Archigregarines of the English Channel revisited: New molecular data on Selenidium species including early described and new species and the uncertainties of phylogenetic relationships
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29099876
PubMed Central
PMC5669490
DOI
10.1371/journal.pone.0187430
PII: PONE-D-17-20626
Knihovny.cz E-zdroje
- MeSH
- Apicomplexa klasifikace genetika MeSH
- fylogeneze * MeSH
- protozoální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální DNA MeSH
BACKGROUND: Gregarines represent an important transition step from free-living predatory (colpodellids s.l.) and/or photosynthetic (Chromera and Vitrella) apicomplexan lineages to the most important pathogens, obligate intracellular parasites of humans and domestic animals such as coccidians and haemosporidians (Plasmodium, Toxoplasma, Eimeria, Babesia, etc.). While dozens of genomes of other apicomplexan groups are available, gregarines are barely entering the molecular age. Among the gregarines, archigregarines possess a unique mixture of ancestral (myzocytosis) and derived (lack of apicoplast, presence of subpellicular microtubules) features. METHODOLOGY/PRINCIPAL FINDINGS: In this study we revisited five of the early-described species of the genus Selenidium including the type species Selenidium pendula, with special focus on surface ultrastructure and molecular data. We were also able to describe three new species within this genus. All species were characterized at morphological (light and scanning electron microscopy data) and molecular (SSU rDNA sequence data) levels. Gregarine specimens were isolated from polychaete hosts collected from the English Channel near the Station Biologique de Roscoff, France: Selenidium pendula from Scolelepis squamata, S. hollandei and S. sabellariae from Sabellaria alveolata, S. sabellae from Sabella pavonina, Selenidium fallax from Cirriformia tentaculata, S. spiralis sp. n. and S. antevariabilis sp. n. from Amphitritides gracilis, and S. opheliae sp. n. from Ophelia roscoffensis. Molecular phylogenetic analyses of these data showed archigregarines clustering into five separate clades and support previous doubts about their monophyly. CONCLUSIONS/SIGNIFICANCE: Our phylogenies using the extended gregarine sampling show that the archigregarines are indeed not monophyletic with one strongly supported clade of Selenidium sequences around the type species S. pendula. We suggest the revision of the whole archigregarine taxonomy with only the species within this clade remaining in the genus Selenidium, while the other species should be moved into newly erected genera. However, the SSU rDNA phylogenies show very clearly that the tree topology and therefore the inferred relationships within and in between clades are unstable and such revision would be problematic without additional sequence data.
Biology Centre of CAS Institute of Parasitology České Budějovice Czech Republic
School of Applied Sciences Edinburgh Napier University Edinburgh United Kingdom
University of South Bohemia Faculty of Science České Budějovice Czech Republic
Zobrazit více v PubMed
Cavalier-Smith T. Gregarine site-heterogeneous18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. EJOP. 2014;50: 472–495. PubMed
Grassé P-P. Classe des grégarinomorphes (Gregarinomorpha, N. nov., Gregarinae Haeckel, 1866; gregarinidea Lankester, 1885; grégarines des auteurs) In: Grassé P-P editor. Traité de Zoologie. Paris: Masson; 1953. pp. 590–690.
Levine ND. Taxonomy of Archigregarinorida and Selenidiidae (Protozoa, Apicomplexa). J Protozool. 1971;18: 704–717.
Levine ND. Revision and checklist of the species of the aseptate gregarine genus Lecudina. Trans Am Microsc Soc. 1976;95: 695–702. PubMed
Levine ND. Revision and checklist of the species (other than Lecudina) of the aseptate gregarine family Lecudinidae. J Protozool. 1977a;24: 41–52. PubMed
Levine ND. Checklist of the species of the aseptate gregarine family Urosporidae. Int J Parasitol. 1977b;7:101–108.
Honigberg BM, Balamuth W, Bovee EC, Corliss JO, Gojdics M, Hall RP, et al. A revised classification of the phylum Protozoa. J Protozool. 1964;11: 7–20. PubMed
Perkins FO, Barta JR, Clopton RE, Pierce MA, Upton SJ. Phylum Apicomplexa In: Lee JJ, Leedale GF, Bradbury P editors. The illustrated guide to the protozoa. 2nd ed. Lawrence: Allen Press, Inc. 2000. pp. 190–304.
Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59: 429–93 doi: 10.1111/j.1550-7408.2012.00644.x PubMed DOI PMC
Schrével J. Contribution à l’étude des Selenidiidae parasites d’Annélides Polychaètes:II. Ultrastructure de quelques trophozoites. Protistologica. 1971a;7: 101–130.
Schrével J. Observations biologiques et ultrastructurales sur les Selenidiidae et leur consequences sur la systématique des Grégarinomorphes. J Protozool. 1971b;18: 448–470.
Vivier E, Schrével J. Etude au microscope électronique d’une Grégarine du genre Selenidium parasite de Sabellaria alveolata L. J Microsc Paris. 1964;3: 651–670
Vivier E, Schrével J. Les ultrastructures cytoplasmiques de Selenidium hollandei, n. sp., Grégarine parasite de Sabellaria alveolata L. J Microsc Paris. 1966;5: 213–228.
Vivier E. L’organisation ultrastructurale corticale de la gregarine Lecudina pellucida; ses rapports avec ‘alimentation at la locomotion. J Protozool. 1968;15: 230–246.
Vivier E, Devauchelle G, Petitprez A,Porchet-Henneré E, Prensier G, Schrével J et al. Observations de cytology compare chez les sporozoaires. I. Les structures superficielles chez les forms végétatives. Protistologica. 1970;6: 127–149.
Desportes I, Schrével J. The Gregarines: The Early Branching Apicomplexa. Leiden: Brill; 2013
Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419: 498–511. doi: 10.1038/nature01097 PubMed DOI PMC
Kissinger JC, Brunk BP, Crabtree J, Fraunholz MJ, Gajria B, Milgram AJ et al. The Plasmodium genome database: Designing and mining a eukaryotic genomics resource. Nature 2002;419: 490–492. doi: 10.1038/419490a PubMed DOI
Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M, Michálek J et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife. 2015;4: e06974 doi: 10.7554/eLife.06974 PubMed DOI PMC
Templeton TJ, Enomoto S, Chen W-J, Huang C-G, Lancto CA, Abrahamsen MS, Zhu G. A Genome-Sequence Survey for Ascogregarina taiwanensis Supports Evolutionary Affiliation but Metabolic Diversity between a Gregarine and Cryptosporidium. Mol Biol Evol. 2010;27(2): 235–248. doi: 10.1093/molbev/msp226 PubMed DOI PMC
Lecointre G, Philippe H, Vân Lê HL, Le Guyader H. Species sampling has a major impact on phylogenetic inference. Mol Phylogenet Evol 1993;2: 205–224 PubMed
Cox FEG. The evolutionary expansion of the sporozoa Int J Parasitol. 1994;24: 1301–1316 PubMed
Leander BS, Keeling PJ. Morphostasis in alveolate evolution. Trends Ecol Evol. 2003;18: 395–402.
Leander BS, Clopton RE, Keeling PJ. Phylogeny of gregarines (Apicomplexa) as inferred from small-subunit rDNA and beta-tubulin. Int J Syst Evol Microbiol. 2003;53: 345–354. doi: 10.1099/ijs.0.02284-0 PubMed DOI
Rueckert S, Leander BS. Molecular phylogeny and surface morphology of marine archigregarines Selenidium spp., Filipodium phascolosomae n. sp., and Platyproteum n. gen and comb. From North-Eastern Pacific peanut worms (Sipuncula). J Eukaryot Microbiol. 2009;56: 428–439 doi: 10.1111/j.1550-7408.2009.00422.x PubMed DOI
Wakeman KC, Leander BS. Molecular phylogeny of pacific archigregarines (Apicomplexa), including descriptions of Veloxidium leptosynaptae n. gen., n. sp. from the sea cucumber Leptosynapta clarki (Echinodermata), and two new species of Selenidium. J Eukaryot Microbiol. 2012;59: 232–245. doi: 10.1111/j.1550-7408.2012.00616.x PubMed DOI
Cavalier-Smith T., Chao EE. Protalveolate phylogeny and systematics and the origin of Sporozoa and dinoflagellates (Phylum Myzozoa nom. nov.). EJOP 2004;40: 185–212.
Mellor JS, Stebbings H. Microtubules and the propagation of bending waves by the archigregarine, Selenidium fallax. J Exp Biol. 1980;87: 149–161. PubMed
Leander BS. Molecular phylogeny and ultrastructure of Selenidium serpulae (Apicomplexa, Archigregarinia) from the calcareous tubeworm Serpula vermicularis (Annelida, Polychaeta, Sabellida). Zool Scripta. 2007;36: 213–227.
Gunderson J, Small EB. Selenidium vivax n. sp. (Protozoa, Apicomplexa) from the sipunculid Phascolosoma agassizii Keferstein, 1867. J Parasitol. 1986;72: 107–110.
Kuvardina ON, Simdyanov TG. Fine structure of syzygy in Selenidium pennatum (Sporozoa, Archigregarinida). Protistologica. 2002;2: 169–177.
Leander BS. Ultrastructure of the archigregarine Selenidium vivax (Apicomplexa): a dynamic parasite of sipunculid worms (Host: Phascolosoma agassizii). Mar Biol Res. 2006;2: 178–190.
Schrével J, Valigurová A, Prensier G, Chambouvet A, Florent I, Guillou L. Ultrastructure of Selenidium pendula, the Type Species of Archigregarines, and Phylogenetic Relations to Other Marine Apicomplexa. Protist. 2016;167: 339–368. doi: 10.1016/j.protis.2016.06.001 PubMed DOI
Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization of enzymatically amplified eukaryotic 16S-like rDNA-coding regions. Gene 1988;71: 491–499 PubMed
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30: 3059–3066. PubMed PMC
Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27: 221–224. doi: 10.1093/molbev/msp259 PubMed DOI
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25: 1972–1973. doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC
Schmidt AH, Strimmer K, Vingron M, von Haeseler A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing Bioinformatics. 2002;18(3): 502–504 PubMed
Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25: 2286–2288. doi: 10.1093/bioinformatics/btp368 PubMed DOI
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9): 1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC
Shimodaira H, Hasegawa M. CONSEL: for assessing the confidence of phylogenetic tree selection Bioinformatics. 2001;17(12): 1246–1247. PubMed
Giard A. Note sur un nouveau groupe de protozoaires parasites de annélides polychétes et sur quelques points de l’histoire des grégarines (Selenidium pendula). CR Ass Fr Avanc Sci Congrés de Blois. 1884; p. 192.
Schrével J. Contribution a l’étude des Selenidiidae parasites d’Annélides Polychaètes: I. Cycles biologique. Protistologica 1970;6: 389–426.
MacGregor HC, Thomasson PA. The fine structure of two archigregarines, Selenidium fallax and Ditrypanocystis cirratuli. J Protozool. 1965;12: 41–52. PubMed
Lankester ER. On our present knowledge of the Gregarinidæ, with descriptions of three new species belonging to that class. J Cell Sci. 1863:s2-3: 83–96.
Ray HN. Studies on some protozoa in polychaete worms. I. Gregarines of the genus Selenidium. Parasitology. 1930;22: 370–400.
Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Kolísko M, Mylnikov AP, Keeling PJ (2015). Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. U.S.A., 112, 10200–10207. doi: 10.1073/pnas.1423790112 PubMed DOI PMC
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotides sequences. J Mol Evol. 1980;16: 111–120. PubMed
Wakeman KC, Leander BS. Molecular phylogeny of marine gregarine parasites(Apicomplexa) from tube-forming polychaetes (Sabellariidae, Cirratulidae, and Serpulidae), including descriptions of two new species of Selenidium. J Eukaryot Microbiol. 2013;60: 514–525. doi: 10.1111/jeu.12059 PubMed DOI
Wakeman KC, Heintzelmann MB, Leander BS. Comparative ultrastructure and molecular phylogeny of Selenidium melongena n. sp. Protist. 2014;165: 493–511. doi: 10.1016/j.protis.2014.05.007 PubMed DOI
de Beauchamp P. Recherches sur les Rhytidocystis parasities des Ophélies. Arch Protistenkd. 1913;31: 138–168.
Henneguy LF. Sur une Gregarine parasite des Ophélies. CR Assoc Fr Avanc Sci 1907;36: 633–636.
Rotari YM, Paskerova GG, Sokolova YY. Diversity of metchnikovellids (Metchnikovellidae, Rudimicrosporea), hyperparasites of bristle worms (Annelida, Polychaeta) from the White Sea. Protistology. 2015;9(1): 50–59.
Lartillot N, Brinkmann H, Philippe H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol. 2007;7 Suppl 1: S4. PubMed PMC
Lartillot N, Philippe H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004;21: 1095–1109. doi: 10.1093/molbev/msh112 PubMed DOI