Protococcidian Eleutheroschizon duboscqi, an Unusual Apicomplexan Interconnecting Gregarines and Cryptosporidia
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25915503
PubMed Central
PMC4411025
DOI
10.1371/journal.pone.0125063
PII: PONE-D-14-57693
Knihovny.cz E-zdroje
- MeSH
- aktiny ultrastruktura MeSH
- Apicomplexa klasifikace fyziologie ultrastruktura MeSH
- interakce hostitele a parazita MeSH
- Polychaeta parazitologie MeSH
- protozoální proteiny ultrastruktura MeSH
- trofozoiti fyziologie MeSH
- tubulin ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- protozoální proteiny MeSH
- tubulin MeSH
This study focused on the attachment strategy, cell structure and the host-parasite interactions of the protococcidian Eleutheroschizon duboscqi, parasitising the polychaete Scoloplos armiger. The attached trophozoites and gamonts of E. duboscqi were detected at different development stages. The parasite develops epicellularly, covered by a host cell-derived, two-membrane parasitophorous sac forming a caudal tipped appendage. Staining with Evans blue suggests that this tail is protein-rich, supported by the presence of a fibrous substance in this area. Despite the ultrastructural evidence for long filaments in the tail, it stained only weakly for F-actin, while spectrin seemed to accumulate in this area. The attachment apparatus consists of lobes arranged in one (trophozoites) or two (gamonts) circles, crowned by a ring of filamentous fascicles. During trophozoite maturation, the internal space between the parasitophorous sac and parasite turns translucent, the parasite trilaminar pellicle seems to reorganise and is covered by a dense fibrous glycocalyx. The parasite surface is organised in broad folds with grooves in between. Micropores are situated at the bottom of the grooves. A layer of filaments organised in bands, underlying the folds and ending above the attachment fascicles, was detected just beneath the pellicle. Confocal microscopy, along with the application of cytoskeletal drugs (jasplakinolide, cytochalasin D, oryzalin) confirmed the presence of actin and tubulin polymerised forms in both the parasitophorous sac and the parasite, while myosin labelling was restricted to the sac. Despite positive tubulin labelling, no microtubules were detected in mature stages. The attachment strategy of E. duboscqi shares features with that of cryptosporidia and gregarines, i.e. the parasite itself conspicuously resembles an epicellularly located gregarine, while the parasitophorous sac develops in a similar manner to that in cryptosporidia. This study provides a re-evaluation of epicellular development in other apicomplexans and directly compares their niche with that of E. duboscqi.
Zobrazit více v PubMed
Adl SM, Simpson AG, Lane CE, Lukes J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012; 59: 429–493. 10.1111/j.1550-7408.2012.00644.x PubMed DOI PMC
Cox FEG. The evolutionary expansion of the Sporozoa. Int J Parasitol. 1994; 24: 1301–1316. PubMed
Simdyanov TG, Kuvardina ON. Fine structure and putative feeding mechanism of the archigregarine Selenidium orientale (Apicomplexa: Gregarinomorpha). Eur J Protistol. 2007; 43: 17–25. PubMed
Leander BS. Marine gregarines: evolutionary prelude to the apicomplexan radiation? Trends Parasitol. 2008; 24: 60–67. 10.1016/j.pt.2007.11.005 PubMed DOI
Valigurova A, Jirku M, Koudela B, Gelnar M, Modry D, Slapeta J. Cryptosporidia: Epicellular parasites embraced by the host cell membrane. Int J Parasitol. 2008; 38: 913–922. PubMed
Valigurova A, Hofmannova L, Koudela B, Vavra J. An ultrastructural comparison of the attachment sites between Gregarina steini and Cryptosporidium muris . J Eukaryot Microbiol. 2007; 54: 495–510. PubMed
Barta JR, Thompson RCA. What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends Parasitol. 2006; 22: 463–468. PubMed
Carreno RA, Martin DS, Barta JR. Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences. Parasitol Res. 1999; 85: 899–904. PubMed
Perkins FO, Barta JR, Clopton RE, Peirce MA, Upton SJ. Phylum Apicomplexa Levine, 1970 In: Lee JJ, Leedale GF, Bradbury P, editors. An illustrated guide to the Protozoa. 2nd ed. Society of Protozoologists, Lawrence, Kansas, USA; 2000. pp. 190–369.
Chatton E, Villeneuve F. Le cycle évolutif del'Eleutheroschizon duboscqui Brasil. Preuve expérimentale de l'absence de schizogonie chez cette forme et chez la Siedleckia caulleryi Ch. et Vill. CR Acad Sci. 1936; 203: 833–836.
Brasil L. Eleutheroschizon duboscqi, sporozoaire nouveau parasite de Scoloplos armiger O.F. Müller. Arch zool exp gen. 1906; 4: 17–22.
Awerinzew S. Izsledovaniya nad’ paraziticheskimi prosteishimi I-VII. [Studies on parasitic protozoa I-VII. In Russian, German summary]. Trudy Imp S Petersburg Obsch Estestvoisp Vypusk 2: Otd Zool i Fiziol. 1908; 38: 1–139.
Valigurova A. Sophisticated adaptations of Gregarina cuneata (Apicomplexa) feeding stages for epicellular parasitism. PLoS ONE. 2012; 7: e42606 10.1371/journal.pone.0042606 PubMed DOI PMC
Sokolova YY, Paskerova GG, Rotari YM, Nassonova ES, Smirnov AV. Description of Metchnikovella spiralis sp. n. (Microsporidia: Metchnikovellidae), with notes on the ultrastructure of metchnikovellids. Parasitology. 2014; 141: 1108–1122. 10.1017/S0031182014000420 PubMed DOI
Valigurova A, Michalkova V, Koudela B. Eugregarine trophozoite detachment from the host epithelium via epimerite retraction: Fiction or fact? Int J Parasitol. 2009; 39: 1235–1242. 10.1016/j.ijpara.2009.04.009 PubMed DOI
Paperna I, Vilenkin M. Cryptosporidiosis in the gourami Trichogaster leeri: description of a new species and a proposal for a new genus, Piscicryptosporidium, for species infecting fish. Dis Aquat Organ. 1996; 27: 95–101.
Scholtyseck E. Fine structure of parasitic protozoa: an atlas of micrographs, drawings and diagrams. Berlin: Springer-Verlag; 1979.
Huang BQ, Chen XM, LaRusso NF. Cryptosporidium parvum attachment to and internalization by human biliary epithelia in vitro: A morphologic study. J Parasitol. 2004; 90: 212–221. PubMed
Umemiya R, Fukuda M, Fujisaki K, Matsui T. Electron microscopic observation of the invasion process of Cryptosporidium parvum in severe combined immunodeficiency mice. J Parasitol. 2005; 91: 1034–1039. PubMed
Lumb R, Smith K, Odonoghue PJ, Lanser JA. Ultrastructure of the attachment of Cryptosporidium sporozoites to tissue-culture cells. Parasitol Res. 1988; 74: 531–536. PubMed
Valigurova A, Koudela B. Morphological analysis of the cellular, interactions between the eugregarine Gregarina garnhami (Apicomplexa) and the epithelium of its host, the desert locust Schistocerca gregaria . Eur J Protistol. 2008; 44: 197–207. 10.1016/j.ejop.2007.11.006 PubMed DOI
Valigurova A, Koudela B. Fine structure of trophozoites of the gregarine Leidyana ephestiae (Apicomplexa: Eugregarinida) parasitic in Ephestia kuehniella larvae (Lepidoptera). Eur J Protistol. 2005; 41: 209–218.
Tronchin G, Schrevel J. Chronologie des modifications ultrastructurales au cours de la croissance de Gregarina blaberae . J Protozool. 1977; 24: 67–82. PubMed
Butaeva F, Paskerova G, Entzeroth R. Ditrypanocystis sp. (Apicomplexa, Gregarinia, Selenidiidae): the mode of survival in the gut of Enchytraeus albidus (Annelida, Oligochaeta, Enchytraeidae) is close to that of the coccidian genus Cryptosporidium . Tsitologiia. 2006; 48: 695–704. PubMed
Schrevel J, Vivier E. Étude de l’ultrastructure et du role de la région antérieure (mucron et épimérite) de grégarines parasites d’annélides polychètes. Protistologica. 1966; 2: 17–28.
Desportes I. Ultrastructure et développement des grégarines du genre Stylocephalus . Ann Sci Nat Zool Paris. 1969; 12: 31–96.
Schrevel J, Goldstein S, Kuriyama R, Prensier G, Vavra J. Biology of gregarines and their host-parasite interactions In: Desportes I, Schrevel J, editors. The gregarines: the early branching Apicomplexa: BRILL, NL; 2013. pp. 26–196.
Baudoin J. The ultrastructure of the anterior region in the gregarine Ancyrophora puytoraci Protistologica. 1969; 5: 431–439.
MacMillan WG. Gregarine attachment organelles—structure and permeability of an interspecific cell junction. Parasitology. 1973; 66: 207–214.
Schrevel J. L'ultrastructure de la région antérieure de la grégarine Selenidium et son intérêt pour l'étude de la nutrition chez les sporozoaires. J Microsc. 1968; 7: 391–410.
Schrevel J. Observations biologiques et ultrastructurales sur les Selenidiidae et leurs consequences sur la systematique des Gregarinomorphes. J Protozool 1971; 18: 448–470.
Sheffield HG, Garnham PC, Shiroishi T. The fine structure of the sporozoite of Lankesteria culicis . J Protozool. 1971; 18: 98–105. PubMed
Dubremetz JF, Garcia-Reguet N, Conseil V, Fourmaux MN. Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol. 1998; 28: 1007–1013. PubMed
Roberts WL, Mahrt JL, Hammond DM. The fine structure of the sporozoites of Isospora canis . Z Parasitenkd. 1972; 40: 183–194. PubMed
Hildebrand HF. Electron-microscopic investigation on evolution stages of trophozoite of Didymophyes gigantea (Sporozoa, Gregarinida). 1. Fine structure of protomerite and epimerite and relationship between host and parasite. Z Parasitenkd. 1976; 49: 193–215. PubMed
Lukes J. A coccidian (Apicomplexa: Eimeriidae) with extracytoplasmally located stages in the kidney tubules of golden carp (Carassius auratus gibelio L.) (Cyprinidae). Folia Parasitol. 1993; 40: 1–7. PubMed
Benajiba MH, Marques A, Lom J, Bouix G. Ultrastructure and sporogony of Eimeria (syn. Epieimeria) anguillae (Apicomplexa) in the eel (Anguilla anguilla). J Eukaryot Microbiol. 1994; 41: 215–222.
Molnar K, Baska F. Light and electron microscopic studies on Epieimeria anguillae (Léger & Hollande, 1922), a coccidium parasitizing the European eel, Anguilla anguilla L. J Fish Dis. 1986; 9: 99–110.
Dyková I, Lom J. Fish coccidia: critical notes on life cycles, classification and pathogenicity. J Fish Dis. 1981; 4: 487–505.
Lukes J. Life cycle of Goussia pannonica (Molnar, 1989) (Apicomplexa, Eimeriorina), an extracytoplasmic coccidium from the white bream Blicca bjoerkna . J Protozool. 1992; 39: 484–494.
Jirku M, Modry D, Slapeta JR, Koudela B, Lukes J. The phylogeny of Goussia and Choleoeimeria (Apicomplexa; Eimeriorina) and the evolution of excystation structures in coccidia. Protist. 2002; 153: 379–390. PubMed
Paperna I, Landsberg JH. Description and taxonomic discussion of eimerian coccidia from African and Levantine geckoes. S A J Zool. 1989; 24: 345–355.
Paperna L, Lainson R. Fine structure of the epicytoplasmic eimerid coccidium Acroeimeria pintoi Lainson & Paperna, 1999, a gut parasite of the lizard Ameiva ameiva in north Brazil. Parasite. 1999; 6: 359–364. PubMed
Lukes J, Stary V. Ultrastructure of the life-cycle stages of Goussia janae (Apicomplexa, Eimeriidae), with X-ray microanalysis of accompanying precipitates. Can J Zool. 1992; 70: 2382–2397.
Ortega-Pierres G, Caccio S, Fayer R, Mank TG, Smith HV, Thompson RCA. Giardia and Cryptosporidium: From molecules to disease. CABI Publishing; 2009.
Eli A, Briyai OF, Abowei JFN. A Review of some parasite diseases of African fish gut lumen Protozoa, Coccidioses, Cryptosporidium infections, Haemoprotozoa, Haemosporidia. Res J Appl Sci Eng Technol. 2012; 4: 1438–1447.
Melicherova J, Ilgova J, Kvac M, Sak B, Koudela B, Valigurova A. Life cycle of Cryptosporidium muris in two rodents with different responses to parasitization. Parasitology. 2014; 141: 287–303. 10.1017/S0031182013001637 PubMed DOI
Bouzid M, Hunter PR, Chalmers RM, Tyler KM. Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev. 2013; 26: 115–134. 10.1128/CMR.00076-12 PubMed DOI PMC
Forney JR, DeWald DB, Yang SG, Speer CA, Healey MC. A role for host phosphoinositide 3-kinase and cytoskeletal remodeling during Cryptosporidium parvum infection. Infect Immun. 1999; 67: 844–852. PubMed PMC
Elliott DA, Coleman DJ, Lane MA, May RC, Machesky LM, Clark DP. Cryptosporidium parvum infection requires host cell actin polymerization. Infect Immun. 2001; 69: 5940–5942. PubMed PMC
Hashim A, Mulcahy G, Bourke B, Clyne M. Interaction of Cryptosporidium hominis and Cryptosporidium parvum with primary human and bovine intestinal cells. Infect Immun. 2006; 74: 99–107. PubMed PMC
O'Hara SP, Small AJ, Chen XM, LaRusso NF. Host cell actin remodeling in response to Cryptosporidium . Subcell Biochem. 2008; 47: 92–100. PubMed
Bonnin A, Lapillonne A, Petrella T, Lopez J, Chaponnier C, Gabbiani G, et al. Immunodetection of the microvillous cytoskeleton molecules villin and ezrin in the parasitophorous vacuole wall of Cryptosporidium parvum (Protozoa: Apicomplexa). Eur J Cell Biol. 1999; 78: 794–801. PubMed
Mitchison TJ, Cramer LP. Actin-based cell motility and cell locomotion. Cell. 1996; 84: 371–379. PubMed
Landsberg JH, Paperna I. Ultrastructural study of the coccidian Cryptosporidium sp. from stomachs of juvenile cichlid fish. Dis Aquat Organ. 1986; 2: 13–20.
Elliott DA, Clark DP. Cryptosporidium parvum induces host cell actin accumulation at the host-parasite interface. Infect Immun. 2000; 68: 2315–2322. PubMed PMC
Yoshikawa H, Iseki M. Freeze-fracture study of the site of attachment of Cryptosporidium muris in gastric glands. J Protozool. 1992; 39: 539–544. PubMed
Ferguson DJ, Sahoo N, Pinches RA, Bumstead JM, Tomley FM, Gubbels MJ. MORN1 has a conserved role in asexual and sexual development across the Apicomplexa. Eukaryot Cell. 2008; 7: 698–711. 10.1128/EC.00021-08 PubMed DOI PMC
Reis Y, Cortes H, Viseu Melo L, Fazendeiro I, Leitao A, Soares H. Microtubule cytoskeleton behavior in the initial steps of host cell invasion by Besnoitia besnoiti . FEBS Letters. 2006; 580: 4673–4682. PubMed
Kudryashev M, Lepper S, Stanway R, Bohn S, Baumeister W, Cyrklaff M, et al. Positioning of large organelles by a membrane-associated cytoskeleton in Plasmodium sporozoites. Cell Microbiol. 2010; 12: 362–371. 10.1111/j.1462-5822.2009.01399.x PubMed DOI
Beck JR, Rodriguez-Fernandez IA, de Leon JC, Huynh MH, Carruthers VB, Morrissette NS, et al. A novel family of Toxoplasma IMC proteins displays a hierarchical organization and functions in coordinating parasite division. PLoS Pathog. 2010; 6: e1001094 10.1371/journal.ppat.1001094 PubMed DOI PMC
Morrissette NS, Mitra A, Sept D, Sibley LD. Dinitroanilines bind alpha-tubulin to disrupt microtubules. Mol Biol Cell. 2004; 15: 1960–1968. PubMed PMC
Morrissette NS, Sibley LD. Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii . J Cell Sci. 2002; 115: 1017–1025. PubMed
Kim SH, Paperna I. Fine structure of epicytoplasmic stages of Eimeria vanasi from the gut of cichlid fish. Dis Aquat Organ. 1992; 12:191–197.
Paperna I, Landsberg JH. Tubular formations extending from parasitophorous vacuoles in gut epithelial cells of cichlid fish infected by Eimeria (s. l.) vanasi . Dis Aquat Organ. 1987; 2: 239–242.
Hide-and-Seek: A Game Played between Parasitic Protists and Their Hosts
Epicellular Apicomplexans: Parasites "On the Way In"