Motility and cytoskeletal organisation in the archigregarine Selenidium pygospionis (Apicomplexa): observations on native and experimentally affected parasites
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GBP505/12/G112
Grantová Agentura České Republiky
GBP505/12/G112
Grantová Agentura České Republiky
GBP505/12/G112
Grantová Agentura České Republiky
LO1212
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/01.0017
European Commission
1.42.1493.2015
Saint Petersburg State University
1.42.1099.2016
Saint Petersburg State University
109-9017
Saint Petersburg State University
18-04-00324
Russian Foundation for Basic Research
18-04-00324
Russian Foundation for Basic Research
PubMed
31270680
DOI
10.1007/s00436-019-06381-z
PII: 10.1007/s00436-019-06381-z
Knihovny.cz E-zdroje
- Klíčová slova
- Actin, Cytoskeletal drugs, Microtubules, Motility, Ultrastructure, α-Tubulin,
- MeSH
- aktiny metabolismus MeSH
- Apicomplexa růst a vývoj fyziologie ultrastruktura MeSH
- cytoskelet metabolismus ultrastruktura MeSH
- mikrotubuly metabolismus MeSH
- paraziti MeSH
- protozoální proteiny metabolismus MeSH
- tomografie elektronová MeSH
- trofozoiti růst a vývoj metabolismus ultrastruktura MeSH
- tubulin metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aktiny MeSH
- protozoální proteiny MeSH
- tubulin MeSH
Representatives of Apicomplexa perform various kinds of movements that are linked to the different stages of their life cycle. Ancestral apicomplexan lineages, including gregarines, represent organisms suitable for research into the evolution and diversification of motility within the group. The vermiform trophozoites and gamonts of the archigregarine Selenidium pygospionis perform a very active type of bending motility. Experimental assays and subsequent light, electron, and confocal microscopic analyses demonstrated the fundamental role of the cytoskeletal proteins actin and tubulin in S. pygospionis motility and allowed us to compare the mechanism of its movement to the gliding machinery (the so-called glideosome concept) described in apicomplexan zoites. Actin-modifying drugs caused a reduction in the movement speed (cytochalasin D) or stopped the motility of archigregarines completely (jasplakinolide). Microtubule-disrupting drugs (oryzalin and colchicine) had an even more noticeable effect on archigregarine motility. The fading and disappearance of microtubules were documented in ultrathin sections, along with the formation of α-tubulin clusters visible after the immunofluorescent labelling of drug-treated archigregarines. The obtained data indicate that subpellicular microtubules most likely constitute the main motor structure involved in S. pygospionis bending motility, while actin has rather a supportive function.
Zobrazit více v PubMed
Mol Biol Cell. 1999 Nov;10(11):3539-47 PubMed
J Cell Sci. 2002 Mar 1;115(Pt 5):1017-25 PubMed
Microbiol Mol Biol Rev. 2002 Mar;66(1):21-38; table of contents PubMed
Mol Microbiol. 2002 Aug;45(3):597-604 PubMed
Mol Biol Cell. 2003 Feb;14(2):396-406 PubMed
Trends Parasitol. 2004 Jan;20(1):13-6 PubMed
J Parasitol. 2003 Dec;89(6):1191-205 PubMed
Cell Motil Cytoskeleton. 2004 Jun;58(2):83-95 PubMed
Trends Cell Biol. 2004 Oct;14(10):528-32 PubMed
Trends Parasitol. 2004 Dec;20(12):567-74 PubMed
J Mol Biol. 2005 May 27;349(1):113-25 PubMed
Eur J Protistol. 2007 Jan;43(1):17-25 PubMed
Trends Parasitol. 2008 Feb;24(2):60-7 PubMed
J Parasitol. 2008 Feb;94(1):158-68 PubMed
Cell Host Microbe. 2009 Dec 17;6(6):551-62 PubMed
J Biol Chem. 2010 Nov 19;285(47):36577-85 PubMed
Front Zool. 2013 Sep 22;10(1):57 PubMed
PLoS One. 2014 Mar 14;9(3):e91819 PubMed
Protist. 2014 Aug;165(4):493-511 PubMed
Protist. 2016 Aug;167(4):339-368 PubMed
J Cell Biol. 2016 Aug 29;214(5):507-15 PubMed
BMC Biol. 2017 Jan 18;15(1):1 PubMed
PLoS One. 2017 Jun 22;12(6):e0179709 PubMed
Sci Rep. 2017 Sep 22;7(1):12137 PubMed
PLoS One. 2017 Nov 3;12(11):e0187430 PubMed
Protist. 2018 Nov;169(5):697-726 PubMed
Eur J Protistol. 2018 Oct;66:97-114 PubMed
Protist. 2018 Dec;169(6):826-852 PubMed
J Cell Biol. 1987 Oct;105(4):1473-8 PubMed
Cell Tissue Res. 1974 Apr 30;148(3):331-45 PubMed
J Exp Biol. 1980 Aug;87:149-61 PubMed
J Eukaryot Microbiol. 1993 May-Jun;40(3):345-54 PubMed
Cell. 1996 Mar 22;84(6):933-9 PubMed
J Protein Chem. 1996 May;15(4):377-88 PubMed
Exp Parasitol. 1996 Dec;84(3):355-70 PubMed
J Cell Sci. 1997 Jan;110 ( Pt 1):35-42 PubMed
Cell Motil Cytoskeleton. 1997;37(3):253-62 PubMed
Int J Parasitol. 1998 Jul;28(7):1007-13 PubMed