The enigma of eugregarine epicytic folds: where gliding motility originates?
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
24053424
PubMed Central
PMC3849649
DOI
10.1186/1742-9994-10-57
PII: 1742-9994-10-57
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: In the past decades, many studies focused on the cell motility of apicomplexan invasive stages as they represent a potential target for chemotherapeutic intervention. Gregarines (Conoidasida, Gregarinasina) are a heterogeneous group that parasitize invertebrates and urochordates, and are thought to be an early branching lineage of Apicomplexa. As characteristic of apicomplexan zoites, gregarines are covered by a complicated pellicle, consisting of the plasma membrane and the closely apposed inner membrane complex, which is associated with a number of cytoskeletal elements. The cell cortex of eugregarines, the epicyte, is more complicated than that of other apicomplexans, as it forms various superficial structures. RESULTS: The epicyte of the eugregarines, Gregarina cuneata, G. polymorpha and G. steini, analysed in the present study is organised in longitudinal folds covering the entire cell. In mature trophozoites and gamonts, each epicytic fold exhibits similar ectoplasmic structures and is built up from the plasma membrane, inner membrane complex, 12-nm filaments, rippled dense structures and basal lamina. In addition, rib-like myonemes and an ectoplasmic network are frequently observed. Under experimental conditions, eugregarines showed varied speeds and paths of simple linear gliding. In all three species, actin and myosin were associated with the pellicle, and this actomyosin complex appeared to be restricted to the lateral parts of the epicytic folds. Treatment of living gamonts with jasplakinolide and cytochalasin D confirmed that actin actively participates in gregarine gliding. Contributions to gliding of specific subcellular components are discussed. CONCLUSIONS: Cell motility in gregarines and other apicomplexans share features in common, i.e. a three-layered pellicle, an actomyosin complex, and the polymerisation of actin during gliding. Although the general architecture and supramolecular organisation of the pellicle is not correlated with gliding rates of eugregarines, an increase in cytoplasmic mucus concentration is correlated. Furthermore, our data suggest that gregarines utilize several mechanisms of cell motility and that this is influenced by environmental conditions.
Zobrazit více v PubMed
Morrissette NS, Sibley LD. Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev. 2002;66:21–38. doi: 10.1128/MMBR.66.1.21-38.2002. PubMed DOI PMC
Kappe SHI, Buscaglia CA, Bergman LW, Coppens I, Nussenzweig V. Apicomplexan gliding motility and host cell invasion: overhauling the motor model. Trends Parasitol. 2004;20:13–16. doi: 10.1016/j.pt.2003.10.011. PubMed DOI
Wetzel DM, Hakansson S, Hu K, Roos D, Sibley LD. Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol Biol Cell. 2003;14:396–406. doi: 10.1091/mbc.E02-08-0458. PubMed DOI PMC
Opitz C, Soldati D. 'The glideosome’: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol. 2002;45:597–604. doi: 10.1046/j.1365-2958.2002.03056.x. PubMed DOI
Kappe SHI, Buscaglia CA, Nussenzweig V. Plasmodium sporozoite molecular cell biology. Annu Rev Cell Dev Biol. 2004;20:29–59. doi: 10.1146/annurev.cellbio.20.011603.150935. PubMed DOI
Santos JM, Lebrun M, Daher W, Soldati D, Dubremetz JF. Apicomplexan cytoskeleton and motors: key regulators in morphogenesis, cell division, transport and motility. Int J Parasitol. 2009;39:153–162. doi: 10.1016/j.ijpara.2008.10.007. PubMed DOI
Barta JR, Thompson RCA. What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends Parasitol. 2006;22:463–468. doi: 10.1016/j.pt.2006.08.001. PubMed DOI
Valigurová A, Hofmannová L, Koudela B, Vávra J. An ultrastructural comparison of the attachment sites between Gregarina steini and Cryptosporidium muris. J Eukaryotic Microbiol. 2007;54:495–510. PubMed
Schrével J, Goldstein S, Kuriyama R, Prensier G, Vávra J. In: The gregarines: the early branching Apicomplexa. Volume 1. Desportes I, Schrével J, editor. Leiden, Netherlands: BRILL; 2013. Biology of gregarines and their host-parasite interactions; pp. 26–196.
Vivier E, Devauchelle G, Petitprez A, Porchet-Hennere E, Prensier G, Schrével J, Vinckier D. Observations on comparative cytology in sporozoans. Part 1. The sperficial structures in vegetative forms. Protistologica. 1970;6:127–150.
Schrével J, Caigneaux E, Gros D, Philippe M. The 3 cortical membranes of the gregarines. 1. Ultrastructural organization of Gregarina blaberae. J Cell Sci. 1983;61:151–174. PubMed
Schewiakoff W. Über die Ürsache der fortschreitenden Bewegung der Gregarinen. Z wiss Zool. 1894;58:340–354.
Mühl D. Beitrag zur Kenntnis der Morphologie und Physiologie der Mehlwurm-Gregarinen. Arch Protistenkd . 1921;43:361–414.
Richter IE. Bewegungsphysiologische Untersuchungen an polycystiden Gregarinen unter Anwendung des Mikrozeitrafferfilmes. Protoplasma. 1959;51:197–241. doi: 10.1007/BF01252489. DOI
King C, Sleep J. Modelling the mechanism of gregarine gliding using bead translocation. J Eukaryot Microbiol. 2005;52:7S–27S.
Vivier E, Schrével J. Etude au microscope electronique dune gregarine du genre Selenidium parasite de Sabellaria alveolata L. J De Microscopie. 1964;3:651–670.
Schrével J. Biological and ultrastructural observations on Selenidiidae and their relation to systematics of gregarines. J Protozool. 1971;18:448–470. doi: 10.1111/j.1550-7408.1971.tb03355.x. DOI
Baines I, King CA. Demonstration of actin in the protozoan Gregarina. Cell Biol Int Reports. 1989;13:679–686. doi: 10.1016/0309-1651(89)90044-1. PubMed DOI
Ghazali M, Philippe M, Deguercy A, Gounon P, Gallo JM, Schrével J. Actin and spectrin-like (Mr = 260-240 000) proteins in gregarines. Biol Cell. 1989;67:173–184.
Heintzelman MB. Actin and myosin in Gregarina polymorpha. Cell Motil Cytoskeleton. 2004;58:83–95. doi: 10.1002/cm.10178. PubMed DOI
Reger JF. The fine structure of the gregarine Pyxinoides balani parasitic in the barnacle Balanus tintinnabulum. J Protozool. 1967;14:488–497. doi: 10.1111/j.1550-7408.1967.tb02034.x. PubMed DOI
Walker MH, Lane NJ, Lee WM. Freeze-fracture studies on the pellicle of the eugregarine, Gregarina garnhami (Eugregarinida, Protozoa) J Ultrastruct Res. 1984;88:66–76. doi: 10.1016/S0022-5320(84)90182-5. DOI
Korn H, Ruhl H. Comparative study of ultrastructure of Gregarina polymorpha and Gregarina cuneata (Sporozoa, Gregarinida) Z Parasitenkd - Parasitol Res. 1972;39:285–301. doi: 10.1007/BF00329092. PubMed DOI
Vávra J, Small EB. Scanning electron microscopy of gregarines (Protozoa, Sporozoa) and its contribution to the theory of gregarine movement. J Protozool. 1969;16:745–757. doi: 10.1111/j.1550-7408.1969.tb02338.x. PubMed DOI
Valigurová A, Koudela B. Morphological analysis of the cellular, interactions between the eugregarine Gregarina garnhami (Apicomplexa) and the epithelium of its host, the desert locust Schistocerca gregaria. Eur J Protistol. 2008;44:197–207. doi: 10.1016/j.ejop.2007.11.006. PubMed DOI
Vivier E. L’ organisation ultrastructurale corticale de la grégarine Lecudina pellucida; ses rapports avec l’ alimentation et la locomotion. J Protozool. 1968;15:230–246. doi: 10.1111/j.1550-7408.1968.tb02115.x. DOI
Heintzelman MB, Mateer MJ. GpMyoF, a WD40 repeat-containing myosin associated with the myonemes of Gregarina polymorpha. J Parasitol. 2008;94:158–168. doi: 10.1645/GE-1339.1. PubMed DOI
Heintzelman MB, Schwartzman JD. Characterization of myosin-A and myosin-C: two class XIV unconventional myosins from Toxoplasma gondii. Cell Motil Cytoskeleton. 1999;44:58–67. doi: 10.1002/(SICI)1097-0169(199909)44:1<58::AID-CM5>3.0.CO;2-R. PubMed DOI
Foth BJ, Goedecke MC, Soldati D. New insights into myosin evolution and classification. Proc Nat Acad Sci U S A. 2006;103:3681–3686. doi: 10.1073/pnas.0506307103. PubMed DOI PMC
Dallai R, Talluri MV. Freeze-fracture study of the gregarine trophozoite: I the top of the epicyte folds. Boll Zool. 1983;50:235–244. doi: 10.1080/11250008309439448. DOI
King CA. Cell-surface interaction of the protozoan gregarina with concanavalin-a beads - implications for models of gregarine gliding. Cell Biol Int Rep. 1981;5:297–305. doi: 10.1016/0309-1651(81)90228-9. PubMed DOI
Walker MH, Mackenzie C, Bainbridge SP, Orme C. Study of the structure and gliding movement of Gregarina garnhami. J Protozool. 1979;26:566–574. doi: 10.1111/j.1550-7408.1979.tb04197.x. DOI
Mackenzie C, Walker MH. Substrate contact, mucus, and eugregarine gliding. J Protozool. 1983;30:3–8. doi: 10.1111/j.1550-7408.1983.tb01024.x. DOI
King CA. Cell motility of sporozoan protozoa. Parasitol Today. 1988;4:315–319. doi: 10.1016/0169-4758(88)90113-5. PubMed DOI
Göhre E. Untersuchungen über den plasmatischen Feinbau der Gregarinen, mit besonderer Berücksichtigung der Sexualitätsverhältnisse. Arch Protistenkd. 1943;96:295–324.
Weiser J. Nemoci hmyzu. Praha: Nakladatelství Československé akademie věd; 1966.
Crawley H. The Movements of gregarines. Proc Acad Nat Sci Philadelphia. 1905;57:89–99.
Dubremetz JF, Garcia-Reguet N, Conseil V, Fourmaux MN. Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol. 1998;28:1007–1013. doi: 10.1016/S0020-7519(98)00076-9. PubMed DOI
Schrével J, Philippe M. In: Parasitic Protozoa second edition. Vol. 4. Kreier JP, editor. San Diego, United States: Academic Press, Inc. edition; 1993. The gregarines; pp. 133–245.
Dallai R, Talluri MV. Evidence for septate junctions in the syzygy of the protozoan Gregarina plymorpha (Protozoa, Apicomplexa) J Cell Sci. 1988;89:217–224.
Dubremetz JF, Torpier G. Freeze fracture study of the pellicle of an eimerian sporozoite (Protozoa, Coccidia) J Ultrastruct Res. 1978;62:94–109. doi: 10.1016/S0022-5320(78)90012-6. PubMed DOI
Dubremetz JF, Torpier G, Maurois P, Prensier G, Sinden R. Structure de la pellicule du sporozoite de Plasmodium yoelii: étude par cryofracture. C R Acad Sci Paris . 1979;Ser. D:623–626.
Shaw MK, Tilney LG. Induction of an acrosomal process in Toxoplasma gondii: visualization of actin filaments in a protozoan parasite. Proc Nat Acad Sci U S A. 1999;96:9095–9099. doi: 10.1073/pnas.96.16.9095. PubMed DOI PMC
Olshina MA, Wong W, Baum J. Holding back the microfilamentu - structural insights into actin and the actin-monomer-binding proteins of apicomplexan parasites. Iubmb Life. 2012;64:370–377. doi: 10.1002/iub.1014. PubMed DOI
Valigurová A, Michalková V, Koudela B. Eugregarine trophozoite detachment from the host epithelium via epimerite retraction: fiction or fact? Int J Parasitol. 2009;39:1235–1242. doi: 10.1016/j.ijpara.2009.04.009. PubMed DOI
Valigurová A. Sophisticated adaptations of Gregarina cuneata (Apicomplexa) feeding stages for epicellular parasitism. PLoS ONE. 2012;7:e42606. doi: 10.1371/journal.pone.0042606. PubMed DOI PMC
Russell DG, Sinden RE. The role of the cytoskeleton in the motility of coccidian sporozoites. J Cell Sci. 1981;50:345–359. PubMed
Chen WJ, Fan-Chiang MH. Directed migration of Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) in its natural host Aedes albopictus (Diptera: Culicidae) J Eukaryot Microbiol. 2001;48:537–541. doi: 10.1111/j.1550-7408.2001.tb00189.x. PubMed DOI
Bubb MR, Spector I, Beyer BB, Fosen KM. Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J Biol Chem. 2000;275:5163–5170. doi: 10.1074/jbc.275.7.5163. PubMed DOI
Bubb MR, Senderowicz AM, Sausville EA, Duncan KL, Korn ED. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem. 1994;269:14869–14871. PubMed
Ayscough KR. Endocytosis and the development of cell polarity in yeast require a dynamic F-actin cytoskeleton. Curr Biol. 2000;10:1587–1590. doi: 10.1016/S0960-9822(00)00859-9. PubMed DOI
Posey SC, Bierer BE. Actin stabilization by jasplakinolide enhances apoptosis induced by cytokine deprivation. J Biol Chem. 1999;274:4259–4265. doi: 10.1074/jbc.274.7.4259. PubMed DOI
King CA, Lee K. Effect of trifluoperazine and calcium ions on gregarine gliding. Experientia. 1982;38:1051–1052. doi: 10.1007/BF01955361. DOI
Ghazali M, Schrével J. Myosin-like protein (M(r)175,000) in Gregarina blaberae. J Eukaryotic Microbiol. 1993;40:345–354. doi: 10.1111/j.1550-7408.1993.tb04927.x. PubMed DOI
Hildebrand HF. Electron-microscopic investigation on evolution stages of trophozoite of Didymophyes gigantea (Sporozoa, Gregarinida). 3. The fine structure of the epicyte with emphasis on the contractile elements. Z Parasitenkd. 1980;64:29–46. doi: 10.1007/BF00927055. PubMed DOI
Vanderberg JP. Studies on the motility of Plasmodium sporozoites. J Protozool. 1974;21:527–537. doi: 10.1111/j.1550-7408.1974.tb03693.x. PubMed DOI
Lecona AN, Rodriguez MH, Argotte RS, Alvarado A, Rodriguez MC. Plasmodium berghei ookinetes glide and release Pbs25 and circumsporozoite thrombospondin-related protein on solid surface substrata. J Parasitol. 2010;96:216–218. doi: 10.1645/GE-2193.1. PubMed DOI
Desportes I. Ultrastructure et développement des grégarines du genre Stylocephalus. Ann Sci Nat Zool Paris. 1969;12:31–96.
Schrével J. Polysaccharides of cell-surface of gregarines (Protozoa Parasites). 1. Ultrastructure and cytochemistry. J Microscopy-Oxford. 1972;15:21–40.
Schrével J, Gros D, Monsigny M. Cytochemistry of cell glycoconjugates. Prog Histochem Cytochem. 1981;14:1–269. doi: 10.1267/ahc.14.1. PubMed DOI
Talluri MV, Dallai R. Freeze-fracture study of the gregarine trophozoite: II. Evidence of "rosette" organization on cytomembranes in relation with micropore structure. Boll Zool. 1983;50:247–256. doi: 10.1080/11250008309439449. DOI
Raibaud A, Lupetti P, Paul RE, Mercati D, Brey PT, Sinden RE, Heuser JE, Dallai R. Cryofracture electron microscopy of the ookinete pellicle of Plasmodium gallinaceum reveals the existence of novel pores in the alveolar membranes. J Struct Biol. 2001;135:47–57. doi: 10.1006/jsbi.2001.4396. PubMed DOI
McLaren DJ, Bannister LH, Trigg PI, Butcher GA. Freeze fracture studies on the interaction between the malaria parasite and the host erythrocyte in Plasmodium knowlesi infections. Parasitology. 1979;79:125–139. doi: 10.1017/S0031182000052021. PubMed DOI
Belton P, Grundfest H. Potassium activation and K spikes in muscle fibers of the mealworm larva (Tenebrio molitor) Am J Physiol. 1962;203:588–594. PubMed
Branton D, Bullivant S, Gilula NB, Karnovsky MJ, Moor H, Muhlethaler K, Northcote DH, Packer K, Satir B, Satir P. et al.Freeze etching nomenclature. Science. 1975;190:54–56. doi: 10.1126/science.1166299. PubMed DOI