Iron Oxide Nanoparticle-Induced Autophagic Flux Is Regulated by Interplay between p53-mTOR Axis and Bcl-2 Signaling in Hepatic Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32325714
PubMed Central
PMC7226334
DOI
10.3390/cells9041015
PII: cells9041015
Knihovny.cz E-zdroje
- Klíčová slova
- autophagy, iron oxide nanoparticles, lysosomes, magnetic resonance imaging, nano-bio interactions, p53,
- MeSH
- autofagie genetika MeSH
- buněčné linie MeSH
- hepatocyty metabolismus MeSH
- lidé MeSH
- lyzozomy metabolismus MeSH
- magnetické nanočástice oxidů železa * MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- protoonkogenní proteiny c-bcl-2 metabolismus MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BCL2 protein, human MeSH Prohlížeč
- MTOR protein, human MeSH Prohlížeč
- nádorový supresorový protein p53 MeSH
- protoonkogenní proteiny c-bcl-2 MeSH
- TOR serin-threoninkinasy MeSH
Iron oxide-based nanoparticles have been repeatedly shown to affect lysosomal-mediated signaling. Recently, nanoparticles have demonstrated an ability to modulate autophagic flux via lysosome-dependent signaling. However, the precise underlying mechanisms of such modulation as well as the impact of cellular genetic background remain enigmatic. In this study, we investigated how lysosomal-mediated signaling is affected by iron oxide nanoparticle uptake in three distinct hepatic cell lines. We found that nanoparticle-induced lysosomal dysfunction alters sub-cellular localization of pmTOR and p53 proteins. Our data indicate that alterations in the sub-cellular localization of p53 protein induced by nanoparticle greatly affect the autophagic flux. We found that cells with high levels of Bcl-2 are insensitive to autophagy initiated by nanoparticles. Altogether, our data identify lysosomes as a central hub that control nanoparticle-mediated responses in hepatic cells. Our results provide an important fundamental background for the future development of targeted nanoparticle-based therapies.
Institute for Clinical and Experimental Medicine Prague 14021 Czech Republic
Institute of Experimental Medicine of the Czech Academy of Sciences Prague 14220 Czech Republic
Institute of Physics of the Czech Academy of Sciences Prague 18221 Czech Republic
Zobrazit více v PubMed
Wu W., Jiang C.Z., Roy V.A. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale. 2016;8:19421–19474. doi: 10.1039/C6NR07542H. PubMed DOI
Shi J.J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer. 2017;17:20–37. doi: 10.1038/nrc.2016.108. PubMed DOI PMC
Davis M.E., Chen Z., Shin D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008;7:771–782. doi: 10.1038/nrd2614. PubMed DOI
Xie W., Guo Z., Gao F., Gao Q., Wang D., Liaw B.S., Cai Q., Sun X., Wang X., Zhao L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics. 2018;8:3284–3307. doi: 10.7150/thno.25220. PubMed DOI PMC
Martinez-Banderas A.I., Aires A., Quintanilla M., Holguin-Lerma J.A., Lozano-Pedraza C., Teran F.J., Moreno J.A., Perez J.E., Ooi B.S., Ravasi T., et al. Iron-based core-shell nanowires for combinatorial drug delivery and photothermal and magnetic therapy. ACS Appl. Mater. Interfaces. 2019;11:43976–43988. doi: 10.1021/acsami.9b17512. PubMed DOI
Lunov O., Uzhytchak M., Smolkova B., Lunova M., Jirsa M., Dempsey N.M., Dias A.L., Bonfim M., Hof M., Jurkiewicz P., et al. Remote actuation of apoptosis in liver cancer cells via magneto-mechanical modulation of iron oxide nanoparticles. Cancers. 2019;11:1873. doi: 10.3390/cancers11121873. PubMed DOI PMC
Uzhytchak M., Lynnyk A., Zablotskii V., Dempsey N.M., Dias A.L., Bonfim M., Lunova M., Jirsa M., Kubinova S., Lunov O., et al. The use of pulsed magnetic fields to increase the uptake of iron oxide nanoparticles by living cells. Appl. Phys. Lett. 2017;111:243703. doi: 10.1063/1.5007797. DOI
Wang Y.-X.J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011;1:35–40. PubMed PMC
Wang Y.X.J., Idee J.M. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant. Imaging Med. Surg. 2017;7:88–122. doi: 10.21037/qims.2017.02.09. PubMed DOI PMC
Bobo D., Robinson K.J., Islam J., Thurecht K.J., Corrie S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016;33:2373–2387. doi: 10.1007/s11095-016-1958-5. PubMed DOI
Kendall M., Lynch I. Long-term monitoring for nanomedicine implants and drugs. Nat. Nanotechnol. 2016;11:206–210. doi: 10.1038/nnano.2015.341. PubMed DOI
Hsiao J.K., Chu H.H., Wang Y.H., Lai C.W., Chou P.T., Hsieh S.T., Wang J.L., Liu H.M. Macrophage physiological function after superparamagnetic iron oxide labeling. NMR Biomed. 2008;21:820–829. doi: 10.1002/nbm.1260. PubMed DOI
Lunov O., Syrovets T., Buchele B., Jiang X., Rocker C., Tron K., Nienhaus G.U., Walther P., Mailander V., Landfester K., et al. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials. 2010;31:5063–5071. doi: 10.1016/j.biomaterials.2010.03.023. PubMed DOI
Lunov O., Syrovets T., Rocker C., Tron K., Nienhaus G.U., Rasche V., Mailander V., Landfester K., Simmet T. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials. 2010;31:9015–9022. doi: 10.1016/j.biomaterials.2010.08.003. PubMed DOI
Bae J.E., Huh M.I., Ryu B.K., Do J.Y., Jin S.U., Moon M.J., Jung J.C., Chang Y., Kim E., Chi S.G., et al. The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles. Biomaterials. 2011;32:9401–9414. doi: 10.1016/j.biomaterials.2011.08.075. PubMed DOI
Mirshafiee V., Sun B., Chang C.H., Liao Y.P., Jiang W., Jiang J., Liu X., Wang X., Xia T., Nel A.E. Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in kupffer cells and macrophages versus apoptosis in hepatocytes. ACS Nano. 2018;12:3836–3852. doi: 10.1021/acsnano.8b01086. PubMed DOI PMC
Ma X., Hartmann R., Jimenez de Aberasturi D., Yang F., Soenen S.J.H., Manshian B.B., Franz J., Valdeperez D., Pelaz B., Feliu N., et al. Colloidal gold nanoparticles induce changes in cellular and subcellular morphology. ACS Nano. 2017;11:7807–7820. doi: 10.1021/acsnano.7b01760. PubMed DOI
Lunova M., Smolkova B., Lynnyk A., Uzhytchak M., Jirsa M., Kubinova S., Dejneka A., Lunov O. Targeting the mTOR signaling pathway utilizing nanoparticles: A critical overview. Cancers. 2019;11:82. doi: 10.3390/cancers11010082. PubMed DOI PMC
Zhang Y.N., Poon W., Tavares A.J., McGilvray I.D., Chan W.C.W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release. 2016;240:332–348. doi: 10.1016/j.jconrel.2016.01.020. PubMed DOI
Tsoi K.M., MacParland S.A., Ma X.Z., Spetzler V.N., Echeverri J., Ouyang B., Fadel S.M., Sykes E.A., Goldaracena N., Kaths J.M., et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 2016;15:1212–1221. doi: 10.1038/nmat4718. PubMed DOI PMC
Peng M.L., Li H.L., Luo Z.Y., Kong J., Wan Y.S., Zheng L.M., Zhang Q.L., Niu H.X., Vermorken A., Van de Ven W., et al. Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Nanoscale. 2015;7:11155–11162. doi: 10.1039/C5NR01382H. PubMed DOI
Tassa C., Shaw S.Y., Weissleder R. Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 2011;44:842–852. doi: 10.1021/ar200084x. PubMed DOI PMC
Lunov O., Zablotskii V., Syrovets T., Rocker C., Tron K., Nienhaus G.U., Simmet T. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials. 2011;32:547–555. doi: 10.1016/j.biomaterials.2010.08.111. PubMed DOI
Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC
Sabatini D.M. Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Proc. Natl. Acad. Sci. USA. 2017;114:11818–11825. doi: 10.1073/pnas.1716173114. PubMed DOI PMC
Jung C.H., Ro S.H., Cao J., Otto N.M., Kim D.H. mTOR regulation of autophagy. FEBS Lett. 2010;584:1287–1295. doi: 10.1016/j.febslet.2010.01.017. PubMed DOI PMC
Lim C.Y., Zoncu R. The lysosome as a command-and-control center for cellular metabolism. J. Cell Biol. 2016;214:653–664. doi: 10.1083/jcb.201607005. PubMed DOI PMC
Jin R.R., Liu L., Zhu W.C., Li D.Y., Yang L., Duan J.M., Cai Z.Y., Nie Y., Zhang Y.J., Gong Q.Y., et al. Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like Receptor-4 signaling. Biomaterials. 2019;203:23–30. doi: 10.1016/j.biomaterials.2019.02.026. PubMed DOI
Cordani M., Somoza A. Targeting autophagy using metallic nanoparticles: A promising strategy for cancer treatment. Cell. Mol. Life Sci. 2019;76:1215–1242. doi: 10.1007/s00018-018-2973-y. PubMed DOI PMC
Lu Y.C., Luo P.C., Huang C.W., Leu Y.L., Wang T.H., Wei K.C., Wang H.E., Ma Y.H. Augmented cellular uptake of nanoparticles using tea catechins: Effect of surface modification on nanoparticle-cell interaction. Nanoscale. 2014;6:10297–10306. doi: 10.1039/C4NR00617H. PubMed DOI
Hua X., Tan S., Bandara H.M., Fu Y., Liu S., Smyth H.D. Externally controlled triggered-release of drug from PLGA micro and nanoparticles. PLoS ONE. 2014;9:e114271. doi: 10.1371/journal.pone.0114271. PubMed DOI PMC
Marcus M., Karni M., Baranes K., Levy I., Alon N., Margel S., Shefi O. Iron oxide nanoparticles for neuronal cell applications: Uptake study and magnetic manipulations. J. Nanobiotechnol. 2016;14:37. doi: 10.1186/s12951-016-0190-0. PubMed DOI PMC
Domey J., Bergemann C., Bremer-Streck S., Krumbein I., Reichenbach J.R., Teichgraber U., Hilger I. Long-term prevalence of NIRF-labeled magnetic nanoparticles for the diagnostic and intraoperative imaging of inflammation. Nanotoxicology. 2016;10:20–31. doi: 10.3109/17435390.2014.1000413. PubMed DOI PMC
Lunova M., Smolkova B., Uzhytchak M., Janouskova K.Z., Jirsa M., Egorova D., Kulikov A., Kubinova S., Dejneka A., Lunov O. Light-induced modulation of the mitochondrial respiratory chain activity: Possibilities and limitations. Cell. Mol. Life Sci. 2019 doi: 10.1007/s00018-019-03321-z. PubMed DOI PMC
Bai J., Pagano R.E. Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry. 1997;36:8840–8848. doi: 10.1021/bi970145r. PubMed DOI
Naguib Y.M. A fluorometric method for measurement of peroxyl radical scavenging activities of lipophilic antioxidants. Anal. Biochem. 1998;265:290–298. doi: 10.1006/abio.1998.2931. PubMed DOI
Drummen G.P.C., van Liebergen L.C.M., Op den Kamp J.A.F., Post J.A. C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (Micro)spectroscopic characterization and validation of methodology. Free Radic. Biol. Med. 2002;33:473–490. doi: 10.1016/S0891-5849(02)00848-1. PubMed DOI
Cheloni G., Slaveykova V.I. Optimization of the C11-BODIPY581/591 Dye for the Determination of Lipid Oxidation in Chlamydomonas reinhardtii by Flow Cytometry. Cytom. Part. A. 2013;83:952–961. PubMed
Pap E.H.W., Drummen G.P.C., Winter V.J., Kooij T.W.A., Rijken P., Wirtz K.W.A., Op den Kamp J.A.F., Hage W.J., Post J.A. Ratio-fluorescence microscopy of lipid oxidation in living cells using C11-BODIPY581/591. FEBS Lett. 1999;453:278–282. doi: 10.1016/S0014-5793(99)00696-1. PubMed DOI
Vranic S., Boggetto N., Contremoulins V., Mornet S., Reinhardt N., Marano F., Baeza-Squiban A., Boland S. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part. Fibre Toxicol. 2013;10:2. doi: 10.1186/1743-8977-10-2. PubMed DOI PMC
Jevprasesphant R., Penny J., Attwood D., D’Emanuele A. Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. J. Control. Release. 2004;97:259–267. doi: 10.1016/j.jconrel.2004.03.022. PubMed DOI
Hachani R., Birchall M.A., Lowdell M.W., Kasparis G., Tung L., Manshian B.B., Soenen S.J., Gsell W., Himmelreich U., Gharagouzloo C.A., et al. Assessing cell-nanoparticle interactions by high content imaging of biocompatible iron oxide nanoparticles as potential contrast agents for magnetic resonance imaging. Sci. Rep. 2017;7:7850. doi: 10.1038/s41598-017-08092-w. PubMed DOI PMC
Zuliani T., Duval R., Jayat C., Schnebert S., Andre P., Dumas M., Ratinaud M.H. Sensitive and reliable JC-1 and TOTO-3 double staining to assess mitochondrial transmembrane potential and plasma membrane integrity: Interest for cell death investigations. Cytom. Part. A. 2003;54:100–108. doi: 10.1002/cyto.a.10059. PubMed DOI
Lunov O., Zablotskii V., Churpita O., Lunova M., Jirsa M., Dejneka A., Kubinova S. Chemically different non-thermal plasmas target distinct cell death pathways. Sci. Rep. 2017;7:600. doi: 10.1038/s41598-017-00689-5. PubMed DOI PMC
Torrano A.A., Blechinger J., Osseforth C., Argyo C., Reller A., Bein T., Michaelis J., Brauchle C. A fast analysis method to quantify nanoparticle uptake on a single cell level. Nanomedicine. 2013;8:1815–1828. doi: 10.2217/nnm.12.178. PubMed DOI
Blechinger J., Bauer A.T., Torrano A.A., Gorzelanny C., Brauchle C., Schneider S.W. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent. Small. 2013;9:3970–3980. doi: 10.1002/smll.201301004. PubMed DOI
Hamilton N. Quantification and its applications in fluorescent microscopy imaging. Traffic. 2009;10:951–961. doi: 10.1111/j.1600-0854.2009.00938.x. PubMed DOI
Jonkman J., Brown C.M., Wright G.D., Anderson K.I., North A.J. Tutorial: Guidance for quantitative confocal microscopy. Nat. Protoc. 2020 doi: 10.1038/s41596-020-0313-9. PubMed DOI
Lee J.Y., Kitaoka M. A beginner’s guide to rigor and reproducibility in fluorescence imaging experiments. Mol. Biol. Cell. 2018;29:1519–1525. doi: 10.1091/mbc.E17-05-0276. PubMed DOI PMC
Dell R.B., Holleran S., Ramakrishnan R. Sample size determination. ILAR J. 2002;43:207–213. doi: 10.1093/ilar.43.4.207. PubMed DOI PMC
Estelrich J., Sanchez-Martin M.J., Busquets M.A. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int. J. Nanomed. 2015;10:1727–1741. PubMed PMC
Wei H., Bruns O.T., Kaul M.G., Hansen E.C., Barch M., Wisniowska A., Chen O., Chen Y., Li N., Okada S., et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc. Natl. Acad. Sci. USA. 2017;114:2325–2330. doi: 10.1073/pnas.1620145114. PubMed DOI PMC
Wang H.L., Thorling C.A., Liang X.W., Bridle K.R., Grice J.E., Zhu Y.A., Crawford D.H.G., Xu Z.P., Liu X., Roberts M.S. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J. Mater. Chem. B. 2015;3:939–958. doi: 10.1039/C4TB01611D. PubMed DOI
Feliu N., Docter D., Heine M., Del Pino P., Ashraf S., Kolosnjaj-Tabi J., Macchiarini P., Nielsen P., Alloyeau D., Gazeau F., et al. In vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev. 2016;45:2440–2457. doi: 10.1039/C5CS00699F. PubMed DOI
Docter D., Westmeier D., Markiewicz M., Stolte S., Knauer S.K., Stauber R.H. The nanoparticle biomolecule corona: Lessons learned - challenge accepted? Chem. Soc. Rev. 2015;44:6094–6121. doi: 10.1039/C5CS00217F. PubMed DOI
Lunova M., Prokhorov A., Jirsa M., Hof M., Olzynska A., Jurkiewicz P., Kubinova S., Lunov O., Dejneka A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci. Rep. 2017;7:16049. doi: 10.1038/s41598-017-16447-6. PubMed DOI PMC
Yu M., Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano. 2015;9:6655–6674. doi: 10.1021/acsnano.5b01320. PubMed DOI PMC
Feng Q., Liu Y., Huang J., Chen K., Huang J., Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep. 2018;8:2082. doi: 10.1038/s41598-018-19628-z. PubMed DOI PMC
Hamm B., Staks T., Taupitz M., Maibauer R., Speidel A., Huppertz A., Frenzel T., Lawaczeck R., Wolf K.J., Lange L. Contrast-enhanced MR imaging of liver and spleen: First experience in humans with a new superparamagnetic iron oxide. J. Magn. Reson. Imaging. 1994;4:659–668. doi: 10.1002/jmri.1880040508. PubMed DOI
Panariti A., Miserocchi G., Rivolta I. The effect of nanoparticle uptake on cellular behavior: Disrupting or enabling functions? Nanotechnol. Sci. Appl. 2012;5:87–100. PubMed PMC
Mao Z., Xu B., Ji X., Zhou K., Zhang X., Chen M., Han X., Tang Q., Wang X., Xia Y. Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics. Nanoscale. 2015;7:8466–8475. doi: 10.1039/C5NR01448D. PubMed DOI
Hayashi S., Okada Y. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics. Mol. Biol. Cell. 2015;26:1743–1751. doi: 10.1091/mbc.E14-08-1287. PubMed DOI PMC
Rathore B., Sunwoo K., Jangili P., Kim J., Kim J.H., Huang M.N., Xiong J., Sharma A., Yang Z.G., Qu J.L., et al. Nanomaterial designing strategies related to cell lysosome and their biomedical applications: A review. Biomaterials. 2019;211:25–47. doi: 10.1016/j.biomaterials.2019.05.002. PubMed DOI
Zhang X.Q., Xu X., Bertrand N., Pridgen E., Swami A., Farokhzad O.C. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv. Drug Deliv. Rev. 2012;64:1363–1384. doi: 10.1016/j.addr.2012.08.005. PubMed DOI PMC
Nel A.E., Madler L., Velegol D., Xia T., Hoek E.M.V., Somasundaran P., Klaessig F., Castranova V., Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009;8:543–557. doi: 10.1038/nmat2442. PubMed DOI
Xu H., Ren D. Lysosomal physiology. Annu. Rev. Physiol. 2015;77:57–80. doi: 10.1146/annurev-physiol-021014-071649. PubMed DOI PMC
Sorkin A., von Zastrow M. Endocytosis and signalling: Intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 2009;10:609–622. doi: 10.1038/nrm2748. PubMed DOI PMC
Dikic I., Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018;19:349–364. doi: 10.1038/s41580-018-0003-4. PubMed DOI
Rodriguez-Muela N., Hernandez-Pinto A.M., Serrano-Puebla A., Garcia-Ledo L., Latorre S.H., de la Rosa E.J., Boya P. Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ. 2015;22:476–487. doi: 10.1038/cdd.2014.203. PubMed DOI PMC
Song X.B., Liu G., Liu F., Yan Z.G., Wang Z.Y., Liu Z.P., Wang L. Autophagy blockade and lysosomal membrane permeabilization contribute to lead-induced nephrotoxicity in primary rat proximal tubular cells. Cell Death Dis. 2017;8:e2863. doi: 10.1038/cddis.2017.262. PubMed DOI PMC
Wang F., Salvati A., Boya P. Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biol. 2018;8:170271. doi: 10.1098/rsob.170271. PubMed DOI PMC
Qi X., Man S.M., Malireddi R.K., Karki R., Lupfer C., Gurung P., Neale G., Guy C.S., Lamkanfi M., Kanneganti T.D. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection. J. Exp. Med. 2016;213:2081–2097. doi: 10.1084/jem.20151938. PubMed DOI PMC
Cermak S., Kosicek M., Mladenovic-Djordjevic A., Smiljanic K., Kanazir S., Hecimovic S. Loss of cathepsin B and L leads to lysosomal dysfunction, NPC-like cholesterol sequestration and accumulation of the key Alzheimer’s proteins. PLoS ONE. 2016;11:e0167428. doi: 10.1371/journal.pone.0167428. PubMed DOI PMC
Humphries W.H.t., Szymanski C.J., Payne C.K. Endo-lysosomal vesicles positive for Rab7 and LAMP1 are terminal vesicles for the transport of dextran. PLoS ONE. 2011;6:e26626. doi: 10.1371/journal.pone.0026626. PubMed DOI PMC
Cheng X.T., Xie Y.X., Zhou B., Huang N., Farfel-Becker T., Sheng Z.H. Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons. J. Cell Biol. 2018;217:3127–3139. doi: 10.1083/jcb.201711083. PubMed DOI PMC
Zhao X.Y., Wei S.S., Li Z.J., Lin C., Zhu Z.F., Sun D.S., Bai R.P., Qian J., Gao X.W., Chen G.D., et al. Autophagic flux blockage in alveolar epithelial cells is essential in silica nanoparticle-induced pulmonary fibrosis. Cell Death Dis. 2019;10:127. doi: 10.1038/s41419-019-1340-8. PubMed DOI PMC
Wang J., Yu Y., Lu K., Yang M., Li Y., Zhou X., Sun Z. Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. Int. J. Nanomed. 2017;12:809–825. doi: 10.2147/IJN.S123596. PubMed DOI PMC
Dukhinova M.S., Prilepskii A.Y., Shtil A.A., Vinogradov V.V. Metal oxide nanoparticles in therapeutic regulation of macrophage functions. Nanomaterials. 2019;9:1631. doi: 10.3390/nano9111631. PubMed DOI PMC
Galluzzi L., Bravo-San Pedro J.M., Levine B., Green D.R., Kroemer G. Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 2017;16:487–511. doi: 10.1038/nrd.2017.22. PubMed DOI PMC
Chen Q., Kang J., Fu C.Y. The independence of and associations among apoptosis, autophagy, and necrosis. Signal. Transduct. Target. Ther. 2018;3:18. doi: 10.1038/s41392-018-0018-5. PubMed DOI PMC
Loos C., Syrovets T., Musyanovych A., Mailander V., Landfester K., Simmet T. Amino-functionalized nanoparticles as inhibitors of mTOR and inducers of cell cycle arrest in leukemia cells. Biomaterials. 2014;35:1944–1953. doi: 10.1016/j.biomaterials.2013.11.056. PubMed DOI
Hulea L., Markovic Z., Topisirovic I., Simmet T., Trajkovic V. Biomedical potential of mTOR modulation by nanoparticles. Trends Biotechnol. 2016;34:349–353. doi: 10.1016/j.tibtech.2016.01.005. PubMed DOI
Jhanwar-Uniyal M., Jeevan D., Neil J., Shannon C., Albert L., Murali R. Deconstructing mTOR complexes in regulation of Glioblastoma Multiforme and its stem cells. Adv. Biol. Regul. 2013;53:202–210. doi: 10.1016/j.jbior.2012.10.001. PubMed DOI
Jiang Y. mTOR goes to the nucleus. Cell Cycle. 2010;9:868. doi: 10.4161/cc.9.5.11070. PubMed DOI PMC
Zhou X., Clister T.L., Lowry P.R., Seldin M.M., Wong G.W., Zhang J. Dynamic visualization of mTORC1 activity in living cells. Cell Rep. 2015;10:1767–1777. doi: 10.1016/j.celrep.2015.02.031. PubMed DOI PMC
Dobashi Y., Suzuki S., Sato E., Hamada Y., Yanagawa T., Ooi A. EGFR-dependent and independent activation of Akt/mTOR cascade in bone and soft tissue tumors. Mod. Pathol. 2009;22:1328–1340. doi: 10.1038/modpathol.2009.104. PubMed DOI
Betz C., Hall M.N. Where is mTOR and what is it doing there? J. Cell Biol. 2013;203:563–574. doi: 10.1083/jcb.201306041. PubMed DOI PMC
Li H., Tsang C.K., Watkins M., Bertram P.G., Zheng X.F. Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature. 2006;442:1058–1061. doi: 10.1038/nature05020. PubMed DOI
Audet-Walsh E., Dufour C.R., Yee T., Zouanat F.Z., Yan M., Kalloghlian G., Vernier M., Caron M., Bourque G., Scarlata E., et al. Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer. Gene Dev. 2017;31:1228–1242. doi: 10.1101/gad.299958.117. PubMed DOI PMC
Serpooshan V., Sheibani S., Pushparaj P., Wojcik M., Jang A.Y., Santoso M.R., Jang J.H., Huang H., Safavi-Sohi R., Haghjoo N., et al. Effect of cell sex on uptake of nanoparticles: The overlooked factor at the nanobio interface. ACS Nano. 2018;12:2253–2266. doi: 10.1021/acsnano.7b06212. PubMed DOI
Lunov O., Syrovets T., Loos C., Beil J., Delacher M., Tron K., Nienhaus G.U., Musyanovych A., Mailander V., Landfester K., et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano. 2011;5:1657–1669. doi: 10.1021/nn2000756. PubMed DOI
Cagatay T., Ozturk M. p53 mutation as a source of aberrant beta-catenin accumulation in cancer cells. Oncogene. 2002;21:7971–7980. doi: 10.1038/sj.onc.1205919. PubMed DOI
Bressac B., Galvin K.M., Liang T.J., Isselbacher K.J., Wands J.R., Ozturk M. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA. 1990;87:1973–1977. doi: 10.1073/pnas.87.5.1973. PubMed DOI PMC
Smolkova B., Lunova M., Lynnyk A., Uzhytchak M., Churpita O., Jirsa M., Kubinova S., Lunov O., Dejneka A. Non-thermal plasma, as a new physicochemical source, to induce redox imbalance and subsequent cell death in liver cancer cell lines. Cell. Physiol. Biochem. 2019;52:119–140. PubMed
Zhang Z.Y., Hong D., Nam S.H., Kim J.M., Paik Y.H., Joh J.W., Kwon C.H., Park J.B., Choi G.S., Jang K.Y., et al. SIRT1 regulates oncogenesis via a mutant p53-dependent pathway in hepatocellular carcinoma. J. Hepatol. 2015;62:121–130. doi: 10.1016/j.jhep.2014.08.007. PubMed DOI
Agarwal S., Bell C.M., Taylor S.M., Moran R.G. p53 deletion or hotspot mutations enhance mTORC1 activity by altering lysosomal dynamics of TSC2 and Rheb. Mol. Cancer Res. 2016;14:66–77. doi: 10.1158/1541-7786.MCR-15-0159. PubMed DOI PMC
Ni Z., Wang B., Dai X., Ding W., Yang T., Li X., Lewin S., Xu L., Lian J., He F. HCC cells with high levels of Bcl-2 are resistant to ABT-737 via activation of the ROS-JNK-autophagy pathway. Free Radic. Biol. Med. 2014;70:194–203. doi: 10.1016/j.freeradbiomed.2014.02.012. PubMed DOI
Luo D., Cheng S.C., Xie Y. Expression of Bcl-2 family proteins during chemotherapeutic agents-induced apoptosis in the hepatoblastoma HepG2 cell line. Br. J. Biomed. Sci. 1999;56:114–122. PubMed
Li C.H., Li W.Y., Hsu I.N., Liao Y.Y., Yang C.Y., Taylor M.C., Liu Y.F., Huang W.H., Chang H.H., Huang H.L., et al. Recombinant aflatoxin-degrading F420H2-dependent reductase from mycobacterium smegmatis protects mammalian cells from aflatoxin toxicity. Toxins. 2019;11:259. doi: 10.3390/toxins11050259. PubMed DOI PMC
Johansson A.C., Appelqvist H., Nilsson C., Kagedal K., Roberg K., Ollinger K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis. 2010;15:527–540. doi: 10.1007/s10495-009-0452-5. PubMed DOI PMC
Mrschtik M., Ryan K.M. Lysosomal proteins in cell death and autophagy. FEBS J. 2015;282:1858–1870. doi: 10.1111/febs.13253. PubMed DOI
Nedeljkovic M., Damjanovic A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-How we can rise to the challenge. Cells. 2019;8:957. doi: 10.3390/cells8090957. PubMed DOI PMC
Mentoor I., Engelbrecht A.M., van Jaarsveld P.J., Nell T. Chemoresistance: Intricate interplay between breast tumor cells and adipocytes in the tumor microenvironment. Front. Endocrinol. 2018;9:758. doi: 10.3389/fendo.2018.00758. PubMed DOI PMC
Kast D.J., Dominguez R. The cytoskeleton-autophagy connection. Curr. Biol. 2017;27:R318–R326. doi: 10.1016/j.cub.2017.02.061. PubMed DOI PMC
Bonneau B., Nougarede A., Prudent J., Popgeorgiev N., Peyrieras N., Rimokh R., Gillet G. The Bcl-2 homolog Nrz inhibits binding of IP3 to its receptor to control calcium signaling during zebrafish epiboly. Sci. Signal. 2014;7:ra14. doi: 10.1126/scisignal.2004480. PubMed DOI
Mantovani F., Collavin L., Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26:199–212. doi: 10.1038/s41418-018-0246-9. PubMed DOI PMC
Zhou X., Hao Q., Lu H. Mutant p53 in cancer therapy-the barrier or the path. J. Mol. Cell Biol. 2019;11:293–305. doi: 10.1093/jmcb/mjy072. PubMed DOI PMC
Vijayakumaran R., Tan K.H., Miranda P.J., Haupt S., Haupt Y. Regulation of mutant p53 protein expression. Front. Oncol. 2015;5:284. doi: 10.3389/fonc.2015.00284. PubMed DOI PMC
Oude Engberink R.D., van der Pol S.M., Dopp E.A., de Vries H.E., Blezer E.L. Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology. 2007;243:467–474. doi: 10.1148/radiol.2432060120. PubMed DOI
Erofeev A., Gorelkin P., Garanina A., Alova A., Efremova M., Vorobyeva N., Edwards C., Korchev Y., Majouga A. Novel method for rapid toxicity screening of magnetic nanoparticles. Sci. Rep. 2018;8:7462. doi: 10.1038/s41598-018-25852-4. PubMed DOI PMC
Patil R.M., Thorat N.D., Shete P.B., Bedge P.A., Gavde S., Joshi M.G., Tofail S.A.M., Bohara R.A. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem. Biophys. Rep. 2018;13:63–72. doi: 10.1016/j.bbrep.2017.12.002. PubMed DOI PMC
Soenen S.J., Himmelreich U., Nuytten N., De Cuyper M. Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials. 2011;32:195–205. doi: 10.1016/j.biomaterials.2010.08.075. PubMed DOI
Wang L., Wang Z.J., Li X.M., Zhang Y., Yin M., Li J., Song H.Y., Shi J.Y., Ling D.S., Wang L.H., et al. Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism. Nano Res. 2018;11:2746–2755. doi: 10.1007/s12274-017-1905-8. DOI
Lipski A.M., Pino C.J., Haselton F.R., Chen I.W., Shastri V.P. The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials. 2008;29:3836–3846. doi: 10.1016/j.biomaterials.2008.06.002. PubMed DOI PMC
Falagan-Lotsch P., Grzincic E.M., Murphy C.J. One low-dose exposure of gold nanoparticles induces long-term changes in human cells. Proc. Natl. Acad. Sci. USA. 2016;113:13318–13323. doi: 10.1073/pnas.1616400113. PubMed DOI PMC
Denisenko T.V., Pivnyuk A.D., Zhivotovsky B. p53-autophagy-metastasis link. Cancers. 2018;10:148. doi: 10.3390/cancers10050148. PubMed DOI PMC
Paz Hernandez M., Oses C., Peña D., Criollo A., Morselli E. Chapter 10—Mutant p53 located in the cytoplasm inhibits autophagy. In: Hayat M.A., editor. Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging. Academic Press; Cambridge, MA, USA: 2016. pp. 189–203.
Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake
Iron oxide nanoparticles trigger endoplasmic reticulum damage in steatotic hepatic cells
Protein Corona Inhibits Endosomal Escape of Functionalized DNA Nanostructures in Living Cells