovny.cz E-zdroje
- Klíčová slova
- Candida parapsilosis, Biofilm, Clonality, Fluconazole, Pathogenicity, Resistance,
- MeSH
- antifungální látky * farmakologie MeSH
- biofilmy * růst a vývoj MeSH
- Candida parapsilosis * genetika izolace a purifikace klasifikace MeSH
- fenotyp * MeSH
- flukonazol farmakologie MeSH
- fungální léková rezistence * genetika MeSH
- fylogeneze * MeSH
- genotyp * MeSH
- infekce spojené se zdravotní péčí mikrobiologie MeSH
- kandidóza * mikrobiologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- nemocnice MeSH
- sekvenování celého genomu * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Libanon MeSH
- Názvy látek
- antifungální látky * MeSH
- flukonazol MeSH
The opportunistic pathogen Candida parapsilosis is a major causative agent of candidiasis leading to death in immunocompromised individuals. Azoles are the first line of defense in their treatment. The purpose of this study was to characterize eight fluconazole-resistant and sensitive C. parapsilosis hospital isolates through a battery of phenotypic tests that target pathogenicity attributes such as virulence, biofilm formation, stress resistance, and ergosterol content. Whole genome sequencing was carried out to identify mutations in key pathogenicity and resistance genes. Phylogenetic comparison was performed to determine strain relatedness and clonality. Genomic data and phylogenetic analysis revealed that two isolates were C. orthopsilosis and C. metapsilosis misidentified as C. parapsilosis. Whole genome sequencing analysis revealed known and novel mutations in key drug resistance and pathogenicity genes such as ALS6, ALS7, SAPP3, SAP7, SAP9, CDR1, ERG6, ERG11 and UPC2. Phylogenetic analysis revealed a high degree of relatedness and clonality within our C. parapsilosis isolates. Our results showed that resistant isolates exhibited an increase in biofilm content compared to the sensitive isolates. In conclusion, our study is the first of its kind in Lebanon to describe phenotypic and genotypic characteristics of nosocomial C. parapsilosis complex isolates having a remarkable ability to form biofilms.
Biomedical Center Faculty of Medicine Charles University Pilsen Czech Republic
Department of Biology Saint George University of Beirut Beirut Lebanon
Department of Natural Sciences Lebanese American University PO Box 36 Byblos Lebanon
Lebanese American University Medical Center Rizk Hospital Beirut Lebanon
School of Medicine Lebanese American University Beirut Lebanon
Zobrazit více v PubMed
Brown, G. D. et al. Hidden killers: human fungal infections. Sci. Transl Med.4, 165rv13. 10.1126/scitranslmed.3004404 (2012). PubMed
Branco, J., Miranda, I. M. & Rodrigues, A. G. Candida parapsilosis virulence and Antifungal Resistance mechanisms: a Comprehensive Review of Key determinants. J. Fungi9, 80. 10.3390/jof9010080 (2023). PubMed PMC
Husni, R. et al. Characterization and susceptibility of non-albicans Candida isolated from various clinical specimens in Lebanese hospitals. Front. Public. Heal 11. 10.3389/fpubh.2023.1115055 (2023). PubMed PMC
Tóth, R. et al. Candida parapsilosis: from genes to the bedside. Clin. Microbiol. Rev.32, 10–1128. 10.1128/CMR.00111-18 (2019). PubMed PMC
Silva, S. et al. Candida Glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev.36, 288–305. 10.1111/j.1574-6976.2011.00278.x (2012). PubMed
Tavanti, A., Davidson, A. D., Gow, N. A. R., Maiden, M. C. J. & Odds, F. C. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J. Clin. Microbiol.43, 284–292. 10.1128/JCM.43.1.284-292.2005 (2005). PubMed PMC
Daneshnia, F. et al. Worldwide emergence of fluconazole-resistant Candida parapsilosis: current framework and future research roadmap. Lancet Microbe4, e470–e480. 10.1016/S2666-5247(23)00067-8 (2023). PubMed PMC
O’Brien, C. E. et al. Identification of a novel Candida metapsilosis isolate reveals multiple hybridization events. G3 genes. Genomes Genet.12, jkab367. 10.1093/G3JOURNAL/JKAB367 (2022). PubMed PMC
Gabaldón, T. Threats from the Candida parapsilosis complex: the surge of multidrug resistance and a hotbed for new emerging pathogens. Microbiol. Moleular Biol. Rev. n.d.:e-00029-23. 10.1128/mmbr.00029-23 PubMed PMC
Schröder, M. S. et al. Multiple origins of the pathogenic yeast Candida orthopsilosis by separate hybridizations between two parental species. PLoS Genet.12, 1006404. 10.1371/journal.pgen.1006404 (2016). PubMed PMC
Pryszcz, L. P. et al. The genomic Aftermath of hybridization in the opportunistic Pathogen Candida Metapsilosis. PLoS Genet.11, e1005626. 10.1371/journal.pgen.1005626 (2015). PubMed PMC
Gómez-Gaviria, M., García-Carnero, L. C., Baruch-Martínez, D. A. & Mora-Montes, H. M. The Emerging Pathogen Candida metapsilosis: Biological aspects, virulence factors, diagnosis, and treatment. Infect. Drug Resist.17, 171–185. 10.2147/IDR.S448213 (2024). PubMed PMC
Cavalheiro, M. & Teixeira, M. C. Candida Biofilms: threats, challenges, and promising strategies. Front. Med.5, 28. 10.3389/fmed.2018.00028 (2018). PubMed PMC
Gácser, A., Schäfer, W., Nosanchuk, J. S., Salomon, S. & Nosanchuk, J. D. Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genet. Biol.44, 1336–1341. 10.1016/j.fgb.2007.02.002 (2007). PubMed
Pfaller, M. A., Moet, G. J., Messer, S. A., Jones, R. N. & Castanheira, M. Candida bloodstream infections: comparison of species distributions and antifungal resistance patterns in community-onset and nosocomial isolates in the SENTRY Antimicrobial Surveillance Program, 2008–2009. Antimicrob. Agents Chemother.55, 561–566. 10.1128/AAC.01079-10 (2011). PubMed PMC
Bhattacharya, S., Sae-Tia, S. & Fries, B. C. Candidiasis and mechanisms of antifungal resistance. Antibiotics9, 312. 10.3390/antibiotics9060312 (2020). PubMed PMC
Clinical and Laboratory Standards Institute. Performance Standards for Antifungal Susceptibility Testing of Yeasts. (1st ed, CLSI supplement M60). Wayne, PA: Clinical and Laboratory Standards Institute. (2017).
Asadzadeh, M., Dashti, M., Ahmad, S., Alfouzan, W. & Alameer, A. Whole-genome and targeted-amplicon sequencing of Fluconazole-Susceptible and -resistant Candida parapsilosis isolates from Kuwait reveals a previously undescribed N1132D polymorphism in CDR1. Antimicrob. Agents Chemother.65, e01633–e01620. 10.1128/aac.01633-20 (2021). PubMed PMC
Štefánek, M., Garaiová, M., Valček, A., Jordao, L. & Bujdáková, H. Comparative Analysis of Two Candida parapsilosis isolates originating from the same patient harbouring the Y132F and R398I mutations in the ERG11 gene. Cells12, 1579. 10.3390/cells12121579 (2023). PubMed PMC
Arastehfar, A. et al. First Report of Candidemia Clonal Outbreak caused by emerging fluconazole-resistant Candida parapsilosis isolates harboring Y132F and/or Y132F_K143R in Turkey. Antimicrob. Agents Chemptherapy64, e01001–e01020. 10.1128/aac.01001-20 (2020). PubMed PMC
Arastehfar, A. et al. Clonal candidemia outbreak by Candida parapsilosis carrying Y132F in Turkey: evolution of a persisting challenge. Front. Cell. Infect. Microbiol.11, 676177. 10.3389/fcimb.2021.676177 (2021). PubMed PMC
Ceballos-Garzon, A. et al. Emergence and circulation of azole-resistant C. Albicans, C. Auris and C. parapsilosis bloodstream isolates carrying Y132F, K143R or T220L Erg11p substitutions in Colombia. Front. Cell. Infect. Microbiol.13, 1136217. 10.3389/fcimb.2023.1136217 (2023). PubMed PMC
Alcoceba, E. et al. Fluconazole-resistant Candida parapsilosis clonally related genotypes: first report proving the presence of endemic isolates harbouring the Y132F ERG11 gene substitution in Spain. Clin. Microbiol. Infect.28, 1113–1119. 10.1016/j.cmi.2022.02.025 (2022). PubMed
Castanheira, M., Deshpande, L. M., Messer, S. A., Rhomberg, P. R. & Pfaller, M. A. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Int. J. Antimicrob. Agents55, 105799. 10.1016/j.ijantimicag.2019.09.003 (2020). PubMed
Corzo-Leon, D. E., Peacock, M., Rodriguez-Zulueta, P., Salazar-Tamayo, G. J. & MacCallum, D. M. General hospital outbreak of invasive candidiasis due to azole-resistant Candida parapsilosis associated with an Erg11 Y132F mutation. Med. Mycol.59, 664–671. 10.1093/mmy/myaa098 (2021). PubMed PMC
Magobo, R. E., Lockhart, S. R. & Govender, N. P. Fluconazole-resistant Candida parapsilosis strains with a Y132F substitution in the ERG11 gene causing invasive infections in a neonatal unit, South Africa. Mycoses63, 471–477. 10.1111/myc.13070 (2020). PubMed PMC
Thomaz, D. Y. et al. Environmental clonal spread of azole-resistant candida parapsilosis with erg11-y132f mutation causing a large candidemia outbreak in a Brazilian cancer referral center. J. Fungi7, 259. 10.3390/jof7040259 (2021). PubMed PMC
Vumbaca, M. et al. Genomic characterization of a persistent, azole-resistant C. parapsilosis strain responsible for a hospital outbreak during the first COVID-19 wave. BioRxiv2024, 2024–2011. 10.1101/2024.11.11.622614.
Kim, T. Y. et al. Evolution of Fluconazole Resistance mechanisms and Clonal types of Candida parapsilosis isolates from a Tertiary Care Hospital in South Korea. Antimicrob. Agents Chemother.66, e00889–e00822. 10.1128/aac.00889-22 (2022). PubMed PMC
Mctaggart, L. R. et al. First Canadian report of transmission of fluconazole-resistant Candida parapsilosis within two hospital networks confirmed by genomic analysis. J. Clin. Microbiol.10.1128/jcm.01161-23 PubMed PMC
Won, E. J. et al. Nationwide Surveillance of Antifungal Resistance of Candida Bloodstream isolates in South Korean hospitals: two Year Report from Kor-GLASS. J. Fungi8, 996. 10.3390/jof8100996 (2022). PubMed PMC
Daneshnia, F. et al. Candida parapsilosis isolates carrying mutations outside FKS1 hotspot regions confer high echinocandin tolerance and facilitate the development of echinocandin resistance. Int. J. Antimicrob. Agents62, 106831. 10.1016/j.ijantimicag.2023.106831 (2023). PubMed
Franconi, I., Rizzato, C., Poma, N., Tavanti, A. & Lupetti, A. Candida parapsilosis sensu stricto Antifungal Resistance mechanisms and Associated Epidemiology. J. Fungi9, 798. 10.3390/jof9080798 (2023). PubMed PMC
Martí-Carrizosa, M., Sánchez-Reus, F., March, F., Cantón, E. & Coll, P. Implication of Candida parapsilosis FKS1 and FKS2 mutations in reduced echinocandin susceptibility. Antimicrob. Agents Chemother.59, 3570–3573. 10.1128/AAC.04922-14 (2015). PubMed PMC
Khalifa, H. O., Watanabe, A. & Kamei, K. Antifungal resistance and genotyping of clinical Candida parapsilosis Complex in Japan. J. Fungi10, 4. 10.3390/jof10010004 (2024). PubMed PMC
Morio, F. et al. Precise genome editing using a CRISPR-Cas9 method highlights the role of CoERG11 amino acid substitutions in azole resistance in Candida orthopsilosis. J. Antimicrob. Chemother.74, 2230–2238. 10.1093/jac/dkz204 (2019). PubMed
Rizzato, C. et al. CoERG11 A395T mutation confers azole resistance in Candida orthopsilosis clinical isolates. J. Antimicrob. Chemother.73, 1815–1822. 10.1093/jac/dky122 (2018). PubMed
Arthington-Skaggs, B. A., Jradi, H., Desai, T. & Morrison, C. J. Quantitation of ergosterol content: novel method for determination of fluconazole susceptibility of Candida albicans. J. Clin. Microbiol.37, 3332–3337. 10.1128/jcm.37.10.3332-3337.1999 (1999). PubMed PMC
El Hachem, S. et al. Sequential induction of Drug Resistance and characterization of an initial Candida albicans Drug-Sensitive isolate. J. Fungi10, 347. 10.3390/jof10050347 (2024). PubMed PMC
Plaine, A. et al. Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet. Biol.45, 1404–1414. 10.1016/j.fgb.2008.08.003 (2008). PubMed PMC
Lockhart, S. R., Messer, S. A., Pfaller, M. A. & Diekema, D. J. Geographic distribution and antifungal susceptibility of the newly described species Candida orthopsilosis and Candida metapsilosis in comparison to the closely related species Candida parapsilosis. J. Clin. Microbiol.46, 2659–2664. 10.1128/JCM.00803-08 (2008). PubMed PMC
Neji, S. et al. Virulence factors, antifungal susceptibility and molecular mechanisms of azole resistance among Candida parapsilosis complex isolates recovered from clinical specimens. J. Biomed. Sci.24, 1–16. 10.1186/s12929-017-0376-2 (2017). PubMed PMC
Silva, A. P. et al. Transcriptional profiling of azole-resistant Candida parapsilosis strains. Antimicrob. Agents Chemother.55, 3546–3556. 10.1128/AAC.01127-10 (2011). PubMed PMC
Fattouh, N., Hdayed, D., Geukgeuzian, G., Tokajian, S. & Khalaf, R. A. Molecular mechanism of fluconazole resistance and pathogenicity attributes of Lebanese Candida albicans hospital isolates. Fungal Genet. Biol.153, 103575. 10.1016/j.fgb.2021.103575 (2021). PubMed
Khalaf, R. A., Fattouh, N., Medvecky, M. & Hrabak, J. Whole genome sequencing of a clinical drug resistant Candida albicans isolate reveals known and novel mutations in genes involved in resistance acquisition mechanisms. J. Med. Microbiol.70, 001351. 10.1099/JMM.0.001351 (2021). PubMed PMC
Grossman, N. T., Pham, C. D., Cleveland, A. A. & Lockhart, S. R. Molecular mechanisms of fluconazole resistance in Candida parapsilosis isolates from a U.S. surveillance system. Antimicrob. Agents Chemother.59, 1030–1037. 10.1128/AAC.04613-14 (2015). PubMed PMC
Singh, A. et al. Emergence of clonal fluconazole-resistant Candida parapsilosis clinical isolates in a multicentre laboratory-based surveillance study in India. J. Antimicrob. Chemother.74, 1260–1268. 10.1093/jac/dkz029 (2019). PubMed
Seemann, T. & Snippy Fast Bacterial Variant Calling From NGS Reads, San Francisco, CA:github. (2015).
Reslan, L. et al. Molecular characterization of Candida Auris isolates at a major Tertiary Care Center in Lebanon. Front. Microbiol.12, 770635. 10.3389/fmicb.2021.770635 (2022). PubMed PMC
Silva, S. et al. Biofilms of non-candida albicans Candida species: quantification, structure and matrix composition. Med. Mycol.47, 681–689. 10.3109/13693780802549594 (2009). PubMed
Fattouh, N., Husni, R., Finianos, M., Bitar, I. & Khalaf, R. A. Adhesive and biofilm-forming Candida Glabrata Lebanese hospital isolates harbour mutations in subtelomeric silencers and adhesins. Mycoses67, e13750. 10.1111/myc.13750 (2024). PubMed
Wang, N., Strugnell, R., Wijburg, O. & Brodnicki, T. Measuring bacterial load and immune responses in mice infected with Listeria monocytogenes. J. Vis. Exp.10.3791/3076 (2011). PubMed PMC
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLoS Biol.8, e1000412. 10.1371/journal.pbio.1000412 (2010). PubMed PMC