Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for Acanthamoeba cyst wall architecture

. 2019 Mar 14 ; 9 (1) : 4466. [epub] 20190314

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30872791
Odkazy

PubMed 30872791
PubMed Central PMC6418277
DOI 10.1038/s41598-019-41084-6
PII: 10.1038/s41598-019-41084-6
Knihovny.cz E-zdroje

Acanthamoebae success as human pathogens is largely due to the highly resistant cysts which represent a crucial problem in treatment of Acanthamoeba infections. Hence, the study of cyst wall composition and encystment play an important role in finding new therapeutic strategies. For the first time, we detected high activity of cytoskeletal elements - microtubular networks and filamentous actin, in late phases of encystment. Cellulose fibrils - the main components of endocyst were demonstrated in inter-cystic space, and finally in the ectocyst, hereby proving the presence of cellulose in both layers of the cyst wall. We detected clustering of intramembranous particles (IMPs) and their density alterations in cytoplasmic membrane during encystment. We propose a hypothesis that in the phase of endocyst formation, the IMP clusters represent cellulose microfibril terminal complexes involved in cellulose synthesis that after cyst wall completion are reduced. Cyst wall impermeability, due largely to a complex polysaccharide (glycans, mainly cellulose) has been shown to be responsible for Acanthamoeba biocide resistance and cellulose biosynthesis pathway is suggested to be a potential target in treatment of Acanthamoeba infections. Disruption of this pathway would affect the synthesis of cyst wall and reduce considerably the resistance to chemotherapeutic agents.

Zobrazit více v PubMed

Marciano-Cabral F, Cabral GA. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 2003;16:273–307. doi: 10.1128/CMR.16.2.273-307.2003. PubMed DOI PMC

Lorenzo-Morales J, et al. Acanthamoeba isolates belonging to T1, T2, T3, T4 and T7 genotypes from environmental freshwater samples in the Nile Delta region, Egypt. Acta Trop. 2006;100:63–69. doi: 10.1016/j.actatropica.2006.09.008. PubMed DOI

Dendana F, et al. Free-living amoebae (FLA): detection, morphological and molecular identification of Acanthamoeba genus in the hydraulic system of an haemodialysis unit in Tunisia. Parasite. 2008;15:137–142. doi: 10.1051/parasite/2008152137. PubMed DOI

Shoff ME, Rogerson K, Kessler K, Schatz S, Seal DV. Prevalence of Acanthamoeba and other naked amoebae in south Florida domestic water. J. Water Health. 2008;6:99–104. doi: 10.2166/wh.2007.014. PubMed DOI

Walochnik J, Scheikl U, Haller-Schober E. Twenty years of Acanthamoeba diagnostics in Austria. J. Eukaryot. Microbiol. 2015;62:3–11. doi: 10.1111/jeu.12149. PubMed DOI PMC

Aichelburg AC, et al. Successful treatment of disseminated Acanthamoeba sp. infection with miltefosine. Emerg. Infect. Dis. 2008;14:1743–1746. doi: 10.3201/eid1411.070854. PubMed DOI PMC

Webster D, et al. Case report: Treatment of granulomatous amoebic encephalitis with voriconazole and miltefosine in an immunocompetent soldier. Am. J. Trop. Med. Hyg. 2012;87:715–718. doi: 10.4269/ajtmh.2012.12-0100. PubMed DOI PMC

Siddiqui R, Aqeel Y, Khan NA. Killing the dead: Chemotherapeutic strategies against free-living cyst-forming protists (Acanthamoeba sp. and Balamuthia mandrillaris) J. Eukaryot. Microbiol. 2013;60:291–297. doi: 10.1111/jeu.12026. PubMed DOI

Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite. 2015;22:10. doi: 10.1051/parasite/2015010. PubMed DOI PMC

Bowers B, Korn ED. The fine structure of Acanthamoeba castellanii. I. The trophozoite. J. Cell Biol. 1968;39:95–111. doi: 10.1083/jcb.39.1.95. PubMed DOI PMC

Page, F. C. Nackte Rhizopoda in Nackte Rhizopoda und Heliozoea (eds Page, F. C. & Siemensma, F. J.) 1–170 (G. Fischer, 1991).

Köhsler M, et al. Acanthamoeba strains lose their abilities to encyst synchronously upon prolonged axenic culture. Parasitol. Res. 2008;102:1069–1072. doi: 10.1007/s00436-008-0885-8. PubMed DOI

Kliescikova J, Kulda J, Nohynkova E. Stress-induced pseudocyst formation – a newly identified mechanism of protection against organic solvents in acanthamoebae of the T4 genotype. Protist. 2011;162:58–69. doi: 10.1016/j.protis.2010.03.006. PubMed DOI

Lloyd D. Encystment in Acanthamoeba castellanii: a review. Exp. Parasitol. 2014;145:S20–S27. doi: 10.1016/j.exppara.2014.03.026. PubMed DOI

Tomlinson G, Jones EA. Isolation of cellulose from the cyst wall of a soil amoeba. Biochim. Biophys. Acta. 1962;63:194–200. doi: 10.1016/0006-3002(62)90353-0. PubMed DOI

Chávez-Munguía B, et al. Ultrastructural study of encystation and excystation in Acanthamoeba castellanii. J. Eukaryot. Microbiol. 2005;52:153–158. doi: 10.1111/j.1550-7408.2005.04-3273.x. PubMed DOI

Bowers B, Korn ED. The fine structure of Acanthamoeba castellanii (Neff Strain) II. Encystment. J. Cell Biol. 1969;41:786–805. doi: 10.1083/jcb.41.3.786. PubMed DOI PMC

Lemgruber L, Lupetti P, De Souza W, Vommaro RC, da Rocha-Azevedo B. The fine structure of the Acanthamoeba polyphaga cyst wall. FEMS Microbiol. Lett. 2010;305:170–176. doi: 10.1111/j.1574-6968.2010.01925.x. PubMed DOI

Chávez-Munguía B, et al. Acanthamoeba castellanii cysts: new ultrastructural findings. Parasitol. Res. 2013;112:1125–1130. doi: 10.1007/s00436-012-3261-7. PubMed DOI

Pussard M, Pons R. Morphologie de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida) Protistologica. 1977;13:557–598.

Köhsler, M., Mrva, M. & Walochnik, J. Acanthamoeba in Molecular Parasitology. Protozoan parasites and their molecules (eds Walochnik, J. & Duchêne, M.) 285–324 (Springer-Verlag, 2016).

Tice AK, et al. Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida, Amoebozoa) and identification of a novel life cycle type within the group. Biol. Direct. 2016;11:69. doi: 10.1186/s13062-016-0171-0. PubMed DOI PMC

Corsaro D, et al. Update on Acanthamoeba jacobsi genotype T15, including full-length 18S rDNA molecular phylogeny. Parasitol. Res. 2017;116:1273–1284. doi: 10.1007/s00436-017-5406-1. PubMed DOI

Fuerst PA, Booton GC, Crary M. Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba. J. Eukaryot. Microbiol. 2015;62:69–84. doi: 10.1111/jeu.12186. PubMed DOI

Chávez-Munguía B, et al. Ultrastructure of cyst differentiation in parasitic protozoa. Parasitol. Res. 2007;100:1169–1175. doi: 10.1007/s00436-006-0447-x. PubMed DOI

Lasman M. Light and electron microscopic observations on encystment of Acanthamoeba palestinensis, Reich. J. Protozool. 1977;24:244–248. doi: 10.1111/j.1550-7408.1977.tb00972.x. PubMed DOI

Lasman M. The fine structure of Acanthamoeba astronyxis, with special emphasis on encystment. J. Protozool. 1982;29:458–464. doi: 10.1111/j.1550-7408.1982.tb05433.x. PubMed DOI

Bauer H. Ultrastruktur und Zellwandbildung von Acanthamoeba sp. Vierteljahrsschr. Naturforsch. Ges. Zürich. 1967;112:173–197.

Spies F, et al. Encystment of Acanthamoeba castellanii (Neff). A combined freeze etch – thin sectioning analysis of the cell surface. Cytobiologie. 1975;11:50–64.

Yonemura S, Pollard TD. The localization of myosin I and myosin II in Acanthamoeba by fluorescence microscopy. J. Cell Sci. 1992;102:629–642. PubMed

González-Robles A, et al. Acanthamoeba castellanii: Identification and distribution of actin cytoskeleton. Exp. Parasitol. 2008;119:411–417. doi: 10.1016/j.exppara.2008.04.004. PubMed DOI

Pollard TD. The role of actin in the temperature-dependent gelation and contraction of extracts of Acanthamoeba. J. Cell Biol. 1976;68:579–601. doi: 10.1083/jcb.68.3.579. PubMed DOI PMC

Machesky LM, Atkinson SJ, Ampe C, Vandekerckhove J, Pollard TD. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol. 1994;127:107–115. doi: 10.1083/jcb.127.1.107. PubMed DOI PMC

Baumann O, Murphy DB. Microtubule-associated movement of mitochondria and small particles in Acanthamoeba castellanii. Cell Motil. Cytoskeleton. 1995;32:305–317. doi: 10.1002/cm.970320407. PubMed DOI

Kelleher JF, Atkinson SJ, Pollard TD. Sequences, structural models, and cellular localization of the actin-related proteins Arp2 and Arp3 from Acanthamoeba. J. Cell Biol. 1995;131:385–397. doi: 10.1083/jcb.131.2.385. PubMed DOI PMC

Jontes JD, Ostap EM, Pollard TD, Milligan RA. Three-dimensional structure of Acanthamoeba castellanii myosin-IB (MIB) determined by cryoelectron microscopy of decorated actin filaments. J. Cell Biol. 1998;141:155–162. doi: 10.1083/jcb.141.1.155. PubMed DOI PMC

Dudley R, Jarroll EL, Khan NA. Carbohydrate analysis of Acanthamoeba castellanii. Exp. Parasitol. 2009;122:338–343. doi: 10.1016/j.exppara.2009.04.009. PubMed DOI

Bouyer S, Rodier MH, Guillot A, Héchard Y. Acanthamoeba castellanii: Proteins involved in actin dynamics, glycolysis, and proteolysis are regulated during encystation. Exp. Parasitol. 2009;123:90–94. doi: 10.1016/j.exppara.2009.06.006. PubMed DOI

Khunkitti W, Lloyd D, Furr JR, Russell AD. The lethal effects of biguanides on cysts and trophozoites of Acanthamoeba castellanii. J. Appl. Bacteriol. 1996;81:73–77. doi: 10.1111/j.1365-2672.1996.tb03284.x. PubMed DOI

Khunkitti W, Lloyd D, Furr JR, Russell AD. Aspects of the mechanisms of action of biguanides on trophozoites and cysts of Acanthamoeba castellanii. J. Appl. Microbiol. 1997;82:107–114. doi: 10.1111/j.1365-2672.1997.tb03304.x. PubMed DOI

Lloyd D, et al. Encystation in Acanthamoeba castellanii: development of biocide resistance. J. Eukaryot. Microbiol. 2001;48:11–16. doi: 10.1111/j.1550-7408.2001.tb00410.x. PubMed DOI

Rama P, et al. Bilateral Acanthamoeba keratitis with late recurrence of the infection in a corneal graft: a case report. Eur. J. Ophthalmol. 2003;13:311–314. doi: 10.1177/112067210301300312. PubMed DOI

Fouque E, et al. Cellular, biochemical, and molecular changes during encystment of free-living amoebae. Eukaryot. Cell. 2012;11:382–387. doi: 10.1128/EC.05301-11. PubMed DOI PMC

Lakhundi S, Siddiqui R, Khan NA. Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections. Parasites & Vectors. 2015;8:23. doi: 10.1186/s13071-015-0642-7. PubMed DOI PMC

Roberts CW, Henriquez FL. Drug target identification, validation, characterisation and exploitation for treatment of Acanthamoeba (species) infections. Exp. Parasitol. 2010;126:91–96. doi: 10.1016/j.exppara.2009.11.016. PubMed DOI

Anwar A, Khan NA, Siddiqui R. Combating Acanthamoeba spp. cysts: what are the options? Parasites & Vectors. 2018;11:26. doi: 10.1186/s13071-017-2572-z. PubMed DOI PMC

Lorenzo-Morales J, et al. Glycogen phosphorylase in Acanthamoeba spp.: Determining the role of the enzyme during the encystment process using RNA interference. Eukaryot. Cell. 2008;7:509–517. doi: 10.1128/EC.00316-07. PubMed DOI PMC

Aqeel Y, Siddiqui R, Khan NA. Silencing of xylose isomerase and cellulose synthase by siRNA inhibits encystation in Acanthamoeba castellanii. Parasitol. Res. 2013;112:1221–1227. doi: 10.1007/s00436-012-3254-6. PubMed DOI

Khan, N. A. Acanthamoeba, biology and pathogenesis, 1st ed. (Caister Academic Press, 2009).

Ondriska F, et al. First cases of Acanthamoeba keratitis in Slovakia. Ann. Agric. Environ. Med. 2004;11:335–341. PubMed

Yu HS, et al. Laboratory investigation of Acanthamoeba lugdunensis from patients with keratitis. Invest. Ophthalmol. Vis. Sci. 2004;45:1418–1426. doi: 10.1167/iovs.03-0433. PubMed DOI

Garajová M, Mrva M, Timko L, Lukáč M, Ondriska F. Cytomorphological changes and susceptibility of clinical isolates of Acanthamoeba spp. to heterocyclic alkylphosphocholines. Exp. Parasitol. 2014;145:S102–S110. doi: 10.1016/j.exppara.2014.05.015. PubMed DOI

Linder M, Winiecka-Krusnell J, Linder E. Use of recombinant cellulose-binding domains of Trichoderma reesei cellulase as a selective immunocytochemical marker for cellulose in Protozoa. Appl. Environ. Microbiol. 2002;68:2503–2508. doi: 10.1128/AEM.68.5.2503-2508.2002. PubMed DOI PMC

Moon EK, Hong Y, Chung DI, Goo YK, Kong HH. Down-regulation of cellulose synthase inhibits the formation of endocysts in. Acanthamoeba. Korean J. Parasitol. 2014;52:131–135. doi: 10.3347/kjp.2014.52.2.131. PubMed DOI PMC

Herrera-Martínez, M., Hernández-Ramírez, V. I., Lagunes-Guillén, A. E., Chávez-Munguía, B. & Talamás-Rohana, P. Actin, RhoA, and Rab11 participation during encystment in Entamoeba invadens. BioMed Res. Int., 10.1155/2013/919345 (2013). PubMed PMC

Yumura S, Mori H, Fukui Y. Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence. J. Cell Biol. 1984;99:894–899. doi: 10.1083/jcb.99.3.894. PubMed DOI PMC

Neujahr R, et al. Three-dimensional patterns and redistribution of myosin II and actin in mitotic Dictyostelium cells. J. Cell Biol. 1997;139:1793–1804. doi: 10.1083/jcb.139.7.1793. PubMed DOI PMC

Sameshima M, et al. The formation of actin rods composed of actin tubules in Dictyostelium discoideum spores. J. Struct. Biol. 2001;136:7–19. doi: 10.1006/jsbi.2001.4424. PubMed DOI

Paredez AR, Somerville CR, Ehrhardt DW. Visualization of cellulose synthase demonstrates functional association with microtubules. Science. 2006;312:1491–1495. doi: 10.1126/science.1126551. PubMed DOI

Wightman R, Turner SR. The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J. 2008;54:794–805. doi: 10.1111/j.1365-313X.2008.03444.x. PubMed DOI

Derda M, Winiecka-Krusnell J, Linder MB, Linder E. Labeled Trichoderma reesei cellulase as a marker for Acanthamoeba cyst wall cellulose in infected tissues. Appl. Environ. Microbiol. 2009;75:6827–6830. doi: 10.1128/AEM.01555-09. PubMed DOI PMC

Barrett RA, Alexander M. Resistance of cysts of amoebae to microbial decomposition. Appl. Environ. Microbiol. 1977;33:670–674. PubMed PMC

Vávra J, Dahbiová R, Hollister WS, Canning EU. Staining of microsporidian spores by optical brighteners with remarks on the use of brighteners for the diagnosis of AIDS associated human microsporidioses. Folia Parasitol. 1993;40:267–272. PubMed

Levraud JP, et al. Dictyostelium cell death: early emergence and demise of highly polarized paddle cells. J. Cell Biol. 2003;160:1105–1114. doi: 10.1083/jcb.200212104. PubMed DOI PMC

Mattar FE, Byers TJ. Morphological changes and the requirements for macromolecule synthesis during excystment of Acanthamoeba castellanii. J. Cell Biol. 1971;49:507–519. doi: 10.1083/jcb.49.2.507. PubMed DOI PMC

Stewart JR, Weisman RA. A chemical and autoradiographic study of cellulose synthesis during the encystment of Acanthamoeba castellanii. Arch. Biochem Biophys. 1974;161:488–498. doi: 10.1016/0003-9861(74)90331-2. PubMed DOI

Zhang P, McGlynn AC, Loomis WF, Blanton RL, West CM. Spore coat formation and timely sporulation depend on cellulose in Dictyostelium. Differentiation. 2000;67:72–79. doi: 10.1046/j.1432-0436.2001.067003072.x. PubMed DOI

Dudley R, Alsam S, Khan NA. Cellulose biosynthesis pathway is a potential target in the improved treatment of Acanthamoeba keratitis. Appl. Microbiol. Biotechnol. 2007;75:133–140. doi: 10.1007/s00253-006-0793-8. PubMed DOI

Shraideh Z, Kukulies J, Wolf KV, Wohlfarth-Bottermann KE, Stockem W. Distribution of intramembranous particles in the plasmalemma of Physarum polycephalum during sclerotization, spore-formation and spore-germination. Cell Biol. Int. Rep. 1982;6:851–857. doi: 10.1016/0309-1651(82)90145-X. PubMed DOI

Bowers B. A morphological study of plasma and phagosome membranes during endocytosis in Acanthamoeba. J. Cell Biol. 1980;84:246–260. doi: 10.1083/jcb.84.2.246. PubMed DOI PMC

Brown RM, Jr., Montezinos D. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc. Natl. Acad. Sci. USA. 1976;84:6985–6989. PubMed PMC

Delmer DP, Amor Y. Cellulose biosynthesis. Plant Cell. 1995;7:987–1000. doi: 10.1105/tpc.7.7.987. PubMed DOI PMC

Grimson MJ, Haigler CH, Blanton RL. Cellulose microfibrils, cell motility, and plasma membrane protein organization change in parallel during culmination in Dictyostelium discoideum. J. Cell Sci. 1996;109:3079–3087. PubMed

Yoshikawa H, Yamada M, Yoshida Y. Freeze-fracture study of the trophozoite and the cyst of Entamoeba histolytica. J. Protozool. 1988;35:268–273. doi: 10.1111/j.1550-7408.1988.tb04342.x. PubMed DOI

Page FC. Re-definition of the genus Acanthamoeba with descriptions of three species. J. Protozool. 1967;14:709–724. doi: 10.1111/j.1550-7408.1967.tb02066.x. PubMed DOI

Biagini GA, et al. Hydrogenosomes of Metopus contortus physiologically resemble mitochondria. Microbiology. 1997;143:1623–1629. doi: 10.1099/00221287-143-5-1623. PubMed DOI

Biagini GA, van der Giezen M, Hill B, Winters C, Lloyd D. Ca2+ accumulation in the hydrogenosomes of Neocallimastix frontalis L2: a mitochondrial-like physiological role. FEMS Microbiol. Lett. 1997;149:227–232. doi: 10.1111/j.1574-6968.1997.tb10333.x. DOI

Hopkins EW. Microchemical tests on the cell walls of certain fungi. Cellulose and chitin. Trans. Wis. Acad. Sci. Arts Lett. 1929;24:187–196.

Valigurová A. Sophisticated adaptations of Gregarina cuneata (Apicomplexa) feeding stages for epicellular parasitism. PLoS One. 2012;7:e42606. doi: 10.1371/journal.pone.0042606. PubMed DOI PMC

Valigurová A, Michalková V, Koudela B. Eugregarine trophozoite detachment from the host epithelium via epimerite retraction: Fiction or fact? Int. J. Parasitol. 2009;39:1235–1242. doi: 10.1016/j.ijpara.2009.04.009. PubMed DOI

Spurr AR. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 1969;26:31–43. doi: 10.1016/S0022-5320(69)90033-1. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...