Sensitivity of endogenous autofluorescence in HeLa cells to the application of external magnetic fields
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37402779
PubMed Central
PMC10319795
DOI
10.1038/s41598-023-38015-x
PII: 10.1038/s41598-023-38015-x
Knihovny.cz E-zdroje
- MeSH
- elektromagnetická pole * MeSH
- HeLa buňky MeSH
- lidé MeSH
- magnetické pole * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dramatically increased levels of electromagnetic radiation in the environment have raised concerns over the potential health hazards of electromagnetic fields. Various biological effects of magnetic fields have been proposed. Despite decades of intensive research, the molecular mechanisms procuring cellular responses remain largely unknown. The current literature is conflicting with regards to evidence that magnetic fields affect functionality directly at the cellular level. Therefore, a search for potential direct cellular effects of magnetic fields represents a cornerstone that may propose an explanation for potential health hazards associated with magnetic fields. It has been proposed that autofluorescence of HeLa cells is magnetic field sensitive, relying on single-cell imaging kinetic measurements. Here, we investigate the magnetic field sensitivity of an endogenous autofluorescence in HeLa cells. Under the experimental conditions used, magnetic field sensitivity of an endogenous autofluorescence was not observed in HeLa cells. We present a number of arguments indicating why this is the case in the analysis of magnetic field effects based on the imaging of cellular autofluorescence decay. Our work indicates that new methods are required to elucidate the effects of magnetic fields at the cellular level.
Department of Immunology Institute of Clinical Medicine University of Oslo Oslo Norway
Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
Department of Pediatric Research Oslo University Hospital Oslo Norway
Institute for Clinical and Experimental Medicine Prague 14021 Czech Republic
Zobrazit více v PubMed
Adair RK. Static and low-frequency magnetic field effects: Health risks and therapies. Rep. Prog. Phys. 2000;63:415–454. doi: 10.1088/0034-4885/63/3/204. DOI
Valberg PA, Kavet R, Rafferty CN. Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat. Res. 1997;148:2–21. doi: 10.2307/3579533. PubMed DOI
Brocklehurst B. Magnetic fields and radical reactions: Recent developments and their role in nature. Chem. Soc. Rev. 2002;31:301–311. doi: 10.1039/b107250c. PubMed DOI
Bodewein L, et al. Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz) Environ. Res. 2019;171:247–259. doi: 10.1016/j.envres.2019.01.015. PubMed DOI
Formica D, Silvestri S. Biological effects of exposure to magnetic resonance imaging: An overview. Biomed. Eng. Online. 2004;3:11. doi: 10.1186/1475-925X-3-11. PubMed DOI PMC
Lacy-Hulbert A, Metcalfe JC, Hesketh R. Biological responses to electromagnetic fields. FASEB J. 1998;12:395–420. doi: 10.1096/fasebj.12.6.395. PubMed DOI
Schenck JF. Physical interactions of static magnetic fields with living tissues. Prog. Biophys. Mol. Biol. 2005;87:185–204. doi: 10.1016/j.pbiomolbio.2004.08.009. PubMed DOI
Hore PJ. Are biochemical reactions affected by weak magnetic fields? Proc. Natl. Acad. Sci. U.S.A. 2012;109:1357–1358. doi: 10.1073/pnas.1120531109. PubMed DOI PMC
Grosberg AY. A few remarks evoked by Binhi and Savin's review on magnetobiology. Phys. Usp. 2003;46:1113–1116. doi: 10.1070/PU2003v046n10ABEH001633. DOI
Portelli LA, Falldorf K, Thuroczy G, Cuppen J. Retrospective estimation of the electric and magnetic field exposure conditions in in vitro experimental reports reveal considerable potential for uncertainty. Bioelectromagnetics. 2018;39:231–243. doi: 10.1002/bem.22099. PubMed DOI
Crotty D, et al. Reexamination of magnetic isotope and field effects on adenosine triphosphate production by creatine kinase. Proc. Natl. Acad. Sci. U.S.A. 2012;109:1437–1442. doi: 10.1073/pnas.1117840108. PubMed DOI PMC
Wang KW, Hladky SB. Absence of effects of low-frequency, low-amplitude magnetic-fields on the properties of gramicidin-a channels. Biophys. J. 1994;67:1473–1483. doi: 10.1016/S0006-3495(94)80621-6. PubMed DOI PMC
Landler L, et al. Comment on “Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans”. Elife. 2018;7:e30187. doi: 10.7554/eLife.30187. PubMed DOI PMC
Harris SR, et al. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. J. R. Soc. Interface. 2009;6:1193–1205. doi: 10.1098/rsif.2008.0519. PubMed DOI PMC
Astumian RD, Adair RK, Weaver JC. Stochastic resonance at the single-cell level. Nature. 1997;388:632–633. doi: 10.1038/41684. PubMed DOI
Ahlbom A, et al. A pooled analysis of magnetic fields and childhood leukaemia. Br. J. Cancer. 2000;83:692–698. doi: 10.1054/bjoc.2000.1376. PubMed DOI PMC
Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh MA. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood leukemia-EMF study group. Epidemiology. 2000;11:624–634. doi: 10.1097/00001648-200011000-00003. PubMed DOI
Draper G, Vincent T, Kroll ME, Swanson J. Childhood cancer in relation to distance from high voltage power lines in England and Wales: A case–control study. Br. Med. J. 2005;330:1290–1292a. doi: 10.1136/bmj.330.7503.1290. PubMed DOI PMC
Long CM, Valberg PA. In: Encyclopedia of Environmental Health. 2. Nriagu J, editor. Elsevier; 2019. pp. 139–149.
Eichholz GG. Non-ionizing radiation, part 1: Static and extremely low-frequency (ELF) electric and magnetic fields, IARC monographs on the evaluation of carcinogenic risk to humans, vol 80. Health Phys. 2002;83:920–920. doi: 10.1097/00004032-200212000-00021. PubMed DOI PMC
Driessen S, et al. Biological and health-related effects of weak static magnetic fields (<= 1 mT) in humans and vertebrates: A systematic review. PLoS One. 2020;15:e0230038. doi: 10.1371/journal.pone.0230038. PubMed DOI PMC
Schmiedchen K, Petri AK, Driessen S, Bailey WH. Systematic review of biological effects of exposure to static electric fields. Part II: Invertebrates and plants. Environ. Res. 2018;160:60–76. doi: 10.1016/j.envres.2017.09.013. PubMed DOI
Woodward JR, Foster TJ, Jones AR, Salaoru AT, Scrutton NS. Time-resolved studies of radical pairs. Biochem. Soc. Trans. 2009;37:358–362. doi: 10.1042/BST0370358. PubMed DOI
Hore PJ, Mouritsen H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 2016;45:299–344. doi: 10.1146/annurev-biophys-032116-094545. PubMed DOI
Taraban MB, Leshina TV, Anderson MA, Grissom CB. Magnetic field dependence of electron transfer and the role of electron spin in heme enzymes: Horseradish peroxidase. J. Am. Chem. Soc. 1997;119:5768–5769. doi: 10.1021/ja9630248. DOI
Jones AR, Scrutton NS, Woodward JR. Magnetic field effects and radical pair mechanisms in enzymes: A reappraisal of the horseradish peroxidase system. J. Am. Chem. Soc. 2006;128:8408–8409. doi: 10.1021/ja060463q. PubMed DOI
Harkins TT, Grissom CB. The magnetic-field dependent step in B12 ethanolamine ammonia-lyase is radical-pair recombination. J. Am. Chem. Soc. 1995;117:566–567. doi: 10.1021/ja00106a079. DOI
Jones AR, Hay S, Woodward JR, Scrutton NS. Magnetic field effect studies indicate reduced geminate recombination of the radical pair in substrate-bound adenosylcobalamin-dependent ethanolamine ammonia lyase. J. Am. Chem. Soc. 2007;129:15718–15727. doi: 10.1021/ja077124x. PubMed DOI
Buchachenko AL, Kuznetsov DA. Magnetic field affects enzymatic ATP synthesis. J. Am. Chem. Soc. 2008;130:12868–12869. doi: 10.1021/ja804819k. PubMed DOI
Adair RK. Effects of very weak magnetic fields on radical pair reformation. Bioelectromagnetics. 1999;20:255–263. doi: 10.1002/(SICI)1521-186X(1999)20:4<255::AID-BEM6>3.0.CO;2-W. PubMed DOI
Kirschvink JL, Walker MM, Diebel CE. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 2001;11:462–467. doi: 10.1016/S0959-4388(00)00235-X. PubMed DOI
Giachello CNG, Scrutton NS, Jones AR, Baines RA. Magnetic fields modulate blue-light-dependent regulation of neuronal firing by cryptochrome. J. Neurosci. 2016;36:10742–10749. doi: 10.1523/JNEUROSCI.2140-16.2016. PubMed DOI PMC
Ritz T, Adem S, Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 2000;78:707–718. doi: 10.1016/S0006-3495(00)76629-X. PubMed DOI PMC
Antill LM, Woodward JR. Flavin adenine dinucleotide photochemistry is magnetic field sensitive at physiological pH. J. Phys. Chem. Lett. 2018;9:2691–2696. doi: 10.1021/acs.jpclett.8b01088. PubMed DOI
Messiha HL, Wongnate T, Chaiyen P, Jones AR, Scrutton NS. Magnetic field effects as a result of the radical pair mechanism are unlikely in redox enzymes. J. R. Soc. Interface. 2015;12:20141155. doi: 10.1098/rsif.2014.1155. PubMed DOI PMC
Steiner UE, Ulrich T. Magnetic-field effects in chemical-kinetics and related phenomena. Chem. Rev. 1989;89:51–147. doi: 10.1021/cr00091a003. DOI
Dodson CA, et al. Fluorescence-detected magnetic field effects on radical pair reactions from femtolitre volumes. Chem. Commun. 2015;51:8023–8026. doi: 10.1039/C5CC01099C. PubMed DOI
Evans EW, et al. Sensitive fluorescence-based detection of magnetic field effects in photoreactions of flavins. Phys. Chem. Chem. Phys. 2015;17:18456–18463. doi: 10.1039/C5CP00723B. PubMed DOI
Bialas C, et al. Ultrafast flavin/tryptophan radical pair kinetics in a magnetically sensitive artificial protein. Phys. Chem. Chem. Phys. 2019;21:13453–13461. doi: 10.1039/C9CP01916B. PubMed DOI PMC
Antill LM, Takizawa S, Murata S, Woodward JR. Photoinduced flavin-tryptophan electron transfer across vesicle membranes generates magnetic field sensitive radical pairs. Mol. Phys. 2019;117:2594–2603. doi: 10.1080/00268976.2018.1524525. DOI
Antill LM, Beardmore JP, Woodward JR. Time-resolved optical absorption microspectroscopy of magnetic field sensitive flavin photochemistry. Rev. Sci. Instrum. 2018;89:023707. doi: 10.1063/1.5011693. PubMed DOI
Zhou HX, Rivas GN, Minton AP. Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 2008;37:375–397. doi: 10.1146/annurev.biophys.37.032807.125817. PubMed DOI PMC
Minton AP. How can biochemical reactions within cells differ from those in test tubes? J. Cell Sci. 2006;119:2863–2869. doi: 10.1242/jcs.03063. PubMed DOI
Akabayov B, Akabayov SR, Lee SJ, Wagner G, Richardson CC. Impact of macromolecular crowding on DNA replication. Nat. Commun. 2013;4:1615. doi: 10.1038/ncomms2620. PubMed DOI PMC
Nettesheim G, et al. Macromolecular crowding acts as a physical regulator of intracellular transport. Nat. Phys. 2020;16:1144–1151. doi: 10.1038/s41567-020-0957-y. DOI
Ikeya N, Woodward JR. Cellular autofluorescence is magnetic field sensitive. Proc. Natl. Acad. Sci. U.S.A. 2021;118:e2018043118. doi: 10.1073/pnas.2018043118. PubMed DOI PMC
Publicover NG, Marsh CG, Vincze CA, Craviso GL, Chatterjee I. Effects of microscope objectives on magnetic field exposures. Bioelectromagnetics. 1999;20:387–395. doi: 10.1002/(SICI)1521-186X(199909)20:6<387::AID-BEM8>3.0.CO;2-#. PubMed DOI
Chatterjee I, Hassan N, Craviso GL, Publicover NG. Numerical computation of distortions in magnetic fields and induced currents in physiological solutions produced by microscope objectives. Bioelectromagnetics. 2001;22:463–469. doi: 10.1002/bem.74. PubMed DOI
Sirinakis G, Allgeyer ES, Cheng JM, St Johnston D. Quantitative comparison of spinning disk geometries for PAINT based super-resolution microscopy. Biomed. Opt. Express. 2022;13:3773–3785. doi: 10.1364/BOE.459490. PubMed DOI PMC
de Chaumont F, et al. Icy: An open bioimage informatics platform for extended reproducible research. Nat. Methods. 2012;9:690–696. doi: 10.1038/nmeth.2075. PubMed DOI
Lunova M, et al. Light-induced modulation of the mitochondrial respiratory chain activity: Possibilities and limitations. Cell. Mol. Life Sci. 2020;77:2815–2838. doi: 10.1007/s00018-019-03321-z. PubMed DOI PMC
Dell RB, Holleran S, Ramakrishnan R. Sample size determination. ILAR J. 2002;43:207–213. doi: 10.1093/ilar.43.4.207. PubMed DOI PMC
Jonkman J, Brown CM, Wright GD, Anderson KI, North AJ. Tutorial: Guidance for quantitative confocal microscopy. Nat. Protoc. 2020;15:1585–1611. doi: 10.1038/s41596-020-0313-9. PubMed DOI
Lee JY, Kitaoka M. A beginner's guide to rigor and reproducibility in fluorescence imaging experiments. Mol. Biol. Cell. 2018;29:1519–1525. doi: 10.1091/mbc.E17-05-0276. PubMed DOI PMC
Harkins TT, Grissom CB. The magnetic field dependent step in B12 ethanolamine ammonia lyase is radical-pair recombination. J. Am. Chem. Soc. 1995;117:566–567. doi: 10.1021/ja00106a079. DOI
Uzhytchak, M. et al. No evidence for detectable direct effects of magnetic field on cellular autofluorescence. bioRxiv, 2022.2005.2015.491784 (2022).
Woodward, J. R. & Ikeya, N. Radical pair based magnetic field effects in cells: the importance of photoexcitation conditions and single cell measurements. bioRxiv, 2022.2011.2009.515724 (2022).
Borle AB. Kinetic analyses of calcium movements in HeLa cell cultures I. Calcium influx. J. Gen. Physiol. 1969;53:43–56. doi: 10.1085/jgp.53.1.43. PubMed DOI PMC
Sato S, Rancourt A, Sato Y, Satoh MS. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny. Sci. Rep. 2016;6:23328. doi: 10.1038/srep23328. PubMed DOI PMC
Hino S, et al. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat. Commun. 2012;3:758. doi: 10.1038/ncomms1755. PubMed DOI PMC
Moreira JD, et al. Cell cycle progression is regulated by intertwined redox oscillators. Theor. Biol. Med. Model. 2015;12:10. doi: 10.1186/s12976-015-0005-2. PubMed DOI PMC
Heikal AA. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark. Med. 2010;4:241–263. doi: 10.2217/bmm.10.1. PubMed DOI PMC
Vanschagen CG, Muller F, Kaptein R. Photochemically induced dynamic nuclear-polarization study on flavin adenine-dinucleotide and flavoproteins. Biochemistry. 1982;21:402–407. doi: 10.1021/bi00531a030. PubMed DOI
Croce AC, Bottiroli G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. Histochem. 2014;58:320–337. PubMed PMC
Kozlova AA, Verkhovskii RA, Ermakov AV, Bratashov DN. Changes in autofluorescence level of live and dead cells for mouse cell lines. J. Fluoresc. 2020;30:1483–1489. doi: 10.1007/s10895-020-02611-1. PubMed DOI
Croce AC, Ferrigno A, Bottiroli G, Vairetti M. Autofluorescence-based optical biopsy: An effective diagnostic tool in hepatology. Liver Int. 2018;38:1160–1174. doi: 10.1111/liv.13753. PubMed DOI
Waters JC. Accuracy and precision in quantitative fluorescence microscopy. J. Cell Biol. 2009;185:1135–1148. doi: 10.1083/jcb.200903097. PubMed DOI PMC
DaCosta RS, Andersson H, Cirocco M, Marcon NE, Wilson BC. Autofluorescence characterisation of isolated whole crypts and primary cultured human epithelial cells from normal, hyperplastic, and adenomatous colonic mucosa. J. Clin. Pathol. 2005;58:766–774. doi: 10.1136/jcp.2004.023804. PubMed DOI PMC
Andersson H, Baechi T, Hoechl M, Richter C. Autofluorescence of living cells. J. Microsc. 1998;191:1–7. doi: 10.1046/j.1365-2818.1998.00347.x. PubMed DOI
Mitchell AJ, et al. Technical Advance: Autofluorescence as a tool for myeloid cell analysis. J. Leukoc. Biol. 2010;88:597–603. doi: 10.1189/jlb.0310184. PubMed DOI
Makin TR, de Xivry JJO. Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. Elife. 2019;8:e48175. doi: 10.7554/eLife.48175. PubMed DOI PMC
Button KS, et al. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013;14:365–376. doi: 10.1038/nrn3475. PubMed DOI
Halsey LG, Curran-Everett D, Vowler SL, Drummond GB. The fickle P value generates irreproducible results. Nat. Methods. 2015;12:179–185. doi: 10.1038/nmeth.3288. PubMed DOI
Lord SJ, Velle KB, Mullins RD, Fritz-Laylin LK. SuperPlots: Communicating reproducibility and variability in cell biology. J. Cell Biol. 2020;219:e202001064. doi: 10.1083/jcb.202001064. PubMed DOI PMC
Steiner UE, Ulrich T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 1989;89:51–147. doi: 10.1021/cr00091a003. DOI
https://imagej.nih.gov/ij/docs/guide/
Blainey P, Krzywinski M, Altman N. Replication. Nat. Methods. 2014;11:879–880. doi: 10.1038/nmeth.3091. PubMed DOI
Ferrand A, Schleicher KD, Ehrenfeuchter N, Heusermann W, Biehlmaier O. Using the NoiSee workflow to measure signal-to-noise ratios of confocal microscopes. Sci. Rep. 2019;9:1165. doi: 10.1038/s41598-018-37781-3. PubMed DOI PMC
Belsley DA, Atkinson AC, Cox DR, Mcdonald J. Residual and influence in regression—Cook, Rd, Weisberg, S. Int. J. Forecast. 1986;2:41–52. doi: 10.1016/0169-2070(86)90029-4. DOI
Colquhoun D. An investigation of the false discovery rate and the misinterpretation of p-values. R. Soc. Open Sci. 2014;1:140216. doi: 10.1098/rsos.140216. PubMed DOI PMC
Hanson NA, Lavallee MB, Thiele RH. Apophenia and anesthesia: How we sometimes change our practice prematurely. Can. J. Anesth. 2021;68:1185–1196. doi: 10.1007/s12630-021-02005-2. PubMed DOI PMC
https://www.edinst.com/blog/raman-scattering-blog/
Macleod M, et al. The MDAR (Materials Design Analysis Reporting) Framework for transparent reporting in the life sciences. Proc. Natl. Acad. Sci. U.S.A. 2021;118:e2103238118. doi: 10.1073/pnas.2103238118. PubMed DOI PMC
Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005;2:696–701. doi: 10.1371/journal.pmed.0020124. PubMed DOI PMC
Le Novere N, et al. Minimum information requested in the annotation of biochemical models (MIRIAM) Nat. Biotechnol. 2005;23:1509–1515. doi: 10.1038/nbt1156. PubMed DOI
Field D, et al. The minimum information about a genome sequence (MIGS) specification. Nat. Biotechnol. 2008;26:541–547. doi: 10.1038/nbt1360. PubMed DOI PMC
Bustin SA, et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412. doi: 10.1371/journal.pbio.1000412. PubMed DOI PMC
Faria M, et al. Minimum information reporting in bio-nano experimental literature. Nat. Nanotechnol. 2018;13:777–785. doi: 10.1038/s41565-018-0246-4. PubMed DOI PMC
Kolenc OI, Quinn KP. Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD. Antioxid. Redox Signal. 2019;30:875–889. doi: 10.1089/ars.2017.7451. PubMed DOI PMC
Campbell JM, et al. Non-destructive, label free identification of cell cycle phase in cancer cells by multispectral microscopy of autofluorescence. BMC Cancer. 2019;19:1242. doi: 10.1186/s12885-019-6463-x. PubMed DOI PMC
Wilhelm J, Vytasek R, Ostadalova I, Vajner L. Evaluation of different methods detecting intracellular generation of free radicals. Mol. Cell. Biochem. 2009;328:167–176. doi: 10.1007/s11010-009-0086-5. PubMed DOI
Heaster TM, Walsh AJ, Zhao Y, Hiebert SW, Skala MC. Autofluorescence imaging identifies tumor cell-cycle status on a single-cell level. J. Biophotonics. 2018;11:e201600276. doi: 10.1002/jbio.201600276. PubMed DOI PMC
Surre J, et al. Strong increase in the autofluorescence of cells signals struggle for survival. Sci. Rep. 2018;8:12088. doi: 10.1038/s41598-018-30623-2. PubMed DOI PMC
Schleusener J, Lademann J, Darvin ME. Depth-dependent autofluorescence photobleaching using 325, 473, 633, and 785 nm of porcine ear skin ex vivo. J. Biomed. Opt. 2017;22:091503. doi: 10.1117/1.JBO.22.9.091503. PubMed DOI
Debreczeny MP, et al. Human skin auto-fluorescence decay as a function of irradiance and skin type. Proc. SPIE. 2011;7897:78971T. doi: 10.1117/12.875533. DOI
Ferulova I, Lihachev A, Spigulis J. Photobleaching effects on in vivo skin autofluorescence lifetime. J. Biomed. Opt. 2015;20:051031. doi: 10.1117/1.JBO.20.5.051031. PubMed DOI
Fernandez-de-Cossio-Diaz J, Mulet R. Maximum entropy and population heterogeneity in continuous cell cultures. PLoS Comput. Biol. 2019;15:e1006823. doi: 10.1371/journal.pcbi.1006823. PubMed DOI PMC
Liu YS, et al. Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat. Biotechnol. 2019;37:314–322. doi: 10.1038/s41587-019-0037-y. PubMed DOI
Giancaspero TA, et al. FAD synthesis and degradation in the nucleus create a local flavin cofactor pool. J. Biol. Chem. 2013;288:29069–29080. doi: 10.1074/jbc.M113.500066. PubMed DOI PMC
del Campo-Albendea L, Muriel-Garcia AT. common statistical mistakes to watch out for when writing or reviewing a manuscript. Enferm. Intensiv. 2021;32:42–44.
Murakami M, Maeda K, Arai T. Dynamics of intramolecular electron transfer reaction of FAD studied by magnetic field effects on transient absorption spectra. J. Phys. Chem. A. 2005;109:5793–5800. doi: 10.1021/jp0519722. PubMed DOI
Stob S, Kemmink J, Kaptein R. Intramolecular electron-transfer in flavin adenine-dinucleotide—Photochemically induced dynamic nuclear-polarization study at high and low magnetic-fields. J. Am. Chem. Soc. 1989;111:7036–7042. doi: 10.1021/ja00200a021. DOI
Neil SRT, et al. Broadband cavity-enhanced detection of magnetic field effects in chemical models of a cryptochrome magnetoreceptor. J. Phys. Chem. B. 2014;118:4177–4184. doi: 10.1021/jp500732u. PubMed DOI
Murakami M, Maeda K, Arai T. Structure and kinetics of the intermediate biradicals generated from intramolecular electron transfer reaction of FAD studied by an action spectrum of the magnetic field effect. Chem. Phys. Lett. 2002;362:123–129. doi: 10.1016/S0009-2614(02)01046-1. DOI
Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake